基于地下SLF/ELF辐射源的地面及电离层电磁场特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震前电磁辐射异常现象越来越受到地震专家们的关注,并已经被很多的震例所证实。地震电磁辐射是直接来自于震源的信息,它是地震短临预报的非常重要的前兆手段,它的频谱主要集中在超低频(SLF)和极低频(ELF)频段。目前,对地震孕育期间的电磁辐射源产生的机理及其频谱特性还没有非常清楚的认识,但由于地层的吸收衰减性质,只有甚低频(VLF)以下的频率分量才能渗透出地面,被地面以上的接收设备接收到。所以地震辐射源与地下SLF/ELF辐射源有很大的相关性。但是为了把监测到的电磁辐射用于地震预测预报,需要解决以下几个关键问题:①电磁辐射是否是辐射异常?②电磁辐射来自何方?③电磁辐射比正常背景大多少?
     为了解决以上几个关键问题,本文研究的主要思路是:首先为了从地基和空间测得的SLF/ELF电磁信息中提出可能的地下辐射源的位置,必须研究地下SLF/ELF辐射源在地面和空间产生电磁场的传播特性。因为SLF/ELF频段的电波波长很长,天线长度比波长小得多,所以把辐射源理想化为电偶极子。由于地层是高损耗媒质,由侧面波传播理论可知,地下水平电偶极子比垂直电偶极子在地面以上激起电磁场的强度要大得多,故把地下SLF/ELF辐射源理想化为水平电偶极子。把地面和电离层理想化,进行理论计算,并和实测的数据进行比对,确定地下SLF/ELF辐射源的位置。其次,为了能识别收到的电磁信号是背景干扰还是出现了异常,需要了解正常条件下大气噪声随昼夜、季节和地域的统计分布规律。本文的主要研究内容如下:
     1.分析研究了地基SLF/ELF辐射源在各向同性地-电离层波导中产生场的传播特性。国内外学者对SLF频段已进行了多年的研究,既有理论又有实验,并得到了证实。但国内外大多数学者只是把应用于SLF频段的算法移植到ELF频段。本文提出了两种既能用于SLF频段又能用于ELF频段的新算法,即加速收敛算法和数值积分算法,进行了理论计算。结果表明,不仅验证了现有的SLF算法,并为进一步研究地下SLF/ELF辐射源在地面和电离层电磁场的传播特性提供了良好的理论基础。
     2.对地下SLF/ELF辐射源在各向同性地-电离层波导中产生场的传播特性进行了分析和讨论,并验证了舒曼谐振现象。以往主要针对长波地下应急通信,传播距离短,辐射源埋深浅,釆用平面半空间模型。本文基于地震辐射源与地下SLF/ELF辐射源的相关性,将SLF/ELF辐射源理想化为水平电偶极子,把地面和电离层理想化,釆用球面模型进行分析计算。与传统方法相比,获得了更接近实际的整个地-电离层波导中电磁场的空间分布规律。由于地下SLF/ELF辐射源在地面和电离层电磁场的表达式是球谐级数形式,不仅运算复杂,而且速度很慢。所以本文提出了一种适用于非理想导电条件下SLF/ELF频段的加速收敛算法。计算结果表明,该算法能快速有效地进行分析计算,不仅验证了它的正确性,还进一步验证了侧面波传播理论。
     3.研究了地下ELF线辐射源在各向同性地-电离层波导中产生场的空间分布规律。它可由地下ELF点辐射源产生的场进行叠加。分别计算和讨论了地下单条和两条ELF线辐射源在地面上产生电磁场的场强空间分布图,用色标表示了场强值在空间分布的强弱。
     4.分别对地下SLF/ELF辐射源在各向同性和异性电离层中产生场的传播特性进行了分析和讨论。本文对地层、大气层和电离层进行了整体研究,分析研究了深埋于地下的SLF/ELF辐射源所产生的电磁场从地层、大气层到达卫星的传播全过程,改进了传统的分段研究的局限性,提高了认识和掌握SLF/ELF电磁波的传播机理和空间分布规律的全面性,并确立了对SLF/ELF电磁波的传播机理和空间分布规律研究的可逆性。
     5.通过对南极地区的观测数据进行分析,并结合本文检索和收集到的国外公开发表的文献和非公开发行的AD报告以及全球VLF频段的大气噪声的统计分布规律,分析及预测了全球SLF/ELF频段的大气噪声的统计分布规律。
The abnormal phenomenon of the electromagnetic radiation before the earthquake getsthe more and more attention of the seismologists, and it has been verified by manyearthquake examples. The earthquake electromagnetic radiation is the information directlycoming from the earthquake source, and it is a very important precursor means of theearthquake short-term and imminent forecasting. The frequency spectrum of theelectromagnetic radiation mainly concentrates in the super low frequency (SLF) andextremely low frequency (ELF) bands. At present, the generation mechanism andfrequency spectrum characteristic of the electromagnetic radiator are not still extremelyclear during the earthquake breeding period. Only the frequency components below verylow frequency (VLF) can seep the ground, and can be received by the receiving apparatuson the ground because the stratum is a highly lossy medium. So the relevance of theearthquake radiator and the underground SLF/ELF radiator is very big. But in order to putthe monitored electromagnetic radiation to the earthquake prediction and forecasting, itneeds to solve the following several key problems:①Whether is the electromagneticradiation the abnormity?②Where does the electromagnetic radiation come from?③How much is the electromagnetic radiation larger than the normal background?
