微束微区X射线荧光矿物探针研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在微米级,亚微米级尺度上观察和测定矿物组份,对地学研究和矿产资源勘查都具有重大意义。作为一种重要的分析手段,微束微区X射线荧光矿物探针旨在将大面积扫描与微区分析结合,能在微米级尺度范围内,满足对矿物成份和元素分布的分析测定,并可进一步推广应用到金属学、电子科学、医学、生物学和环境监测等领域。本文从X射线与物质的相互作用基本原理出发,在研究微束X射线荧光技术的矿物微区分析关键技术之基础上,设计并研制微束微区X射线荧光矿物探针仪,主要研究内容与取得的研究成果如下:
     1、研制国内首台微束微区X射线荧光矿物探针。实现了微束照射(光斑直径约30μm-50μm)和微区激发;微区的精密定位与控制;微区的显微放大与成像;微区特征X射线能谱信息的准确获取,矿物微区多元素定性、定量分析等。仪器的主要技术指标达到并部分超过国外同类技术产品。
     2、微束X射线源的设计与实现。设计了X射线聚束光路,建立了微束X光学器件与微区X射线荧光分析技术的关联性。设计的微束X射线源采用牛津公司先进的低功率侧窗型微焦斑(70μm)X射线光管和具有国际先进水平的国产毛细管X射线透镜组合,实测微区空间分辨率对NiKα线焦斑直径为34μm,有效的提高了目标元素特征X射线荧光的激发效率、减小了背景散射,为微束微区多元素定性和高灵敏度定量测量奠定了基础。
     3、针对X射线微束的能量及强度分布特征,进行三维机械微动平台的精密设计,研究三维机械精密微动平台空间微米尺度定位技术,以提高探针系统在微区内对目标点及面的扫描分析的运动精度。在三维微动平台整体结构布局研究的基础上,建立高精密电机驱动,高精度精密串联机械传动元件为主的机械传动系统动力学模型,以Hertz接触理论,对微动台机械传动链的轴向传动刚度进行理论推导,分析了平台在低速运动下的不平稳现象及定位误差产生的原因。结合参数化建模和有限元分析法,对滚珠丝杠螺母副等重要零部件进行静态特性分析,对机械结构进行优化设计。设计的三维微动平台整体尺寸小于180mm3,在几十毫米行程范围内,实现平均最小步距1.5μm,定位精度达到±1μm,无低速爬行现象。保证了仪器分析的空间分辨率及定量定性分析的精度。
     4、基于X射线微束源和微区分析要求的特殊性,研究矿物分析微区信息(包括微区图像信息和特征X射线能谱信息)的获取技术。矿物探针采用20~40倍光学放大镜和300万像素CCD工业数码相机组成显微成像系统,以Si-PIN半导体为X射线探测器,实现对矿物微区图像和目标元素特征X射线的实时采集。同时,显微成像系统与三维微动平台的联动操作,使矿物待分析微区在空间中被精确定位。在理论分析和物理实验基础上获得了最优的源-样-探-CCD几何设计,为降低微束微区X射线荧光分析的检出限,提高元素分析的灵敏度、精确度提供了技术保证。
     5、对矿物探针的主要技术指标展开测试,提出了科学的微束微区X射线矿物探针焦斑的微分实验测定方法和积分实验测定方法。在微米尺度上,对铬镍丝(直径10μm)步进测量NiKαX射线特征峰面积,实现对微区焦斑的微分曲线测定;对铜片步进测量CuKαX射线特征峰面积,实现对微区焦斑的积分曲线测定。在一定的置信水平下对微分曲线和积分曲线概率分析获取系统的焦斑直径。实测结果表明:在0.317的置信水平下,微束微区X射线荧光矿物探针的焦斑直径为34μm。
     6、开展了矿物微束微区X射线荧光分析的初步试验。对块状锌矿石(闪锌矿)和铁矿石(黄铁矿)光片样品进行了微束微区荧光分析试验。结果显示:微束微区X荧光矿物探针系统可以将10μm~30μm粒径大小的矿物颗粒从基体中有效的区分出来,对单矿物中元素含量分析的准确度达到4.21 %(RSD)。
     微束微区X射线荧光矿物探针仪适用于地质样品,显晶或隐晶矿物成分,粉晶材料,块状、薄片、光片材料的微区多元素定性定量分析,具有低成本、制样简单,分析速度快的特点。对微束微区X射线荧光矿物探针仪的研制和关键技术的探讨将加快此类仪器的国产化步伐,填补我国在低成本,自动化,高精度,微米级区域内X射线荧光矿物探针研制和野外应用研究方面的空白,打破国内市场被国外仪器垄断的局面,提高我国矿产资源勘查的装置水平与技术水平。
Observation and determination for mineral components at micro-level and sub-micro level are of great significance in the field of geosciences and mineral resources exploration. As an important analytical tool, micro-beam and micro-area X-ray fluorescence (Micro-XRF) mineral probe which aims to combine both a large area of scanning and micro-area analysis is capable of meeting the requirements for the analysis and detection of mineral composition and elements distribution at micrometer scale, it can also be further extended to the metal study, electronics science, medicine, biology, environmental monitoring and other fields. From the basic principle of X-ray interaction with matter, setting out to study the key analytical technology of micro-beam X-ray fluorescence for the minerals, the dissertation elaborates the design and development of a kind of micro-beam and micro-area X-ray fluorescence (Micro -XRF) mineral probe. The main contents and the innovative research results are as follows:
     1. Developed the first micro-beam and micro-area X-ray fluorescence mineral probe at home. Implemented micro-beam irradiation (spot diameter is about 30μm ~50μm) and micro-area excitation; micro-area precision positioning and control; microscopic magnification and imaging; obtaining accurate information of characteristic X-ray energy spectrum for micro-area analysis, multi-elements qualitative and quantitative analysis for minerals within micro-area. The major technical indicators have reached that of similar foreign products, part of them surpass the foreign advanced level.
