二维振动辅助微细铣削机理及其实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会需求和现代科学技术的不断发展,产品的小型化已经发展成为一种全球化趋势,在诸多领域有着广阔的应用前景。微细加工技术是微小型化技术的基础,以微机电系统为应用对象的硅基材料微细加工技术由于其可加工材料单一,可加工零件形状简单已显示出不足。利用微细切削技术特别是微铣削加工微小零件是一个有潜力的发展方向。同时,振动切削技术以其优异的切削性能被广泛地应用在微小零件的加工中。本文结合微细铣削与振动切削技术的优势,将振动切削技术应用在微细铣削中形成二维振动辅助微细铣削这一加工方法,用来提高微小零件的加工质量,延长刀具寿命,满足不同材料微小零件的加工需求。本文针对振动辅助微铣削技术的优势与特点,对其运动学、切削力、切削表面质量、毛刺和刀具磨损等切削机理和关键基础问题进行了深入研究。
     振动辅助微铣削由于在工件上施加了两个方向的振动,使刀尖相对于工件的运动关系变的很复杂,致使切削厚度的形成机理发生了根本性的改变。本文首先建立了刀具切削轨迹和切削厚度仿真模型,仿真研究了刀具切削轨迹和切削厚度的特点。刀具切削轨迹随着振动信号、切削参数的变化而呈现出不同的特点。切削厚度不仅仅只由前一刀齿切削轨迹决定,同时还被前几条甚至前十几条切削轨迹影响。同时,切削刃在切削宽度范围内会出现空切现象。鉴于此,采用占空比和幅值冲击比两个参数定量分析了切削厚度的特点与规律。
     切削力对于研究切削机理,选用合理的切削用量,监控切削过程等具有重要的意义。本文基于剪切-滑移线场理论建立了二维振动辅助微铣削的三维切削力模型,模型中考虑了切削刃钝圆半径及耕犁和弹性恢复对微细切削力的影响。模型采用振动辅助微铣削切削厚度算法,并与切削过程动态响应模型集成,其仿真结果可以很好地吻合切削力测量曲线。此外,通过仿真研究了切削参数和振动参数对切削力的影响规律。
     表面粗糙度是衡量已加工表面质量的主要指标之一。文中基于刀具轮廓复映原理,考虑刀具干涉和切削过程动态性能对表面成型的影响,建立振动辅助微铣削切削表面形貌集成仿真模型,并进行了实验验证。在实验基础上,利用响应曲面法进行了多元非线性回归,建立了表面粗糙度与工艺参数之间的回归模型。基于该模型,分析了工艺参数和振动参数对表面粗糙度的影响规律。结果表明:每齿进给量、振幅、频率和主轴转速对表面粗糙度都有显著的影响,振动辅助微铣削可以降低表面粗糙度,提高表面质量。
     毛刺是影响微铣削加工质量的一个重要因素。本文通过振动辅助微铣削加工微槽实验,对在微槽棱边产生的顶端毛刺进行观察与分析,研究工艺参数对毛刺尺寸的影响,并从尺寸效应的角度分析振动辅助微铣削对毛刺的作用机理。分析表明:振动可以改善切削过程中尺寸效应的影响,减小刀具与工件之间的挤压与摩擦,从而抑制毛刺的产生,减小毛刺的尺寸。
     对刀具磨损机理的研究是分析微刀具磨损原因,改善切削性能,延长刀具使用寿命进而降低加工成本的前提。文中通过一系列振动辅助微铣削加工铝合金和两种不同硬度(HRC55和HRC58)工具钢实验,观察微铣刀后刀面的磨损,分析刀具磨损机理,研究工艺参数对刀具磨损的影响规律。实验发现:振动辅助微铣削可以有效地减缓刀具磨损,较小的振幅和较低的频率可以在一定程度上减小刀具磨损,而大振幅和高频率则不利于减缓刀具磨损。
Nowadays, the requirements of miniature and micro parts have an increasing growth in the academic and industrial fields. The micro-manufacturing is the enabling technology for the fabrication of miniature and micro parts. The conventional micro manufacturing technology, Micro-Electro-Mechanical System (MEMS), has limitations in the manufacturing of workpieces with various materials and complex shapes. However, the micro-cutting technology can fabricate micro components with 3D free form surfaces and various engineering materials, and fill the gap between micro/nano and macro domain. In addition, vibration-assisted machining (VAM) has been widely applied in the fabrication of micro parts as its perfect cutting performance. As a result, VAM is applied in micro milling forming two-dimensional vibration-assisted micro milling (2D VAMM) in order to improve the machining quality, extend tool life and meet the fabrication demands of micro parts with different materials. In the paper, the cutting mechanisms and key technologies on 2D VAMM, such as kinematics, cutting force, machined surface quality, burr formation and tool life, have been investigated.