     In order to solve above several key problems, the detailed studying process of thisdissertation is as follows: Firstly, in order to ascertain the possible position of theunderground radiator from the measured SLF/ELF electromagnetic information on thegroundsill and in the space, the propagation characteristic of the electromagnetic fieldsexcited by the underground SLF/ELF radiator on the ground and in the space must bestudied. Because the wavelength of the electromagnetic wave is very long, and the lengthof the antenna is less than the wavelength, the radiator can be idealized as an electricdipole. Because the stratum is a high absorption and attenuation medium, and it is known by the trapped surface wave propagation theory that the electromagnetic field intensityexcited by an underground horizontal electric dipole (HED) is much larger than thatexcited by an underground vertical electric dipole (VED), the underground SLF/ELFradiator can be idealized as a HED. It is calculated by idealizing the ground and theionosphere, and it is contrasted with the actually measured data to ascertain the position ofthe underground SLF/ELF radiator. Secondly, it needs to know the statistical distributionrules of the atmospheric noise along the day and night, the seasons and the regions inorder to distinguish the received electromagnetic signal to be the background interferenceor the abnormity. The mainly studying contents of this dissertation are as follows:
     1. The propagation characteristic of the fields excited by the SLF/ELF radiator on thegroundsill in the isotropic earth-ionosphere waveguide has been analyzed and studied. Ithas been studied for many years in SLF frequency band by the domestic and foreignscholars, and it has both the theories and the experiments, and it has been obtained theconfirmation. But the algorithms applied in the SLF frequency band are only used to theELF frequency band by the domestic and foreign scholars. In the dissertation, two kinds ofalgorithms have been proposed, namely the speeding numerical convergence algorithmand the numerical integral algorithm, which are not only suitable for SLF frequency bandbut also suitable for ELF frequency band. Moreover, the theoretical calculation has alsobeen made. The results indicate that it has not only confirmed the existing SLF algorithms,but also provided the good studying foundation in order to further study the characteristicof the ground and the ionosphere electromagnetic fields excited by the undergroundSLF/ELF radiator.
     2. The propagation characteristic of the fields excited by the underground SLF/ELFradiator in the isotropic earth-ionosphere waveguide has been analyzed and discussed, andSchumann resonance has also been confirmed. Formerly it mainly aims at theunderground emergency communication of the long wave. Because the propagationdistance is short, and the depth of the radiator is fairly shallow, the model of the plane halfspace is used. In the dissertation, it is based on the relevance of the earthquake radiatorand the underground SLF/ELF radiator. The SLF/ELF radiator is idealized as thehorizontal electric dipole, and the ground and the ionosphere are idealized, and it isanalyzed and calculated by the spherical model. The spatial distribution rules of theelectromagnetic fields in the whole earth-ionosphere waveguide have been obtained bycomparing with the traditional method. Because the expressions of the ground and theionosphere electromagnetic fields excited by the underground SLF/ELF radiator are theform of the spherical harmonic series, and their calculation is not only complex but alsothe speed is very slow, a speeding numerical convergence algorithm has been proposed in the dissertation, which is suitable for the SLF/ELF frequency band under the non-idealelectric conductor condition. The results indicate that the analysis and the calculation canbe fast and effectively carried on by this algorithm. The accuracy of this algorithm has notonly been confirmed, but also the theory of the lateral wave has further been confirmed.
     3. The spatial distribution rules of the fields excited by the underground ELF lineradiator in the isotropic earth-ionosphere waveguide have been studied. It may be the sumof the fields excited by the underground ELF point radiator. The spatial field intensitydistribution of the electromagnetic fields excited by the underground ELF single linearradiator and two linear radiators has been calculated and discussed, respectively, and thestrong and weak distribution of the spatial field intensity values is expressed by the colorcode.
     4. The propagation characteristic of the fields excited by the underground SLF/ELFradiator in the isotropic and anisotropic ionosphere has been respectively analyzed anddiscussed. The stratum, the atmosphere and the ionosphere are seen as a whole to bestudied in the dissertation. The whole propagation process of the electromagnetic fieldsexcited by the underground deeply buried SLF/ELF radiator from the stratum and theatmosphere to the satellite has been analyzed and studied. The limitation of the traditionalpartition research has been improved, and it has been enhanced to comprehensively knowand grasp the propagation mechanism and the spatial distribution of the SLF/ELFelectromagnetic wave. Moreover, the invertibility of studying the propagation mechanismand the spatial distribution of the SLF/ELF electromagnetic wave has been established.