     2. Design and Implementation of Micro-beam X-ray source. Designed X-ray optical path and established the technical association between the focusing X-ray optics and micro-area X-ray fluorescence analysis . The micro-beam X-ray source combined both the Oxford advanced side's window low-power X-ray tube with 70μm micro-spot and Monolithic X-ray Lens made in china which have reached the international advanced level. The measured spatial resolution on NiKαline spot diameter is 34μm, which effectively raised the target element characteristic X-ray fluorescence excitation efficiency, reduced the background scattering, then laid the foundation for micro-beam and micro-area multi-element qualitative analysis and high
     sensitivity quantitative measurement. 3. Designed a kind of three-dimensional precision micro-displacement stage targeting at the distribution characteristic of micro-beam X-ray energy and intensity. Research into its space micrometer precision positioning technology in order to improve the moving stability and accuracy for the mechanical components under the low speed effectively. Based on exploring the three-dimensional layout of the overall structure, built up a dynamic model for the mechanical transmission system in series which consists of high-precision motor and high precision mechanical transmission components. Using Hertz contact theory to execute the theoretical derivation for transmission chain rigidity of mechanical transmission system. Analyzed the reasons of unstability at low speed and the positioning errors of micro-platform. At the same time, used parametric modeling software combined with finite element analysis method to optimize the design of the mechanical structure. The three-dimensional micro-displacement stage, which was designed less than 180mm3 in overall size and achieved ten to tens of millimeter stroke in spatial orientation with±1μm positioning accuracy and 1.5μm average step, can provide a precise movement for the target point positioning and the surface scanning in Micro-probe system.
     4. Considering on the special requirements of micro-beam sources and micro-area analysis, studied the access technology of information from the micro-area on mineral sample(including image information and energy spectrum characteristic information of X-ray). Adopting Si-PIN semiconductor detector and a microscopic magnification systems which consists the 20 to 40 times optical magnifier and 300 million pixel CCD industrial digital camera, the Mineral probe can collect the information of the micro-area image and characteristic X-ray energy spectrum of target elements in real-time. Meanwhile, the micro-area to be analyzed can be precisely located in space when linking the operation of microscopic magnification systems and the three-dimensional moving platform. Obtained the optimal source - sample - probe-CCD geometric design based on the theoretical analysis and physical experiments, which reduced detection limits of micro-beam and micro-area X-ray fluorescence analysis, improved the sensitivity of elemental analysis and provided technical guarantee of the accuracy.