     The tool tip trajectory relative to the workpiece becomes very complex due to the two-dimensional vibrations of the workpiece, which causes the chip thickness formation to be distinct from that in conventional micro milling. In this paper, the tool tip cutting path and the chip thickness computation model are established, with which the characteristics of the cutting path and the chip thickness are studied. It’s found that the cutting path varies greatly with different machining and vibration parameters, and the chip thickness in 2D VAMM is influenced not only by one precious cutting, but also by several previous cuttings. Furthermore, 2D VAMM is an interrupted cutting process since the tool could not remove materials in the cutting area. Therefore, two evaluating indicators, free time ratio (FTR) and amplitude ratio (AR), are defined to analyze the effects of cutting parameters on the chip thickness.
     The cutting force is critical to understand the cutting mechanisms, optimize appropriate cutting conditions and monitor the cutting process. A 3D mechanical cutting force model is proposed based on the shear and slip-line field method, in which the tool edge radius and elastic restitution in the ploughing field are taken into consideration. The cutting force model utilizes the proposed instantaneous undeformed chip thickness model to represent the real trajectory of the tool tip in 2D VAMM, and is integrated with the cutting process dynamic response model. The simulated cutting force has good agreement with the experimental data. And the influence of cutting conditions on the cutting force is analyzed using the simulations.
     The machined surface roughness is a significant parameter for the evaluation of the surface quality. Based on the truth that machined surface is generated by duplicating the tool profile on the workpiece surface, the surface topography integrated simulation model is established considering tool tip cutting path interference and the cutting process dynamic response. The experiments are carried out to verify the simulation model. And the roughness prediction mathematic expression is obtained using Response Surface Method (RSM) based on the experimental data, with which the effects of cutting conditions on the surface roughness are investigated. It’s found that feed per tooth, amplitude, frequency and spindle speed have significant effects on the surface roughness, and 2D VAMM can decrease the surface roughness so as to improve the machined surface quality.
     Burr affects the machining quality significantly in micro milling process. In the paper, 2D VAMM is used to machine micro slot, the top burr on the side of micro slot is observed and measured with microscope, and the effects of cutting conditions on the top burr are studied. Finally, the influence of size effect on top burr formation is used to interpret the top burr formation in 2D VAMM. It’s concluded that 2D VAMM can weaken the size effect and decrease the compression and friction between the workpiece and tool so as to control the burr formation and reduce the top burr size.
     The investigation on micro-tool’s wear mechanisms is helpful to understand micro-tool’s wear reasons, improve its machinability, and prolong the tool life. 2D VAMM is applied to machine aluminum alloy and two different hardness tool steel (HRC55 and HRC58), and the tool flank wear is observed and measured. And the effects of cutting parameters on tool flank wear are studied through the tool wear experiment. It’s found that 2D VAMM can reduce tool flank wear, and the smaller amplitude and lower frequency are helpful to reduce tool wear.
引文
[1] M. Weck, S. Fischer. Manufacturing of Microstructures Surfaces Using Ultraprecision Turning, Milling and Shaping. Proceedings of the 1st International Conference and General Meeting of the European Society for Precision Engineering and Nanotechnology (euspen). Bremen, Germany. 1999: 420~423.
    [2] Scott Steve. Applications for Large Area Microstructured Optics. http://www.opticsinfobase.org/abstract.cfm?URI=DOMO-2004-DTuD4.
    [3] Manfred Weck, Jan Henning, Robert Hilbing. Precision Cutting Process for Manufacturing of Optical Components. Proceedings of SPIE. 2001, 44(40): 145~151.
    [4] K. Ashida, N. Mishima, H. Maekawa. Development of desktop machining microfactory. Proc. J-USA Symposium on Flexible Automation. 2000: 175~178.
    [5]姜峰,李剑峰,孙杰,李方义,路冬.硬脆材料塑性加工技术的研究现状.工具技术. 2001, 41(8): 3~8.
    [6] Weber H., Herberger J., Pilz R. Turning of machinable glass ceramics with an ultrasonically vibrated tool. Annals of the CIRP, 1984, 33: 85~87.