     5. Statistical distribution rules of the global SLF/ELF atmospheric noise have beenanalyzed and predicted by analyzing the Antarctic observed data and unifying the overseaspublicly published literatures and unpublished AD reports retrieved and collected in thedissertation as well as the statistical distribution rules of the global VLF atmosphericnoise.
引文
[1]中国地震局监测预报司.中国大陆地震短期异常特征和综合预测方法研究.北京:北京地震出版社,2005
    [2]中国地震局科学技术委员会办公室.当前地震预报面临的主要科学问题、解决的科学思路、技术途径及建议.国际地震动态,2002, Vol.8, pp.1-6
    [3]张国民.我国地震监测预报研究的主要科学进展.地震,2002, Vol.22, No.1, pp.2-8
    [4]张继红,张京华,刘敏等.地震前电磁辐射异常变化特征.地震地磁观测与研究,2001, Vol.22, No.5, pp.71-74
    [5]丁鉴海,申旭辉,潘威炎等.地震电磁前兆研究进展.电波科学学报,2006,Vol.21, No.5, pp.791-801
    [6]丁鉴海,余素荣,肖武军.地震前兆与短临预报探索.地震,2003, Vol.25, No.3,pp.43-50
    [7]张学民,武有文.地震前电磁辐射信息特征研究.地震,1998, Vol.18, No.1, pp.97-101
    [8]郭自强.地震低频电磁辐射研究.地球物理学报,1994, Vol.37, No.1, pp.261-267
    [9]丁鉴海,索玉成,余素荣.地磁场与电离层异常现象及其与地震的关系.空间科学学报,2005, Vol.25, No.6, pp.536-542
    [10]方涵先,翁利斌,王威等.电离层在地震短临预报中的应用.科学技术与工程,2010, Vol.10, No.27, pp.6698-6706
    [11]陈化然,杨冬梅,李琪等.1980年以来我国电磁辐射地震前兆信息的观测与研究.中国地震,2008, Vol.24, No.2, pp.180-186
    [12]单新建.地震电磁卫星资料汇编.中国地震局地质研究所,2006
    [13]卓贤军,赵国泽,王继军等.地震预测中的电磁卫星.大地测量与地球动力学,2005, Vol.25, No.2, pp.1-5
    [14]刘志远,陈英方.卫星预测地震研究进展综述.地震地磁观测与研究,2001,Vol.22, No.4, pp.96-99
    [15]赵国泽,陈小斌,蔡军涛.电磁卫星和地震预测.地球物理学进展,2007, Vol.22,No.3, pp.667-672
    [16]王小京.超低频信号场强与大气噪声研究.舰船电子工程,2009, Vol.29, No.9,pp.79-83
    [17]张文娟,王永斌,付天晖.甚低频/通信中大气噪声仿真研究.舰船电子工程,2006, Vol.26, No.6, pp.123-126
    [18]谢慧,高俊,柳超等.超低频拖曳全向接收天线运动感应噪声研究.电波科学学报,2007, Vol.22, No.5, pp.861-866
    [19]徐玲,靳致文,王西乾. SLF/ULF大气噪声谱密度全球分布预测.电波科学学报,2010, Vol.25, No.4, pp.773-778
    [20] Lawrence H. G.. Extremely low frequency atmospheric noise level statistics forproject sanguine. IEEE Transactions on Communications,1974, com-22, No.4
    [21]关华平,陈智勇.地震与电磁辐射关系的定量分析.地震,1996, Vol.6, No.2, pp.168-176
    [22]关华平,陈智勇,余素荣.首都圈及其邻近地区电磁辐射映震效果研究.地震,2000, Vol.20, No.1, pp.65-70
    [23] Larkina V. I.,Nalivayko A. V.,Gershenzon N. I. et al..Observations of VLFemission related with seismic activity on the Interkosmos-19satellite.Geomagn.Aeron.,1983, Vol.23, pp.684-687
    [24] Parrot, M., Lefeuvre, F., Corcuff, Y. et al.. Observations of emissions at the time ofearthquakes in the Kerguelen1985modelling the ionospheric disturbance caused byan explosion on the ground. Ann. Geophys.,1985, Vol.3, pp.695-704
    [25] Morgunov, U. A., Matveev, E. V.. Electromagnetic emission on Spitak earthquake.Geophysics,1990, Vol.6, pp.14-191
    [26] Nikiforova, N. N., Yudekhiu, F. N., Toktosopiev, A. M.. Study of electromagneticemission of seismotectonic origin in kirghiz. S. S. R., Phys. Earth Planet. Inter.,1989,Vol.57, pp.68-75
    [27] Fraser-Smith A. C., Bernardi A., Helliwell R. A. et al.. Analysis of lowfrequency-electromagnetic-field measurements near the epicenter, in the loma prieta,California, earthquake of october17,1989preseismic observations[A], Eds:M.J.S.Johnston, U.S. Geological Survey Prof.Paper1550-C[C], U.S. Gov. Print.Office, Washington, D.C.,1993, C17-C251
    [28] Fenoglio M. A., Fraser-Smith A. C., Beroza G. C. et al.. Comparison of ultra-lowfrequency electromagnetic signals with aftershock activity during the1989LomaPrieta Earthquake Sequence. Bul1. Seismolog. Soc. Am.,1993, Vol.83, pp.347-357
    [29]李彦堂,郭勇.地震前电磁信息观测.地震学报,1991, Vol.13, pp.121-124
    [30] Serebryakova O. N., Bdichenko S. V., Chmyrev V. M. et al.. Electromagnetic ELFradiation from earthquake regions as observed by low-altitude satellites. Geophys.Res. Lett.,1992, Vol.19, pp.91-94
