高精度面形检测中环境扰动因素分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体光刻机的发展一直是推动精密光学元件加工和检测水平不断提高的动力。目前193nm光刻机投影物镜的光学元件面形精度要求达到了1~2nm rms,部分元件的要求更高。为了达到这么高的元件面形加工精度,首先需要解决的是面形检测问题,因为元件加工的去除量是以测试结果为参考的。高精度面形检测首先要保证的是测试的重复性和复现性,在此基础上才能实现较小的测试不确定度。而环境扰动却会引入较大的、不稳定的测试误差。为此,本论文针对环境条件对面形检测的影响展开研究,分析环境条件如何作用于面形检测过程,从而为精密环境控制设定合适的目标,并研究如何评价环境条件引入的测量不确定度,从而了解不同环境条件引入的测试误差。论文的主要工作如下:
     (1)针对环境温度引起的机械结构变形,采用仿真分析的办法研究环境温度的空间分布不均匀性、时间上的不稳定性及镜子内外温度不一致导致的镜面面形变化,并设计相应实验验证,从保证机械结构稳定性的方面提出环境控制的目标;
     (2)针对环境条件对参考面和测试面间光腔折射率的影响,建立流体仿真分析模型,分析存在空间热源/热沉时不同气流状态下光腔温度、压强的分布情况,并建立光线追迹模型计算由此引入的波前面形偏差。分析了在不引起湍流情况下提高送风速度以减小光腔温度分布不均匀性、降低光腔的引入的面形偏差的可行性。
     (3)在已有的环境条件下,针对实际测试过程,引入不确定度矩阵和波前重复性的指标来衡量单次测量中环境扰动引入的面形误差,并分析了多次测量均值的误差范围。对比分析了不同环境条件引入的测量不确定度大小,为环境条件建设的进一步完善提供参考。
     (4)建立了高精度的温度测量系统,分析了温度测量系统及温度传感器的误差来源,设计试验测试了Fluke 5611珠状热敏电阻温度传感器在小温区范围内的测温误差特点,以验证提高其在小温区范围测温准确度的可行性,从而保证了高精度环控实验室温度测量的正确性。
The demands of semiconductor lithography optics provide a significant driver for continuous improvement of optical manufacturing and metrology. At present, the 193nm lithography requires optical surfaces to 1~2nm rms or more accuracy. For such accuracy to be achieved, highly accurate figure metrology is essential, because the optics are polished according to the error ditribution which is measured from an interferometer. Repeatability and reproducabiligy of a measurement are essential to low measurement uncertainty. The enviromental disturbance will introduce large radomly chaning errors, to reduce the enviromental disturbance effects, we should control the enviroment to some level. For this purpose, this thesis analyzes the enviromental disturbance effects to optical figure measurements and evaluates the figure error caused by envrioment. The major works of this thesis are summarized as follows:
     (1) Analysed the thermal deformation of the lens with simulation models. According to temperature distribution characteristics in a real laboratory, the ununiformity in space, unstability with time of air temperature and because of insufficiently stablization of lens itself, will cause figure deformation error. Then the goals of enviromet control are provided from the aspects of guaranting enough mechanical stability.
     (2) Aiming at the influence of environmental condition on the optical cavity between the refrence surface and test surface, the flow simulational analysis model is established and the temerature, pressure distributions of the optical cavity under different flow state when there are heat source/heat sink exsting in the room is analysed. At the same time the raytracing model is established to calculate the resulting wavefront deviation. The feasibility of reducing the nonuniform distribution temperature of the optical cavity and depressing the resulting wavefront deviation by increasing flow speed is analyzed, too.
     (3) According to practical figure measurement process, the uncertainty matrix and wavefront repeatability are introduced to describe the figure mesurement uncertainty caused by environment turbulence in a single measurement. The distribution of uncertainty after many mesurements being averaged is analyzed. Measurement uncertainties under different environment conditions are compared to provide a reference for improvement of environment conditions. (4) A high precise air temperature testing system is established. The error sources of a temperature sensor are analyzed. The feature of a Silicone-Bead thermistor probe Fluke 5611s in a narrow temperature range are tested to verify the measurement accuracy of the probe. Thus, we have assured the high accurate measurement of the air temperature in a highly controlled laboratory environment.
引文
[1] A. Davies, C. Tarrio, C. Evans. Advanced Optics Characterization[J]. Optics & Photonics News, 2001: 34-37.
    [2] M. Ohtsuka. Advanced Metrology Tools Applied for Lithography Optics Fabrication and Testing[J]. Optical Society of America, 2005.
    [3] B. Fay. Advanced optical lithography development, from UV to EUV[J]. Microelectronic Engineering, 2002, 61(62): 11-24.