    [7] Kountanya R. K., Endres W. J. Flank wear of edge-radiused cutting tools under ideal straight-edged orthogonal conditions. Journal of Manufacturing Science and Engineering. 2004, 126: 496~505.
    [8]曹自洋,何宁,李亮.微细切削加工技术,微细加工技术. 2006, 3: 1~5.
    [9] Dow T A, Garrand K. Tool force and deflection compensation for small milling tools. Precision Engineering. 2004, 28: 31~34.
    [10] W. Y. Bao, I. N. Tansel. Modeling micro-end-milling operations. Part1: analytical cutting force model. International Journal of Machine Tools and Manufacture. 2000, 40: 2155~2173.
    [11] F. Z. Fang, H. Wu, X. D. Liu, Y. C. Liu, S. T. Ng. Tool geometry study in micromachining. Journal of Micromechanics and Microengineering. 2003, 13: 726~731.
    [12] C. J. Kim, J. Rhett Mayor, J. Ni. A static model of chip formation in micro scale milling, ASME. 2004, 126: 710~718.
    [13] W Y Bao, I N Tansel. Modeling micro-end-milling operations. Part II: tool run-out. International Journal of Machine Tools & Manufacture. 2000, 40: 2175~2179.
    [14] M P Vogler, R E Devor, S G Kapoor. Microstructure-level force predictionmodel for micro-milling of multi-phase materials. Journal of Manufacturing Science and Engineering. 2003, 125: 202~209.
    [15] W Wang, S H Kweon, S H Yang. A study on roughness of the Micro-end-milled surface produced by a miniatured machine tool. Journal of Materials Processing Technology. 2005: 702~708.
    [16] M. P. Vogler, R. E. Devor, S. G. Kapoor. On the modeling and analysis of machining performance in micro milling. Journal of Manufacturing Science and Engineering. 2004, 126(4): 684~693.
    [17]李荣彬,张志辉,李建广.超精密加工的三维表面形貌预测.中国机械工程. 2000, 11(8): 845~848.
    [18]崔搭棚,黄树涛,张志军,王凡.高速铣削半圆弧工件表面形貌的仿真.工具技术. 2005, 39(8): 44~46.
    [19]刘牧,杨茂奎.基于响应曲面法的表面粗糙度预测模型研究.精密制造与自动化. 2006, 2: 37~40.
    [20]张斌,杨茂奎,刘牧.预测数控加工表面粗糙度的解析模型研究.机床与液压. 2007, 35(8) : 9~51.
    [21]卢泽生,王明海.基于遗传算法的超精密切削表面粗糙度预测模型参数辨识及切削用量优化.机械工程学报. 2005, 41(11) : 158~162.
    [22]李晓梅,丁宁,朱喜林.表面粗糙度模糊神经网络在线辨识模型.机械工程学报. 2007, 42(3): 212~217.
    [23]吴德会.基于最小二乘支持向量机的铣削加工表面粗糙度预测模型.中国机械工程. 2007, 18(7) : 838~841.
    [24] K. Lee, D. A. Dornfeld. An experimental study on burr formation in micro milling alμminμm and copper. Transactions of the NAMRI/ SME, 2002: 255~262.
    [25] J Schmidt, HTritschler. Micro cutting of steel. 2004, 10: 167~174.
    [26] A. Aramcharoen, P. T. Mativenga, Size effect and tool geometry in micromilling of tool steel, Precision Engineering. 2009, 33: 402~407.
    [27] M Rahman, ASenthil Kumar, J R S Prakash. Micro milling of pure copper. Journal of Materials Processing Technology. 2001, 116: 39~43.
    [28] L Zhou, CY Wang, Z Qin, et al. Wear characteristics of micro-end mill in high-speed milling of graphite electrode. Key Engineering Materials. 2004: 858~863.
    [29] T. Miyaguchi, M. Masuda, E. Takeoka. Effect of tool stiffness upon tool wear in high spindle speed milling using small ball end mill. Precision Engineering. 2001, 25: 145~154.
    [30] Tansel I, Rodrigueaz O, Trujillo M. Micro-end-milliing wear and breakage.International Journal of Machine Tools & Manufacture. 1998, 38: 1419~1436.
    [31] J. Kumabe, T. Sabuzawa, Study on the precision drilling of wood(1st report)-profile analysis of drilled hole, J. JSPE. 1971, 37(2): 98~104.