    [31]丁鉴海,卢振业,余素荣.地震地磁学概论.合肥:中国科学技术大学出版社,2011
    [32] M. Hayakawa, O. A. Molchanov, T. Ondoh et a1.. The precursory signature effects ofthe Kobe earthquake on VLF subionospheric signals. J Comm Res Lab,1996, Vol.43, pp.169-180
    [33]关华平,刘桂萍.震前电磁辐射异常与地震关系研究.地震学报,1995, Vol.17,No.2, pp.237-246
    [34] Uyeda S., Hayakawa M., Nagao T. et al.. Electric and magnetic phenomena observedbefore the volcano-seismic activity in2000in the izu island region. Japan.Proceedings of the National Academy of Sciences of the United States of America,2002, Vol.99, No.11, pp.7352-7355
    [35] Haartsen M. W., Pride S. R..Electroseismic waves from point sources in layeredmedia. J.Geophys.1997, Vo1.102, No. B11, pp.24-45
    [36] Gaffet S., Guglielmi Y., Virieux J. et a1.. Simultaneous seismic and magneticmeasurements in the Low-Noise Underground Laboratory of Rustrel, France, duringthe2001January26Indian earthquake.Geophys. J. Int.,2003, Vol.155, pp.981-990
    [37]马玉虎,张永顺,马文静.昆仑山口西8.1级地震前电磁前兆短临异常特征及时空演化.高原地震,2003, Vol.15, No.2, pp.32-37
    [38] K. Ohta, K. Umeda, N. Watanabe, M. Hayakawa.Relationship between ELFmagnetic fields and Taiwan earthquake[A].Ed., M Hayakawa and O A Molchanov,Seismo Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling[C].TERRAPUB, Tokyo,2002, pp.233-237
    [39]孙海军.喀什地磁台磁通门磁力仪与磁变仪记录资料的对比分析.内陆地震,2003, Vol.17, No.4, pp.366-370
    [40]于世昌,史素娟,步尚丽等.岫岩5.4级地震与辽中地震台电磁辐射异常.东北地震研究,2005, Vol.21, No.2, pp.36-40
    [41] Parrot M., Berthelier J. J., Lebreton J. P. et a1..Examples of unusual ionosphericobservations made by the Demeter satellite over seismic regions.Physics andChemistry of the Earth,2006, Vol.31, pp.486-495
    [42]张学民,申旭辉,欧阳新艳等.汶川8级地震前空间电离层VLF电场异常现象.电波科学学报,2009, Vol.24, No.6, pp.1024-1032
    [43]于海雁,周洪娟,乔晓林.汶川MS8.0地震前ELF异常电磁辐射传播分析.地震学报,2010, Vol.32, No.6, pp.641-648
    [44] Wait, J. R.. Electromagnetic waves in stratified media. Pergamon, Tarrytown, NewYork,1962
    [45] Watt A. D.. VLF radio engineering, Pergamon Press,1967
    [46] Galejs J.. Terrestrial propagation of long electromagnetic waves. PerGamon Press,1972
    [47] Dunn J. M..Electromagnetic lateral waves in layered media [Ph.D. thesis]. HarvardUniv., Cambrige, Mars.,1984
    [48]吴信宝,潘威炎.水平磁偶极子在平面三层媒质中激发的侧面波新公式.电波科学学报,1990, Vol.5, No.3, pp.39-51
    [49] P. B. Bannister,R. W. P. King et al..Orbiting transmitter and antenna for space brornecommunications at ELF/VLF to submerged submarine. Paper reprinted fromAGARD conference proceeding,1993, pp.529
    [50]李凯,潘威炎.垂直于地磁场的电偶极子在电离层中的辐射场.电波科学学报,1997, Vol.12, No.4, pp.385-390
    [51]李凯,潘威炎.非均匀电离层中VLF辐射源在海面上产生的场.电波科学学报,1998, Vol.13, No.3, pp.265-269
    [52] R. W. P. King. The electromagnetic field of a horizontal electric dipole in thepresence of a three layered region. J. A. Phys.,1991, Vol.69, No.12, pp.7987-7995
    [53] R. W. P. King. The electromagnetic field of a horizontal electric dipole in thepresence of a three layered region: Supplement. J.A.Phys.,1993, Vol.74, No.8, pp.4845-4848
    [54] R. W. P. King, S. S. Sandler. The electromagnetic field of a vertical electric dipole inthe presence of a three layered region. Radio Science,1994, Vol.29, No.1, pp.97-113
    [55] Wait, J. R.. Comment on the electromagnetic field of a vertical electric dipole in thepresence of a three layered region by R. W. P. King and S. S. Sandler. Radio Science,1998, Vol.33, No.2, pp.251-253
    [56]张红旗,潘威炎.水平电偶极子在涂敷介质层的导电基底上激起的场.电波科学学报,2001, Vol.16, No.3, pp.367-374