    [4] J. S. Taylor, G. E. Sommargren, D. W. Sweeney. The fabrication and testing of optics for EUV projection lithography[J]. SPIE, 3331: 580-590.
    [5] M . Bigelow, N. Harned. Taking optical precision to the extreme[J]. SPIE's oemagazine, 2004: 32-35.
    [6] Y. Makoto, H. Kenichi. Measurement of air turbulence for on-machine interferometry[J]. Applied Optics, 2003, 42(34): 6869-6877.
    [7] K. Ota, T. Yamamoto, Y. Fukuda, et. al.. Advanced point diffraction interferometer for EUV aspherical mirrors[J]. SPIE, 2001, 4343: 543-550.
    [8] Hibino K. Error Compensating Phase Measuring Algorithlns in a Fizeau Interferometer[J]. Optical Review, 1999, 6: 529-538.
    [9] D. Malacara. Optical Shop Testing[M]. Third edition,USA: John & Sons,2007.
    [10] C. J. Evans. Certification, self-calibration and uncertainty in testing optical flats[A]. SPIE, 2010, 7656.
    [11] K. Creath. Phase-measurement interferometry: Beware these errors[J]. SPIE, 1991, 1553: 213-220.
    [12] J. Schmit, K. Creath. Window function influence on phase error in phase-shifting algorithms[J]. Applied Optics, 1996, 35(28): 5642-5649.
    [13] D. Malacara, M. Servin, Z. Malacara. Interferogram Analysis for Optical Testing[M]. Second Edition,USA: Taylor & Francis,2005.
    [14] J. P. de Groot, L. L. Deck. New algorithms and error analysis for sinusoidal phase shifting interferometry[J].
    [15] K. Hibino. Error-compensating phase measuring algorithms in a Fizeau interferometer[J]. Optical Review, 1999, 6(6): 529-538.
    [16] J. Burke, K. Green, W. Stuart, et. al.. Fabrication and testing of a high-precision concave spherical mirror[J]. SPIE, 2008, 7064.
    [17] B. E. Truax. Absolute interferometric testing of spherical surfaces[J]. SPIE, 1990, 1400: 61-68.
    [18] J. C. Wyant. Absolute optical testing: better accuracy than the reference[J]. Photonics Spectra, 1991: 97-101.
    [19] U. Griesmann, Q. Wang, J. Soons, et. al.. A simple ball averager for reference sphere calibrations[J]. SPIE, 2005, 5869: 189-196.
    [20] P. Zhou. Error Analysis and Data Reduction for Interferometric Surface Measurements[D]. Arizona: University of Arizona, 2009.
    [21] M. Bray. Stitching interferometry-the long and winding road[J]. OSA, 2010.
    [22] R. W. Fox, B. R. Washburm, N. R. Newbury, et. al.. Wavelength references for interferometry in air[J]. Applied Optics, 2005, 44(36): 7793-7801.
    [23] A. E. Rosenbluth, N. Bobroff. Optical sources of nonlinearity in heterodyne interferometers[J]. Precision Eng., 1990, 12: 7-11.
    [24] N. Bobroff. Residual Errors in Laser Interferometry from Air Turbulence and Nonlinearity[J]. Applied Optics, 1987, 26(13): 2376-2682.
    [25] G. N. Peggs, A. Yacoot. A review of recent work in sub-nanometre displacement measurement using optical and X-ray interferometry[J]. The Royal Society, 2002: 952-968.
    [26] A. Yacoot, M. J. Downs. The use of X-ray interferometry to investigate the linearity of the NPL differential plane mirror optical interferometer[J]. Meas. Sci. Technol., 2000, 11: 1126-1130.
    [27]董军,许乔,蔡邦维,等.温度对长焦距测量精度的影响[J].强激光与粒子束,2005, 17(9): 1299-1302.
    [28] P. J. de Groot, L. L. Deck. Numerical simulations of vibration in phase-shifting interferometry[J]. Applied Optics, 1996, 35: 2172-2178.
    [29] L. L. Deck. Reducing vibration effects in phase-shifting interferometry[J]. SPIE, 3100: 193-203.
    [30] L. L. Deck. Suppressing vibration errors in phase-shifting interferometry[J]. SPIE, 2007, 6704.
    [31] J. M. Huntley. Suprression of phase errors from vibration in phase-shifting interferometry[J]. Optical Society of America, 1998, 15: 2233-2241.
    [32] P. J. Groot. Vibration in phase-shifting interferometry[J]. Optical Society of America, 1995, 12(2): 354-365.
    [33] L. L. Deck, C. Evans. High performance Fizeau and scanning white-light interferometers for mid-spatial frequency optical testing of free-form optics[J]. SPIE, 5921.