    [32] Isaev A, Anokhin V. Ultrasonic vibration of a metal cutting tool. Vest Mashinos. 1961, 41.
    [33] Kumbabe J. Vibratory cutting. Tokyo: Jikkyou Publishing Company. 1997.
    [34] Skelton RC. Turning with an oscillating tool. International Journal of Machine Tool & Manufature. 1968, 8: 239~259.
    [35] Moriwaki T, Shamoto E, Inoue K. Ultraprecision ductile cutting of glass by applying ultrasonic vibration. Annals of the CIRP, 1992: 41.
    [36] Moriwaki T, Shamoto E. Ultraprecision turning of stainless steel by applying ultrasonic vibration. Annals of the CIRP. 1991, 40: 559~562.
    [37] Brinksmeier E, Glabe R. Elliptical vibration cutting of steel with diamond tools. Proc ASPE 1999, 20: 163~166.
    [38] Cerniway MA, Elliptical diamond milling : kinematics, force, and tool wear. MS thesis. North Carolina State University, 2001.
    [39] Moriwaki T, Shamoto E. Ultrasonic elliptical vibration cutting. Annals of the CIRP. 1995, 44: 31~34.
    [40] Negishi N. Elliptical vibration-assisted machining with single crystal diamond tools. MS thesis. North Carolina State University. 2003.
    [41] Shamoto E, Moriwaki T. Study on elliptical vibration cutting. Annals of the CIRP. 1994, 43: 35~38.
    [42] Shamoto E, Ma CX, Moriwaki. Elliptical vibration cutting—3rd report, application to three dimensional cutting and investigation of practical effects. J JSPE 1999, 65: 586~591.
    [43]佟富强,张飞虎,陈光军,顾立志,孙鹏.低频振动切削对加工表面影响的机理研究.华中科技大学学报(自然科学版). 2007, 35: 68~70.
    [44]马晓君,左景涛,张则.低频振动切削过程的理论研究.佳木斯大学学报(自然科学版). 2005, 23(3) : 468~504.
    [45] Brehl DE, Dow TA, Garrard K, Sohn A. Microstructure fabrication using elliptical vibration-assisted machining. Proc ASPE. 2006, 39: 511~514.
    [46] Shamoto E, Suzuki N, Tsuchiya E, Hori Y, Inagaki H, Yoshino K. Development of 3-DOF ultrasonic vibration tool for elliptical vibration cutting of sculptured surfaces. Annals of the CIRP. 2005, 54: 321~324.
    [47] Shamato E. Ultraprecision micromachining of hardened die steel by applying elliptical vibration cutting . JSME News. 2005, 16: 1~4.
    [48] Jin M, Murakawa M. Development of a practical ultrasonic vibration cutting tool system. Journal of Materials Processing Technology. 2001, 113: 342~347.
    [49] C. Ma, E. Shamoto, T. Moriwaki, L.Wang. Study of machining accuracy inultrasonic elliptical vibration cutting, International Journal of Machine Tools & Manufacture. 2004, 44: 1305~1310.
    [50]佟富强,张飞虎,陈光军,顾立志,孙鹏.低频振动切削对加工表面影响的机理研究.华中科技大学学报(自然科学版). 2007, 35: 68~70.
    [51] Ma Chunxiang, Shamoto E, Suppression of chatter in turning by ultrasonic elliptical vibration, Mem. of Grad. School Sci. & Technol. 1997, 17(A): 47~62.
    [52] T. Moriwaki, E. Shamoto, Ultrasonic elliptical vibration cutting, Annals of the CIRP. 1995, 44: 31~34.
    [53] Gi Dae Kim, Byoung Gook Loh. An ultrasonic elliptical vibration cutting device for mocro V-groove machining: Kinematical analysis and micro V-groove machining characteristics, Journal of Materials Processing Technology. 2007, 190: 181~188.
    [54] Ma C, Shamoto E, Moriwaki T. Study on the thrust cutting force in elliptical vibration cutting. Mater Sci Forum. 2004: 396~400.
    [55] Zhou M, Eow Y, Ngoi B, Lim E. Vibration-assisted precision machining of steel with PCD tools. Mater Manuf Process. 2003, 18: 825~834.
    [56] Zhou M, Wang XJ, Ngoi B, Gan J. Brittle-ductile transition in the diamond cutting of glasses with the aid of ultrasonic vibration. Journal of Materials Processing Technology. 2002, 121: 243~251.