     5. Carried out the testing for the main technical indicators of mineral probe. Presented scientific differential and integral experimental methods to measure the focal spot size of micro-beam and micro-area X-ray mineral probe. In the micron scale, measuring the NiKαX-ray characteristics peak area of nickel-chromium wire (diameter 10μm) by step moving can get the differential curve of the spot , however measuring the CuKαX-ray characteristics peak area of copper slice by step can get the integral curve of spot. Under a certain level of confidence, analyzing the differential curve and the integral curves further will finally access the spot size of the instrument. The test results showed that at 0.317 confidence level, the focal spot diameter of micro-beam and micro-area X-ray fluorescence minaral probe is 34μm.
     6. Developed preliminary mineral tests on the micro-beam and micro-area X-ray fluorescence mineral probe system, which operated on the sample of massive zinc ore (sphalerite) and iron ore (pyrite). The results showed that micro-beam and micro-area X-ray fluorescence mineral probe system can effectively distinguish mineral particles varying from 10μm to 30μm from matrix. The analysis accuracy for elements content in single mineral is 4.21% (RSD).
     With the characteristic of lower costs, simple sample preparation, fast speed of analysis, the micro-beam and micro-area X-ray fluorescence mineral probe instrument is satisfactory for qualitative and quantitative multi-element micro-area analysis, which can be used in the geological mineral samples, crystalline or cryptocrystalline mineral composition, powder materials, massive, thin, tinsel materials. Hence, developing the micro-beam and micro-area X-ray fluorescence mineral probes and investigating the key technologies of them will accelerate the pace of manufacturing domestic silimar production, fill the empty of development the low-cost, automated, high precision Micro-XRF and application in the mineral exploration within micro-region at home; Meanwhile, break the monopoly situation by foreign device at domestic market. All of that will improve the equipment level and technical level of mineral exploration at home.
引文
[1]卓尚军. X射线荧光光谱分析[J].分析试验室.2009,28(7):112-120.
    [2] K. Janssens, F. Adams, A. Rindby, Microscopic X-Ray Fluorescence Analysis[M], Wiley, Chichester, 2000.
    [3]王毅民,王晓红,高玉淑.地质分析的历史发展和当今热点[J].分析化学,2001(7):845-851.
    [4]徐书荣,王毅民,潘静等.关注地质分析文献,了解分析技术发展[J],地质通报,2010(8):1239-1252.
    [5]王毅民,王晓红.我国地质分析中X射线光谱技术的回顾和发展[J].岩矿测试,2000(12):275-285.
    [6] Franqois Grillon,Jean Philibert.The Legacy of Raimond Castaing [J]. Mikrochim。Acta,2002(138), 99-104.
    [7]田中敬一,永谷等.图解扫描电子显微镜——生物样品制备[M].科学出版社,1984.
    [8]丁训良,梁炜,颜一鸣.使用X光透镜的XRF谱仪的研究进展[J],核技术,1996, 19(3):164-169.
    [9]乐安全,朱节清,谷英梅.微束x射线荧光分析[J],光谱学与光谱分析,1993(13),79-92.
    [10]程琳,潘秋丽,丁训良,刘志国等.微束X射线荧光分析系统的建立及其在考古学中的应用[J],原子能科学技术,2008,42(1),1-4.
    [11]王凯歌,王雷,牛憨笨.微束斑X射线源及X射线光学元件[J],应用化学,2008(2):183-191.
    [12] E.J.Morton,S.Webb,J.E.Bateman etal.Three-dimensional x-ray micro-tomography for medical and biological applications,Phys.Med.Biol.,1990 (35):805-820.
    [13] K.Machin,S.Webb,Cone-beam X-ray microtomography of small specimens, Phys.Med.Biol.,39(1994):1639-1657.
    [14]I.C.Noyan,P.C.Wang,S.K.Kaldor et al.. Divergence effects in monochromatic x-ray microdiffraction using tapered capillary optics.REVIEW OF SCIENTIFIC INSTRUMENTS,2000,71(5):1991-2000.
    [15]L.Vincze and C. Riekel.Status and perspectives of capillary optics at a third-generation synchrotron radiation source.X-Ray Spectrom,2003,32:208–214
    [16]Rong Huanga and Donald H.Bilderbacka, Single-bounce monocapillaries for focusing synchrotron radiation: modeling, measurements and theoretical limits.J.Synchrotron Rad.2006.13, 74–84.