    [34] H. Amick, M. Gendreau, T. Busch, et. al.. Evolving criteria for research facilities: vibration[J]. SPIE, 2005, 5933.
    [35] W. Workman. Construction considerations for sub-micron IC facilities[J]. Semiconductor International, 1986.
    [36] C. G. Gordon. Generic criteria for vibration-sensitive equipment[J]. SPIE, 1991, 1619: 71-85.
    [37] J. Chu, U. Griesmann, Q. Wang, et. al.. Deformation-free form error measurement of thin plane-parallel optics floated on a heavy liquid[J]. Applied Optics, 2010, 49: 1849-1858.
    [38] A. K. Ray-Chaudhuri, S. E. Gianoulakis, P. A. Spence, et. al.. Impact of thermal and structural effects on EUV lithographic performance[J]. SPIE, 3331: 124-132.
    [39]徐德衍,王青,高志山.现行光学元件检测与国际标准[M].北京:科学出版社,2009.
    [40] T. Takatsuji, S. Osawa, Y. Kuriyama, et. al.. Stability of the reference flate used in Fizeau interferometer and its contribution to measurement uncertainty[J]. SPIE, 2002, 5190: 431-439.
    [41] J. C. Wyant. Advances in interferometric surface measurement[J]. SPIE, 2005, 6024: 1-11.
    [42] www.zygo.com.
    [43] A. Davies, C. J. Evans. The NIST X-ray optics Calibration interferometer(XCALIBIR)[J]. OSA, 1999.
    [44] J. Fleig, P. Dumas, P. E. Murphy, et. al.. An automated subaperture stiching interferometer workstation for spherical and aspherical surfaces[J]. SPIE, 2003, 5188: 296-307.
    [45] M. Ohtsuka. Advanced metrology tools applied for lithography optics fabrication and testing[J]. OSA, 2005.
    [46] C. L. Koliopoulos. Simultaneous phase shift interferometer[J]. SPIE, 1991, 1531: 119-127.
    [47] J. C. Wyant. Dynamic iterferometry[J]. Optics & Photonics News, 2003: 36-41.
    [48] J. Millerd, N. Brock, J. Hayes, et. al.. Modern approaches in phase measuring metrology[J]. SPIE, 2005, 5856: 14-22.
    [49] P. S. Fairman, B. K. Ward, B. F. Oreb. 300-mm-aperture phase-shifting Fizeau interferometer[J]. Opt. Eng., 1999, 38(8): 1371-1380.
    [50] M. F. Kuchel. Advanced interferometry at Carl Zeiss[J]. SPIE, 1992, 1720: 452-456.
    [51] M. Kuchel. The new Zeiss interferometer[J]. SPIE, 1990, 1332: 655-663.
    [52] B. Dorband, G. Seitz. Interferometric testing of optical surfaces at its current limit[J]. Optik, 2001, 112(9): 392-398.
    [53] A. Soueid, H. Amick, T. Zsirai. Addressing the environmental challenges of the NIST advanced measurement laboratory[J]. SPIE, 2005, 5933.
    [54] Y. Zhao, D. L. Trumper, R. K. Heilmann. Optimization and temperature mappingof an ultra-high thermal stability environmental enclosure[J]. Precision Eng., 2008: 1-26.
    [55] C. G. Chen, P. T. Konkola, R. K. Heilmann, et. al.. Image metrology and system controls for scanning beam interference lithography[J]. American Vacuum Society, 2001, 19(6): 2335.
    [56] P. T. Konkola. Disign and analysis of a scanning beam interference lithography system for patterning gratings with nanometer-level distortions[D]. Cambridge: Massachusetts Institute of Technology, 2003.
    [57] K. M. Lawton, S. R. Patterson. A high-stability air temperature contol system[J]. Precision Eng., 2000: 174-182.
    [58]魏豪明,邢廷文,李云,等.632.8nm高精度移相菲佐干涉仪测量误差分析[J].激光与光电子学进展, 2010, 47: 1-8.
    [59]单寄平,陈克敏,薛典国.光栅刻线室连续20昼夜维持20+/-0.01度高精密恒温技术[J]. 15-20.
    [60]薛典国,单寄平.室外气温波动经由地下传热对20+/-0.01度高精度恒温光栅刻线室影响的研究[J].制冷学报, 1987, 1: 8-13.
    [61]程昌钧,王颖坚,马文华,等.弹性力学[M].北京:高等教育出版社,1999.
    [62]李维特,黄保海,毕仲波.热应力理论分析及应用[M].北京:中国电力出版社, 2004.
    [63]张兆顺,崔桂香.流体力学[M].北京:清华大学出版社,2006.