    [57]张红旗,潘威炎.垂直电偶极子在涂敷介质导电平面上激起的场II.电波科学学报,2001, Vol.16, No.1, pp.5-11
    [58]潘威炎,张红旗,李凯.地下水平电偶极子在均匀球形地面产生的侧面波.电波科学学报,2002, Vol.17, No.3, pp.216-223
    [59]潘威炎.长波超长波极长波传播.成都:电子科技大学出版社,2004
    [60] J. J. Simpson, A. Taflove. A review of progress in FDTD Maxwell’s equationsmodeling of impulsive sub-ionospheric propagation below300kHz. IEEE Trans. onAntennas and propagation,2007, Vol.55, No.6, pp.1582-1590
    [61] Ta-Shing Chu. The radiation of extremely low frequency (ELF) waves. IEEEtransactions on communications,1974, Vol. com-22, No.4, pp.386-388
    [62] Donald E. Barrick. Exact ULF/ELF dipole field strengths in the Earth-ionospherecavity over the Schumann resonance region: Idealized boundaries. Radio Science,1999, Vol.34, No.1, pp.209-227
    [63]王元新,樊文生,潘威炎等.垂直电偶极子在地-电离层波导中场的球级数解.电波科学学报,2007, Vol.2, No.2, pp.204-211
    [64]王元新,彭茜,潘威炎等. SLF/ELF水平电偶极子在地-电离层波导中产生的场.电波科学学报,2007, Vol.2, No.5, pp.728-734
    [65]张红旗,陈宇,潘威炎.地震ELF/SLF辐射源在地面及电离层产生的场.电波科学学报,2009, Vol.24, No.3, pp.432-439
    [66] M. Ozaki, S. Yagitani, I. Nagano et al.. Ionospheric penetration characteristics ofELF waves radiated from a current source in the lithosphere related to seismicactivity. Radio Science,2009, Vol.44, RS1005
    [67]董慧,闫玉波,李清亮. FDTD模拟SLF/ELF水平电偶极子在非均匀地-电离层波导中的场.电波科学学报, April2010, Vol.25, No.2, pp.276-280
    [68]熊皓.无线电波传播.北京:电子工业出版社,2000
    [69]王元新.极低频在地-电离层波导中产生场的新的理论计算方法[硕士论文].青岛:中国电波传播研究所青岛分所,2007
    [70] Bannister P.. Some note on ELF earth-ionosphere waveguide daytime propagationparameters. IEEE Transactions on Antennas and Propagation,1979, Vol.27, pp.696-698
    [71] Tripathi V. K., Chang C. L., Papadopoulos K.. Excitation of the Earth-ionospherewaveguide by an ELF source in the ionosphere. Radio Science,1982, Vol.17, pp.1321-1326
    [72] S. A. Cummer. Modeling electromagnetic propagation in the earth-Ionospherewaveguide. IEEE Trans. on Antennas and Propagations,2000, Vol.48, No.9, pp.1420-1429
    [73]张红旗,潘威炎,沈凯先.位于覆盖介质层导电基底中的水平电偶极子激起的场.电波科学学报,2001, Vol.16, No.4, pp.451-460
    [74]张红旗.沿涂敷介质层的导电基底传播的表面波与侧面波[博士论文].西安:中国科学院陕西天文台,2001
    [75] Y. X. Wang, W. S. Fan, W. Y. Pan et al.. Spherical harmonic series solution of fieldsexcited by vertical electric dipole in earth-ionosphere cavity. Frontiers of Electricaland Electronic Engineering in China,2008, Vol.3, No.1, pp.61-69
    [76] K. Li, Y. L. Lu, W. Y. Pan. Exact transient field of a horizontal electric dipole excitedby a Gaussian pulse on the boundary between two dielectrics. IEEE Antennas andwireless propagation letters,2005, Vol.4, pp.337-340
    [77] K. Li, Y. Lu, M. Li. Approximate formulas for lateral electromagnetic pulses from ahorizontal electric dipole on the surface of one-dimensionally anisotropic medium.IEEE Trans. Antennas Propagation,2005, Vol.53, No.3, pp.933-937
    [78] W. Y. Pan, H. Q. Zhang. Electromagnetic field of a vertical electric dipole on thespherical conductor covered with a dielectric layer. Radio science,2003, Vol.38, No.3,pp.1061-1069
    [79] H. Q. Zhang,K. Li,W. Y. Pan.The electromagnetic field of a vertical dipole on thedielectric-coated imperfect conductor.J. of Electromagnetic. Waves and Appl.2004,Vol.18, No.10, pp.1305-1320
    [80] Wait, J. R.. Comment on the electromagnetic field of a vertical electric dipole in thepresence of a three-layered region by Ronold, W. P. King and Sheldon S. Sandler.Radio Science,1998, Vol.33, No.2, pp.251-253
    [81] L. Liu, K. Li. Radiation from a vertical electric dipole in the presence of athree-layered region. IEEE Transactions on Antennas and Propagation,2007, Vol.55,No.12, pp.3469-3475