    [17]乐孜纯,董文,刘伟等.抛物面型X射线组合折射透镜聚焦性能的理论与实验研究[J].物理学报,2010,59(3):1977-1983.
    [18]张延乐,余笑寒.海光源BL15U1束线的SRXRF定量分析[J],核技术,2010,33(5):334-337.
    [19] A. Krol, A. Ikhlef, J.C. Kieffer. Laser-based micro-focused X-ray source for mammography: feasibility study. Med. Phys. 1997,24(5):725-732
    [20]钟方川,邓健,覃岭等.飞秒和纳秒激光脉冲作用下等离子体X射线辐射特性[J],光学学报,1999(19),364-368.
    [21] C.Stoekl,G.D.Tsakiris,Experiments with laser irradiated cylindrical targets,Laser and Particle Beams,1991(6):725-747.
    [22] D.V.Korobkin,C.H.Nam,S.Suekewer,Demonstration of soft x一ray lasing to ground state in LiIII,Phys.Rev.Lett.,1996(77):5206-5209.
    [23] J.P Briand, P.Charles, J.Arianer et al. Observation of the KLL dielectr onic recombination in highly stripped argon ions [J]. Phys. Rev. Lett., 1984 (8): 617-620.
    [24] M.A Levine, R.E Marrs, J.N Bardsley et al. The use of an electron beam ion trap in the study o f highly charged ions [J]. Nucl Instrum Methods, 1989,(B43) : 431-439.
    [25]王凯歌,王雷,王鹏业等.聚焦慢速高荷态重离子束微束斑X射线源[J],应用光学,2004 25(1),5-8.
    [26] R.E.Marrs,D.H.Schneider,J.W McDonald,Projection x-ray microscope Powered by highly charged ions,Rev.Sci.Instrum.,1998, 69(l):204一209.
    [27] Atsuo Iida,Keiichi Hirano. Kirkpatrick-Baez optics for a sub-km synchrotron X-ray microbeam and its applications to X-ray analysis [J]. Nuclear Instruments and Methods in Physics Research, 1996 (B114) : 149- 153.
    [28] H.Mimura, H.Yumoto, S.Matsuyama et al., Fabrication of Ultraprecisely Figured Mirror for Nano Focusing Hard-x-ray[C],The 11th ICPE .Japen.P227-280.
    [29]K.Yamauchi,K.Yamamura,H. Mimura et al., J. Synchrotron Rad. 2002 (9):313–316
    [30] L.Kipp, M. Skibowski, R.L.Johnson et al.,Sharper images by focusing soft X-rays with photon sieve [J] .Nature, 2001,( 414): 184- 188.
    [31]国承山,任秀云,刘轩.用于聚焦X射线的高分辨菲涅尔波带板的设计[J],金陵科技学院学报,2004(6),8-11.
    [32] Kang H C, Maser J, Stephenson G B et al. Nanometer linear focusing of hard X rays by a multilayer laue lens [J] .Phys Rev L ett ,2006 ,96 (127401) :1-4.
    [33] Snigirev A, Kohn V, Snigireva I et al., Nature, 1996, 384:49-51
    [34]梁静秋,黄鑫华,乐孜纯等.折射型X射线组合透镜研制进展[J],核技术,2008,31(3),165-169.
    [35]朱艳青,梁静秋,梁中翥等.背面曝光技术制作沙漏状X射线组合折射透,物理学报,2009,58(3),1526-1530.
    [36] Aristov V V, Grigoriev M V, Kuznetsov S M et al. X-ray focusing by planar parabolicrefractive lenses made of silicon. Optics Communication, 2000, 177: 33-38.
    [37] Lengeler B,Tummler J,Snigirev A et al. Transmission and gain of singly and doubly focusing refractive x-ray lenses [J]. Appl Phys,1998, 84: 5855-5861
    [38] Pérennès F,Matteucci M, Jark Wet al. Microelectronic Engineering, 2005, 78-79: 79-87.
    [39]乐孜纯,董文,刘魏等. X射线长组合折射透镜的理论和实验研究[J],光学学报,2008,30(9):2696-2702.