    [64]莫乃榕.工程流体力学[M].武汉:华中科技大学出版社2000.
    [65]王福军.计算流体动力学分析[M].北京:清华大学出版社,2004.
    [66] H. Barrell, J. E. Sears. The refraction and dispertion of air for the visible spectrum[J]. The Royal Society, 1939.
    [67] B. Edlén. The refractive index of air[J]. Metrologia, 1966, 2: 71-80.
    [68] P. Giacomo. Equations for determination of the density of moist air[J]. Metrologia, 1982, 18: 33-40.
    [69] R. S. Davis. Equation for the determination of the density of moist air (1981/91)[J]. Metrologia, 1992, 29: 67-70.
    [70] J. Beers, T. Doiron. Verification of revised water vapor correction to the refractive index of air[J]. Metrologia, 1992, 29: 315-316.
    [71] K. P. Birch, F. Reinboth, R. E. Ward, et. al.. The effect of variations in the refractive index of industrial air upon the uncertainty of precision length measurement[J]. Metrologia, 1993, 30: 7-14.
    [72] K. P. Birch, M. J. Downs. Correction to the updated Edlén equation for the refractive index of air[J]. Metrologia, 1994, 31: 315-316.
    [73] G. Bonsch, E. Potulski. Measurement of the refractive index of air and comparison with modified Edlén's formulae[J]. Metrologia, 1998, 35: 133-139.
    [74] E. P. Ciddor. Refractive index of air: new equations for the visible and nearinfrared[J]. Appl. Optics, 1996, 35: 1566-1573.
    [75]金群锋.大气折射率影响因素的研究[D].杭州:浙江大学,2006.
    [76]杨世铭,陶文铨.传热学[M].第三版,北京:高等教育出版社,1998.
    [77]赵鹏,吴清文.航天相机主镜热特性研究[J].光学精密工程, 1997, 12(5): 64-68.
    [78]吴清文,卢泽生,卢锷,等.空间遥感器中窗口的热光学特性研究[J].光学技术,2001,27(5):260-265.
    [79]张德江,刘立人,徐荣伟,等.透镜自重变形引起波像差的有限元分析[J].光学学报, 2005, 25(4): 538-541.
    [80]贾俊瑆,涂光备,娄承芝,等.高精度恒温恒湿洁净室的控制设计[J].制冷学报,1999,4: 55-58.
    [81]傅允准,张旭.高精度恒温空调系统的扰量特性[J].沈阳建筑大学学报,2007,23(2): 298-302.
    [82]张文胜,安大伟,董瑞,等.密闭恒温小室内流场均匀性的研究[J].山东建筑大学学报,2006, 21(5): 430-433.
    [83] 6”规格说明书GPI XP/DTM.
    [84] B. Taylor, C. E. Kuyatt. Guidelines for evaluation and expressing the uncertainty of NIST measurment results[J]. NIST Technical Note, 1994.
    [85] P. Blake, R. G. Mink, D. Content, et. al.. Techniques and uncertainty analysis for interferometric surface figure error measurement of spherical mirrors at 20K[J]. SPIE, 2003, 5180: 188-198.
    [86]沙定国,刘智敏.测量不确定度的表示方法[M].北京:中国科学技术出版社,1994.
    [87]马宏,王金波.误差理论与仪器精度[M].北京:兵器工业出版社,2007.
    [88] Zhou P, Burge J H. Limits for interferometer calibration using the random ball test[J]. SPIE, 2009, 7426.
    [89] Zhou P, Burge J M. Calibration limits for interferometric measurements[J]. OSA, 2008.
    [90] W. R. Cai, D. W. Kim, P . Zhou. Interferometer calibration using the random ball test[J]. OSA, 2010.
    [91] U. Griesmann, Q. D. Wang, J. Soons. A simple ball averager for reference sphere calibrations[J]. SPIE, 2005, 5869.
    [92]谢晓娜.建筑能耗模拟用楼地和热桥传热计算方法研究[D].北京, 2006,清华大学博士论文.
    [93]王魁汉.温度测量实用技术[M].北京:机械工业出版社,2007.
    [94] Fluke温度测量产品手册.
    [95] JJF 1170-2007,负温度系数低温电阻温度计校准规范[S].
    [96] T.Matsuyama, T. Ujike. Aberration functions for microlithographic lens[J].SPIE,2006,6342.
    [97] V. Greco, G. Molesini. Micro-temperature effects on absolute flateness testplates[J]. Pure Appl. Opt.,1998,7:1341-1346.
    [98] M. Weiser. Ion beam figuring for lithography optics[J]. Nuclear instruments and methods in physics research. 2009,267:1390-1393.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700