    [82] Alan Jeffrey. Table of integrals, series, and products. New York: Academic,1980
    [83]彭怀云,陶伟,潘威炎等.极低频垂直偶极子在地-电离层中场的数值积分算法.电波科学学报,2012, Vol.27, No.2, pp.333-338
    [84] Baba Hisatoshi. Investigation of electromagnetic radiation associated withearthquakes observational results related to earthquakes. Tokai Daigaku Sogo KagakuGijutsu Kenkyujo Kenkyukai Shiryoshu,2000, Vol.19, pp.67-74
    [85] Adachi S. Signal processing and sonification of seismic electromagnetic radiation inthe ELF band. IEICE Trans Fundam Electron Commun Comput Sci,2001, Vol. E84,pp.1011-1016
    [86] M. Goushevaa, R. Glavchevab, D. Danovc. Satellite monitoring of anomalous effectsin the ionosphere probably related to strong earthquakes. Advances in SpaceResearch,2006, Vol.37, pp.660-665
    [87] Muto, F., Yoshida, M., Horie, T. et al.. Detection of ionospheric perturbationsassociated with Japanese earthquakes on the basis of reception of LF transmittersignals on the satellite Demeter. Nat. Hazards Earth Syst. Sci.,2008, Vol.8, pp.135-141
    [88] Meloni A., Palangio P. Fraser-Smith A. C.. Some characteristics of the ELF/VLFradio noise measured near L’Aquila, Italy. IEEE Transactions on Antennas andPropagation,1992, Vol.40, pp.233-236
    [89] K. J., Carroll, A. J. Ferraro. Computer simulation of ELF injection in theEarth-ionosphere waveguide. Radio Science,1990, Vol.25, pp.1363-1367
    [90] J. J. Simpson. Current and future applications of3-D global Earth-ionosphere modelsbased on the full-vector Maxwell’s equations FDTD method. Surveys in Geophysics,2009, Vol.30, No.2, pp.105-130
    [91] Fraser-Smith, A. C., P. R. Bannister. Reception of ELF signals at antipodal distance.Radio Science,1998, Vol.33, pp.83-88
    [92] Bannister P. Far-field Extremely Low Frequency (ELF) propagation measurements.IEEE Transactions on Communications,1974, Vol.22, pp.468-474
    [93] Chang, D. C., Wait, J. R.. ELF propagation along a horizontal wire located above orburied in the earth. IEEE Trans. Communications,1974, Vol. com-22, No.4, pp.421-427
    [94] K. Li, X. Y. Sun, H. T. Zhai. Propagation of ELF electromagnetic waves in the lowerionosphere. IEEE Transactions on Antennas and Propagation,2011, Vol.59, No.2,pp.661-666
    [95] A. P., Nickolaenko, L. M. Rabinowicz, M. Hayakawa. Time domain presentation forELF pulses with accelerated convergence. Geophys. Res. Lett.,2004, Vol.31,L05808
    [96] A. P., Nickolaenko, L. M. Rabinowicz, M. Hayakawa. Natural ELF pulses in the timedomain: series with accelerated convergence. IEEJ Trans. on Fundamentals andMaterials,2004, Vol.124, No.12, pp.1210-1215
    [97]潘威炎.甚低频波导传播理论概要.1022所内部资料,1976
    [98] Galejs J.. Excitation of the terrestrial wave guide by sources in the lower ionosphere.Radio Science,1971, Vol.6, pp.41-53
    [99] Johler, J. R., L. A. Berry. Propagation of terrestrial radio waves of long wavelength:Theory of zonal harmonics with improved summation techniques. J. Res. Natl Bur.Stand, U.S., Sect. D,1962, Vol.66, pp.325-376
    [100] R. W. P. King, OMargaret Owens, Wu T. T.. Lateral electromagnetic wave. Springer-Verlag New York,1992
    [101] H. Yang, V. P. Pasko. Three-dimensional finite-difference time-domain modeling ofthe Earth-ionosphere cavity resonances. Geophysical Research Letters,2005, Vol.32, L03114
    [102] H. Yang, V. P. Pasko. Three-dimensional finite difference time domain modeling ofthe diurnal and seasonal variations in Schumann resonance parameters. RadioScience,2006, Vol.41, RS2S14