    [40]Schroer C.G.,Kurapova O.,Patommel J.. Hard x-ray nano probe based on refractive x-ray Ienses, Appl. Phys.Lett. 2005,87:124103.
    [41] Kumakhov K.M.,Komarov F.E.. Multiple reflection from surface x-ray optics,Phys. Rep.,1990,191: 289-350.
    [42]严一鸣. X光学的重要突破——谈X光透镜[J].现代物理知识,1991,5:19-21
    [43] Donald H.,Bilderback. Review of capillary x-ray optics from the 2nd I nternational Capillary Optics Meeting[J]. X-Ray Spectrom. 2003; 32: 195–207
    [44]I.C.Noyan,P.C.Wang,S.K.Kaldor et al.. Divergence effects in monochromatic x-ray micro-diffraction using tapered capillary optics[J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2000, 71(5):1991-2000.
    [45] Yu.I.Dudehk,Glass Capillary X-ray lens: fabrication technique ray tracing calculations[J], Nuclear Intruments and Mrthods in Physics Research A 454(2000)512-519.
    [46]Rong Huanga and Donald H.Bilderbacka, Single-bounce monocapillaries for focusing synchrotron radiation: modeling, measurements and theoretical limits. [J].Synchrotron Rad.2006,3:74–84.
    [47] Ullrich J B, Kovantsev V, MaCdonald C A. Measurement of polycapillary X-ray optics[J].JAppl Phys, 1993,74:5933.
    [48] Vincze L, Janssens K, Adams F..Interpretation of capillary generated spatial and angular distributions of X-rays: theoretical modeling and experi-mental verification using the European synchrotron radiation facility optical beam line[J].Rev Sci Instum, 1998,69: 3494.
    [49] N. Gao,I. Y. Ponomarev. Polycapillary X-ray optics : manufacturing status , characterization and the future of the technology[J] . X-Ray Spectrom. , 2003 , 32 : 186-194
    [50] Bjeoumikhov A, Bjeoumikhova S, Langhoff N. et al. Polycapillary optics for energy dispersive micro X-ray diffractometry[J]. Applied Physics Letters, 2005,86: 144 102.
    [51] Kumakhov M A, Gruev D I. X-ray telescope based on polycapillary optics [J]. SPIE, 2000, 4 155:148
    [52] L. Vincze , C. Riekel . Status and per spectives of capillary optics at a third generation synchrotron radiation source [J] . X-Ray Spectrom. , 2003 , 32 : 208~214.
    [53] C. A. MacDonald , W. M. Gibson. Application and advances in polycapillary optics[J] .X-Ray Spectrom. , 2003 , 32 : 258~268.
    [54] Muradin A. Kumakhov. Capillary optics and their use in X-ray analysis [J] . X-Ray Spectrom. , 2000 , 29 : 343~348.
    [55] Vittiglio G, Bichlmeier S, Klinger P, Heckel J, Wei F, Vincze L, Janssens K, Engstr¨om P, Rindby A, Dietrich K, Jembrih-Simb¨urger D, Schreiner M, Denis D, Lamotte A. A Compact Micro-XRF Spectrometer for In-situ Analysis. Taken from viewgraphs of Guido Vittiglio of Spectro Analytical Instruments GmbH & Co., vittiglio@spectro-ai.com.
    [56] L. Vincze , C. Riekel . Status and per spectives of capillary optics at a third generation synchrotron radiation source [J] . X-Ray Spectrom. , 2003 , 32 : 208~214
    [57]孙天希,丁训良,刘志国.整体X光透镜性能实验研究[J].光学学报,2005,25:1436-1440
    [58]阎玉梅,丁训良,潘秋丽.整体X光透镜对点源、面源、线源的传输效率的计算[J].北京师范大学学报(自然科学版),39卷2期,2003,178一183.
    [59]谭业武,梁竹健,丁训良.直导管的传输效率[J].北京师范大学学报(自然科学版),1995,31(l):71-74.
    [60]谢晋东,丁训良,赫业军等.整体X光会聚透镜及其在微束X射线荧光分析中的应用[J].北京师范大学学报(自然科学版),1999,35(1):46–49.