    [57] Astashev VK, Babitsky VI. Ultrasonic cutting as a nonlinear (vibro-impact) process. Ultrasonics. 1998, 36: 89~96.
    [58] Astashev VK. Effect of ultrasonic vibration of a single-point tool on the process of cutting. J Mach Manuf Reliabil. 1992, 3: 65~70.
    [59] Babitsky VI, Kalashnikov AN, Molodtsov FV. Autoresonant control of ultrasonically-assisted cutting. Mechatronics 2004, 14: 91~114.
    [60] Xiao M, Sato K, Karube S, Soutome T. The effect of tool nose radius in ultrasonic vibration cutting of hard metal. International Journal of Machine Tools & Manufacture. 2003, 43: 1375~1382.
    [61] Kim JD, Lee ES.Astudy of the ultrasonic cutting of carbon-fiber reinforced plastics, Journal of Materials Processing Technology. 1994, 43: 259~277.
    [62] Japitana F, Morishige K, Takeuchi Y. Highly efficient manufacture of groove with sharp corner on adjoining surfaces by 6-axis control ultrasonic vibration cutting. Precision Engineering. 2005, 29: 431~439.
    [63] Suzuki N, Nakamura A, Shamoto E, Harada K, Matsuo M, Osada M. Ultraprecision micromachining of hardened steel by applying ultrasonic elliptical vibration cutting, IEEE Int Sym Micromechatronics Human Sci.2003: 221~226.
    [64] Ahn JH, Lim HS, Son SM. Improvement of micromachining accuracy by 2Dimensional vibration cutting. Proc ASPE. 1999, 20: 150~153.
    [65] Babitsky VI, Mitrofanov AV, Silberschmidt VV. Ultrasonically-assisted turning of aviation materials: simulations and experimental Study, Ultrasonics. 2004, 42: 81~86.
    [66] Shamoto E, Moriwaki T. Ultraprecision diamond cutting of hardened steel by applying elliptical vibration cutting. Annals of the CIRP. 1999, 48: 441~444.
    [67] Weber H, Herberger J, Pilz R. Turning of machinable glass ceramics with an ultrasonically vibrated tool. Annals of the CIRP. 1984, 33: 85~87.
    [68] Moriwaki T, Shamoto E, Inoue K. Ultraprecision ductile cutting of glass by applying ultrasonic vibration. Annals of the CIRP. 1992: 41.
    [69] Negishi N. Elliptical vibration-assisted machining with single crystal diamond tools. MS Thesis. North Carolina State University, 2003.
    [70] Suzuki N, Masuda S, Haritani M, Shamato E. Ultraprecision micromachining of brittle materials by applying ultrasonic elliptical vibration cutting. Proceedings: Int. Symposium on Micro-NanoMechatronics and Human Science. 2004: 133~138.
    [71] Gan J, Wang X, Zhou M, Ngoi B, Zhong Z. Ultraprecision diamond turning of glass with ultrasonic vibration. International Journal of Advanded Manufacturing Technology. 2003, 21: 952~957.
    [72] Gwoliang Chern, Yuanchin Chang, Using two-dimensional vibration cutting for micro-milling, International Journal of MachineTools & Manufacture. 2006, 46: 659~666.
    [73] J. Tlusty, P. Macneil. Dynamics of cutting forces in end milling. Annals of the CIRP. 1975, 24(1): 21~25.
    [74]赵岩.微细铣削工艺基础与实验研究.哈尔滨工业大学博士论文. 2008.
    [75] W. Y. Bao, I. N. Tansel, Modeling micro-end-milling operations. PartΙ: analytical cutting force model, International Journal of Machine Tools & Manufacture. 2000, 40: 2155~2173.
    [76] I. S. Kang, J. S. Kim, J. H. Kim, M. C. Kang, Y. W. Seo. A mechanistic model of cutting force in the micro end milling process, Journal of Materials Processing Technology. 2007, 187-188: 250~255.
    [77] J. Tlusty, P. Macneil. Dynamics of cutting forces in end milling. Annals of the CIRP. 1975, 24 (1): 21~25.
    [78] M. T. Zaman, A. Senthil Kumar, M. Rahman, S. Sreeram. A three-dimensional analytical cutting force model for micro end milling operation, International Journal of Machine Tools & Manufacture. 2006, 46: 353~366.
    [79]李祥林.振动切削及其在机械加工中的应用.北京:北京科学技术出版社. 1985.