    [103] J. J. Simpson, A. Taflove. Three-dimensional FDTD modeling of impulsive ELFantipodal propagation and Schumann resonance of the Earth-sphere. IEEETransactions on Antennas and Propagation,2004, Vol.52, No.2, pp.443-451
    [104] Antonio Soriano, Enrique A. Navarro. Finite difference time domain simulation ofthe Earth-ionosphere resonant cavity: Schumann resonances. IEEE transactions onantennas and propagation, April2005, Vol.53, No.4, pp.1535-1541
    [105] Navarro E. A., Sorlao A., Morente J. A. et al.. A finite difference time domainmodel for the Titan ionosphere Schumann resonances. Radio Science,2007, Vol.42,No.2, RS2S04
    [106] P. V., Bliokh, A. P. Nicholaenko, Y. F. Filippov. Schumann resonances in theEarth-ionosphere cavity. Inst. Of Electr. Eng. Waves Ser.9, chap.4, Peter Peregrinus,London,1980
    [107]曹丙霞.地震先兆电离层舒曼谐振异常监测方法研究[博士论文].哈尔滨:哈尔滨工业大学,2011
    [108]郭亚红.地震前的电磁效应.地震地质,2006, Vol.28, No.3, pp.481-486
    [109]王继军,赵国泽,詹艳等.中国地震电磁现象的观测与研究.大地测量与地球动力学,2005, Vol.25, No.2, pp.11-21
    [110] M. Hayakawa, O. A., Molchanov. Seismo-Electromagnetics as a new field ofRadiophysics: Electromagnetic phenomena associated with earthquakes. RadioScience, Bulletin,2007, Vol.320
    [111] Gokhberg, M. B., Morgounov, V. A., Pokhotelov, O. A.. Earthquake prediction:seismo-electromagnetic phenomena. London: Gordon and Breach Publishers,1995
    [112]张学民,赵国泽,陈小斌等.国外地震电磁现象观测.地球物理学进展,2007,Vol.22, No.3, pp.687-694
    [113]周朝晖.四川雅江6.0级地震前电磁辐射短临变化.四川地震,2002, No.1, pp.44-47
    [114]宋超,陈清水.闽台地区中强震电磁辐射信息异常特征探讨.福建地震,2003,Vol.19, No.3, pp.30-37
    [115]卢永,杨军,冯志生等.江苏及邻近地区地震电磁辐射异常与地震关系.华南地震,2004, Vol.24, No.2, pp.36-46
    [116] Mushtak V. C., Williams E. R.. ELF propagation parameters for uniform models ofthe Earth-ionosphere waveguide. J. Atmos. Sol. Terr. Phys.,2002, Vol.64, No.18,pp.1989-2001
    [117] T. Otsuyama, D. Sakuma, M. Hayakawa. FDTD analysis of ELF wave propagationand Schumann resonances for a subionospheric waveguide model. Radio Science,2003, Vol.38, No.6, pp.1103
    [118] O. A., Molchanov, M. Hayakawa. Seismo Electromagnetics and Related Phenomena:History and Latest results. Terra Scientific Publishing Company (TERRAPUB),Tokyo,2008
    [119] V. Grimalsky, M. Hayakawa, V. N. Ivchenko et al.. Penetration of an electrostaticfield from the lithosphere into the ionosphere and its effect on the D-region beforeearthquakes. J. Atmos. Sol. Terr. Phys.,2003, Vol.65, pp.391-407
    [120] J. J. Simpson, Allen Taflove. Electrokinetic effect of the Loma Prieta earthquakecalculated by an entire-Earth FDTD solution of Maxwell’s equations. GeophysicalResearch Letters,2005, Vol.32, L09302
    [121]岳明生.地震预测研究发展战略几点思考.国际地震动态,2005, Vol.5, No.5, pp.7-21
    [122] M. Hayakawa. Earthquake prediction: atmospheric and ionospheric electromagneticphenomena associated with earthquakes. Terra Scientific Publishing Company(TERRAPUB), Tokyo,1999
    [123] Mavromatis, Fanis, Boursianis et al.. A broadband monitoring system forelectromagnetic radiation assessment. IEEE Antennas and Propagation Magazine,2009, Vol.51, pp.71-79
    [124] J. W. LaBelle, R. A. Treumann. Geospace electromagnetic waves and radiation. Lect.Notes Phys., Springer, Berlin Heidelberg,2006
    [125] Y. Wang, H. G. Xia, Q. S. Cao. Analysis of ELF propagation along the earth surfaceusing the FDTD model based on the spherical triangle meshing. IEEE antennas andwireless propagation letters,2009, Vol.8, pp.1017-1020
    [126]翟厚涛. VLF/ELF电磁波在电离层中的传播机理研究[硕士论文].杭州:浙江大学,2007