    [61] Ding Xunliang, He Yejun, Yan Yumei. Monolithic X-ray focusing lens for XRF analysis[J]. Journal of Beijing Normal University(Natural Science)(北京师范大学学报(自然科学版)), 1995, 31(Sup):75
    [62] Ding Xunliang, Xie J D, He Yejun, et al. X-ray spectrometry using polycapillary X-ray optics and position sensitive detector [J]. Talanta, 2000, 53:17
    [63] Ding Xunliang, Gao N, Havrilla G. Monolithic polycapillary X-ray optics engineered to meet a wide range of application [J]. SPIE, 2000, 144 (4):174
    [64] Xunliang Ding , Yejun He , Yiming Yan. X-ray source for X-ray micro- fluorescence using a monolithic X-ray focusing lens combined with aperture optics [J] . X-Ray S pect rom. , 1997 , 26 : 374-379
    [65] Tianxi Sun,Zhiguo Liu, Xunliang Ding. Characterization of a polycapillary focusing X-ray lens for application in spatially resolved EXAFS experiments[J]. Chemical Physics Letters, 2007 (439) : 412–414.
    [66]王大椿陈俊李玉德等. X光透镜在X射线衍射技术中的应用[J].核技术, 2003, 26(3):221-223.
    [67] D.N. Papadopoulou,G.A. Zachariadis a, A.N. Anthemidis a, N.C. Tsirliganis et. al.. Talanta ,2006 (68) :1692–1699。
    [68] XGT系列应用报告.[EB/OL]. http://www.horiba.com/ cn/scientific/products/x-ray-fluorescence-analysis/applications/.
    [69] L. M. van der Haar,C. Sommer ,M. G. M. Stoop. New developments in X-ray fluorescence metrology[J]. Thin Solid Films. 2004,450(1): 90-96.
    [70] G. Vittiglio,S. Bichlmeier,P. Klinger et al.. A compact l-XRF spectrometer for (in situ) analyses of cultural heritage and forensic materials[J]. Nuclear Instruments and Methods in Physics Research,2004,B213:693–698.
    [71] Dominique Genna,Damien Gaboury,Lyndsay Moore ,Wulf U. Mueller. Use of micro-XRF chemical analysis for mapping volcanogenic massive sulfide related hydrothermal alteration: Application to the subaqueous felsic dome-flow complex of the Cap d'Ours section, Glenwood rhyolite, Rouyn-Noranda, Québec, Canada[J]. Journal of Geochemical Exploration. 2011,108 :131–142.
    [72]朱铁权,余志,邝贵荣,吕梁波.宋代西村窑瓷器微聚焦X射线探针无损分析研究[J].中国陶瓷. 2010, 46(9):74:77.
    [73]初学莲,林晓燕,程琳等.微束X射线荧光分析谱仪及其对松针中元素的分布分析[J].北京师范大学学报(自然科学版). 2007,43(5)530-532.
    [74]徐向东,洪义麟,付绍军等. X射线毛细管及其应用[J],物理,1999, 28(4):236-240.
    [75]I.C.Noyan,P.C.Wang,S.K.Kaldor et al.. Divergence effects in monochromatic x-ray micro-diffraction using tapered capillary optics[J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2000, 71(5):1991-2000.
    [76] Donald H.,Bilderback. Review of capillary x-ray optics from the 2nd I nternational Capillary Optics Meeting[J]. X-Ray Spectrom. 2003; 32: 195–207
    [77]谢忠信,赵宗铃,张玉斌等.X射线光谱分析[M].科学出版社,1982.
    [78]曹利国,丁益民,黄志琦,能量色散x射线荧光方法[M] .成都:成都科技大学出版社. 1998.
    [79]葛良全,周四春,赖万昌.原位X辐射取样技术[M].成都:四川科学技术出版社.1997.
    [80]张家骅,徐君权,朱节清等.放射性同位素X射线荧光分析[M].北京:原子能出版社,1981.
    [81]吉昂,陶光仪,卓尚军,罗立强.X射线荧光光谱分析[M].北京:科学出版社,2003.
    [82]林晓燕.实验和理论模拟研究共聚焦X射线荧光谱仪的性能及对古文物的层状结构分析[D].北京:北京师范大学.2008.
    [83] Jaskson J D. Classical Electrody namics. New York: John Wiley &Sons Inc, 1975.
    [84]孟宪文,王高,黄亮. X射线毛细管光学透镜的发展.科技情报开发与经济. 2006,16(23):175-177.