    [80] C. F. Cheung and W. B. Lee. A theoretical and experimental investigation of surface roughness formation in ultra-precision diamond turning, International Journal of Machine Tools & Manufacture. 2000, 40: 979~1002.
    [81] C. F. Cheung and W. B. Lee. Modelling and simulation of surface topography in ultra-precision diamond turning. Proceedings of the Institution of Mechanical Engineers. Part B: Journal of Engineering Manufacture. 2000, 214: 463~480.
    [82] D. S. Kim, I. C. Chang and S. W. Kim. Microscopic topographical analysis of tool vibration effects on diamond turned optical surfaces. Precision Engineering. 2002, 26: 168~174.
    [83]周磊.微纳米动态切削系统建模及表面形貌的预测分析研究.哈尔滨工业大学博士论文. 2009.
    [84] S. Takasu, M. Masuda, T. Nishiguchi. Influence of study vibration with small amplitude upon surface roughness in diamond machining. Annals of the CIRP. 1985, 34: 463~467.
    [85] C. F. Cheung, and W. B. Lee. Prediction of the Effect of Tool Interference on Surface Generation in Single-Point Diamond Turning. International Journal of Advanced Manufacturing Technology. 2002, 19(4): 245~252.
    [86] C. F. Cheung, W. B. Lee. A Multi-spectrum Analysis of Surface Roughness Formation in Ultra-precision Machining. Precision Engineering, 2000, 24(1): 77~87.
    [87] J. Chae, S. S. Park. High frequency bandwidth measurements of micro cutting forces, International Journal of Machine Tools & Manufacture. 2007, 47(9): 1433~1441.
    [88] F. Z. Fang, Y. C. Liu. On Minimum Exit-burr in Micro Cutting, Journal of Micro mechanics and Microengineering. 2004, (14): 984~988.
    [89] Gillespie LK, Blotter PT, The Formation and Properties of Machining Burrs, Transactions of ASME Journal of Engineers for Industry. 1976, 98: 66~74.
    [90]陈森灿,叶庆荣.金属塑性加工原理.清华大学出版社,1991: 331~342.
    [91]孙雅洲,张庆春,高强,梁迎春.微细铣削毛刺形成研究,现代制造工程,2006(4) : 69~72.
    [92] A. Aramcharoen, P. T. Mativenga. Size effect and tool geometry in micromilling of tool steel, Precision Engineering. 2009, 33: 402~407.
    [93]罗蒙,刘钢,陈明.铝合金槽铣中毛刺形成机理与控制方法,上海交通大学学报. 2007, 41(12): 1905~1909.
    [94] Seong Min Son, Han Seok Lim, Jung Hwan Ahn. Effects of the frictioncoefficient on the minimum cutting thickness in micro cutting, International Journal of Machine Tools & Manufacture. 2005, 45: 529~535.
    [95] Andrey Toropov, Sung Lim Ko. Prediction of shear angle for continuous orthogonal cutting using thermo-mechanical constants of work material and cutting conditions, Journal of Materials Processing Technology. 2007, 182: 167~173.
    [96] Lee EH, Shaffer BW. Theory of plasticity applied to the problem of machining. Transactions of the ASME. 1951, 18: 405~413.
    [97] Ikawa, N., Donaldson, R. R., Komanduri, R., Koenig, W., Aachen, T. H., McKeown, P. A., Moriwaki, T., and Stowers, I. F., Ultraprecision Metal Cutting, The Past, the Present, and the Future, Annals of the CIRP. 1991, 40: 587~594.
    [98] Xiao M, Sato K, Karube S, Soutome T. The effect of tool nose radius in ultrasonic vibration cutting of hard metal, International Journal of Machine Tools & Manufacture. 2003, 43: 1375~1382.
    [99] Zhou M, Eow Y, Ngoi B, Lim E. Vibration-assisted precision machining of steel with PCD tools, Mater Manufacture Process. 2003, 18: 825~834.
    [100]Shamoto E, Moriwaki T. Ultraprecision diamond cutting of hardened steel by applying elliptical vibration cutting, Annals of the CIRP. 1999, 48; 441~444.
    [101]Weber H, Herberger J, Pilz R. Turning of machinable glass ceramics with an ultrasonically vibrated tool, Annals of the CIRP. 1984, 33: 85~87.
    [102]陈日曜.金属切削原理(第2版).机械工业出版社.1998: 41~42.
    [103]Peiyuan Li. Micromilling of hardened tool steels. PhD Thesis, Technische University of Delft, Delft, 2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700