    [127] Davies K.. Ionospheric radio waves. Blaisdell, Waltham, Mass.,1969
    [128] K. Li, Y. Lu. Electromagnetic field generated by a horizontal electric dipole near thesurface of a planar perfect conductor coated with a uniaxial layer. IEEETransactions on Antennas and Propagation,2005, Vol.53, No.10, pp.3191-3200
    [129] K. Li, Y. Lu. Approximate formulas for lateral electromagnetic pulses from ahorizontal electric dipole on the surface of one-dimensionally anisotropic medium.IEEE Transaction on Antennas and Propagation,2005, Vol.53, No.3, pp.933-937
    [130] Boudjada M. Y., Schwingenschuh K., Biernat H. K. et al.. Similar behaviors ofnatural ELF/VLF ionospheric emissions and transmitter signals over seismicAdriatic regions. Nat. Hazards Earth Syst. Sci.,2008, Vol.8, pp.1229-1236
    [131] John P. Casey. Extremely low frequency (ELF) propagation formulas for dipolesources radiating in a spherical Earth-ionosphere waveguide.14May2002,NUWC-NPT Technical Report11
    [132] M. Ozaki, I. Nagano, S. Yagitani, et al.. Ionospheric propagation of ELF/VLF wavesradiated from earthquake. In Proc. Asia-Pacific Radio Science Conf.,2004, pp.539-542
    [133]陈宇,王元新,潘威炎. SLF/ELF波对电离层的入射、反射与透射传播.中国电波传播研究所内部技术报告,August2009
    [134]陆洪,朱秀芹,张红旗.离子对SLF/ELF电磁波在电离层中传播的影响.电波科学学报,2008, Vol.23, No.6, pp.1128-1132
    [135] C. O. Lee Boyce Jr., J. David Powell, Per K. Enge et al.. A time domain atmosphericnoise analysis. In Proceedings of the International Loran Association, Boulder, CO,October2003
    [136] Lawrence H. Ginsberg. Extremely low frequency (SLF) atmospheric noise levelstatistics for project sanguine. IEEE Transactions on communications,1974, Vol.COM-22, No.4
    [137] Donald A. Feldman. An atmosphere noise model with applications to low frequencynavigation systems [Ph.D. thesis]. Massachusetts institute of technology, Boston,MA, June1972
    [138] Price C., D. Rind. Simulating global lighting distributions from satellite cloud data.In Proceedings of the9thInt. Conf. on Atmospheric Electricity, St. Petersburg,Russia,1992, pp.327-330
    [139] Fraser-Smith A. C., M. M. Bowen. The natural background levels of50/60Hz radionoise. IEEE Trans. Electromagnetic Compatibility,1992, Vol.34, pp.330-337
    [140] Fraser-Smith A. C., J. P. Turtle. ELF/VLF radio noise measurements at highlatitudes during solar particle events. AGARD Conf. Proc.,1993, No.529, pp.161-168
    [141] Meloni A., Palangio P., Fraser-Smith A. C.. Some characteristics of the ELF/VLFradio noise measured near L’Aquila, Italy. IEEE Transactions on Antennas andPropagation,1992, Vol.40, pp.233-236
    [142] International radio consultative committee characteristics and applications ofatmospheric radio noise. Tech. Rep. CCIR Recommendation322-2, CCIR, Geneva,1983
    [143] International radio consultative committee characteristics and applications ofatmospheric radio noise. Tech. Rep. CCIR Recommendation322-3, CCIR, Geneva,1988
    [144] Recommendation international telecommunications union radio noise. Tech. Rep.ITU Recommendation ITU-R P.327-7, ITU, Geneva,2001
    [145] Chrissan D. A., Fraser-Smith A. C.. Seasonal variations of globally measuredELF/VLF radio noise. Radio Science,1996, Vol.31, No.5, pp.1141-1152
    [146] Chrissan D. A.. Diurnal variations of globally measured SLF/VLF radio noise. July1997, ADA358641
    [147] Chrissan D. A., Fraser-Smith A. C.. Seasonal variations of globally measuredELF/VLF radio noise. December1996, Technical Report D177-1

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700