    [85]丁训良,刘志国,潘秋丽,颜一鸣.一种新型的微束XRF谱仪[J].核技术, 2004, 27(10):778-782.
    [86]丁驯良,赫业军,颜一鸣.X光透镜在μ-XRF分析中的应用[J].原子核物理评论. 1997,14(3):155-157.
    [87]杨健,葛良全,张邦,王汉彬..微束微区X荧光探针仪的机械系统设计[J].机械设计与研究,2009,vol.25, No.2,pp 90-92. (中文核心期刊)
    [88]丁泽军,吴自勤,孙霞等.微分析物理及其应用[M].安徽:中国科技大学出版社. 2009.
    [89]葛良全,孙传敏,谷懿,杨健等.微束微区X荧光矿物探针分析仪的研制[J].矿物岩石. 2010,30(9):105-108.
    [90]王庆有,孙学珠. CCD应用技术[M].天津大学出版社,1993.
    [91]赖万昌.核地球物理学高灵敏度FPXRF的关键性技术研究[D].成都:成都理工大学.2007.
    [92]周得时. X-Y精密工作台系统[J].电子工业专用设备. 1988,4:1-5.
    [93]吴鹰飞,周兆英.超精密定位工作台[J].微细加工技术. 2002,2:41-47.
    [94] Mike Holmes , Robert Hocken , David Trumper. The long-range scanning stage : a novel platform for scanned probe microscopy[J] . Prec Eng , 2000 , 24 :191 - 209.
    [95] A.Sharon,N.Hogan,D.Hardt.Enhancement of Robot Accuracy Using Endpoint Feedback and Macro-Micro Manipulator System.America Control Conference Proc.,San Digo,California,June,1984:1836~1842
    [96]张强,卢泽生.宏/微结合双驱动进给控制系统的建模与仿真研究[J].机械传动.2006,30(4):16-20.
    [97] A.T. Elfizy, G.M. Bone, M.A. Elbestawi. Design and control of a dual-stage feed drive. Journal of Machine Tools & Manufacture. 2005,45(2):153-165.
    [98]朱涛.极紫外光刻机工作台精密机械及控制相关技术[D].北京:中国科学院电工研究所.2006.
    [99]卢礼华.基于滚珠丝杠的大行程纳米定位系统建模和控制技术研究[D].黑龙江:哈尔滨工业大学.2007
    [100] Guevarra DS,Kyusojin A,Isobe H,KanekoY.Development of a new lapping method for high Precision ball serew[J].Journal of the International Soeieties for Precision Engineering and Nano一teehnology. 2002 (26),389-395.
    [101]项建云,葛茂忠.XH715进给系统的稳定性分析[J].现代制造工程. 2007,10:65-67.
    [102]廖伯瑜,周新民,尹志宏.现代机械动力学及其工程应用[M].北京:机械工业出版社,2003.
    [103]蒋书运,祝书龙.带滚珠丝杠副的直线导轨结合部动态刚度特性[J].机械工程学报. 2010,46(1):92-99.
    [104]张佐营.高速滚珠丝杠副动力学性能分析及其实验研究[D].山东:山东大学.2008.
    [105]程光仁,施祖康,张超鹏.滚珠螺旋传动设计基础[M].北京:机械工业出版社,1987.
    [106]《机床设计手册》编写组.机床设计手册[M].北京:机械工业出版社.1986.
    [107]范超毅,赵天婵等.数控技术课程设计[M].武汉:华中科技大学出版社.2006.
    [108]吕志伟,郝金明,许其凤,杜丹.利用CCD数码相机进行高精度定位的方法[J].测绘学院学报. 2005,12(4):242-245.
    [109]胡仁喜,郭军,王仁广等. SolidWork2005中文版机械设计高级应用实例[M].北京:机械工业出版社,2005.
    [110]曾国强,林延畅,葛良全.可视化XRF软件数据采集系统的开发[J].物探化探计算技术. 2004,26(3):274-277.
    [111]秦义.软X射线聚束透镜特性研究[D].四川:中国核物理工程研究院. 2006.
    [112]谢扬球,谭永红,雷兴华,李若愚. X-Y精密数控工作台宏平台的设计及实现[J].桂林电子工业学院学报.2005(6):64-67.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700