重组人乙酰胆碱受体亚单位诱导眼肌型重症肌无力的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:观察E.coli质粒表达重组人乙酰胆碱(human acetylcholine receptor, H-AChR)γ亚单位免疫诱导HLA-DQ8转基因小鼠眼肌型实验性自身免疫性重症肌无力(ocular experimental autoimmune myasthenia gravis, oEAMG)模型的建立并探讨oEAMG模型的特点,明确乙酰胆碱受体抗体(acetylcholine receptor antibody, AChR-Ab)在oEAMG发病机制中的作用和特点。
     方法:HLA-DQ8转基因小鼠27只,随机平均分成H-AChR γ亚单位免疫组,E. Coli.提取物免疫组,CFA免疫组,用乳化于CFA的重组H-AChR γ亚单位,或E. Coli提取物,或纯CFA分别于0,30,60天免疫。第二次免疫后,每周进行一次小鼠眼部和全身症状评估,小鼠肌肉握力测量,实验结束前进行小鼠前庭眼反射检测。第二次免疫后第15天和45天收集小鼠血清,RIA检测小鼠血清AChR-Ab水平,ELISA检测小鼠血清中IgG、IgG1、IgG2b、IgG2c、IgM水平。
     结果:H-AChR γ亚单位免疫组9只小鼠中8只(89%)出现眼部症状,6只小鼠有完全上睑下垂症状,9只小鼠中6只(67%)小鼠出现轻度的全身症状(1级),而E. coli免疫组,CFA免疫组无明显眼部表现及全身肌力减退症状,H-AChR γ亚单位免疫组眼部及全身临床症状严重度评分明显高于其它两组(P均<0.001);第二次免疫后35天起,H-AChR γ亚单位免疫组小鼠肌肉握力与E. coli免疫组,CFA免疫组两组比较具有显著性差异(P均<0.05),H-AChR γ亚单位免疫组小鼠肌肉握力在实验终止前降至最低;与E. coli免疫组,CFA免疫组两组相比,H-AChR γ亚单位免疫组小鼠水平维度的视动反应增益明显下降(P均<0.05);第二次免疫后15,45天,H-AChRγ亚单位免疫组小鼠血清中AChR-Ab和抗-AChR Ig (IgM、IgG、Ig2b、Ig2c、 IgG1)水平均明显高于E. coli免疫组,CFA免疫组,差别有显著性(P均<0.001)。
     结论:重组H-AChR γ亚单位能成功诱导小鼠oEAMG模型,AChR-Ab在诱导oEAMG发生和发展的过程中发挥重要作用。
     目的:探讨重组H-AChRγ亚单位免疫诱导下oEAMG的免疫学发病机制。
     方法:HLA-DQ8转基因小鼠用乳化于CFA的重组H-AChRγ亚单位,或E. Coli提取物,或纯CFA分别免疫,免疫后第8天后,取淋巴结和脾淋巴细胞体外培养,3H-TdR掺入法检测淋巴细胞增殖反应,收集培养上清液用ELISA检测IL-2,IFN-γ,IL-6,IL-10水平。第3次免疫后30天,流式细胞仪观察各组小鼠脾脏和淋巴结中CD4+CD25+细胞和CD19+细胞百分比变化,免疫荧光法检测3组小鼠眼外肌(extraocular muscle, EOM)和后肢肢体肌(limb muscle, LM)神经肌肉结点处(neuromuscular junction, NMJ) IgG或补体沉积情况,RT-PCR法检H-AChRγ亚单位免疫组和CFA免疫组小鼠EOM和LM的AChR α, γ和ε亚单位mRNA转录水平的变化。
     结果:H-AChR γ亚单位免疫组小鼠淋巴结和脾淋巴细胞增殖反应显著高于E. Coli提取物或CFA免疫组(P均<0.05),ELISA显示H-AChR γ亚单位免疫组小鼠淋巴细胞体外培养上清液中IL-2, INF-γ水平显著均高于E. coli提取物和CFA免疫组(P<0.05),IL-6,IL-10水平与E. coli提取物和CFA免疫组相比均无显著差异(P均>0.05)。流式细胞结果显示,H-AChR γ亚单位免疫组小鼠淋巴结和脾脏中CD4+CD25+细胞和CD19+细胞百分比显著高于E. coli提取物和CFA免疫组(P均<0.05)。H-AChR γ亚单位免疫组小鼠EOM和LM NMJs处可见大量IgG, C3,和MAC沉积,而E. coli提取物和CFA免疫组小鼠NMJs未见IgG, C3,和MAC沉积(P均<0.001)。与CFA免疫组相比,H-AChR γ亚单位免疫组小鼠EOM和LM的AChR α, γ和ε亚单位mRNA转录水平显著增高,有统计学差异(P均<0.05)。
     结论:H-AChR γ亚单位免疫能诱导oEAMG和gEAMG的发生与发展,细胞免疫、体液免疫和补体等多种机制参与其发病。
     目的:观察H-AChR ε亚单位免疫原性在眼肌型重症肌无力发病机理中的作用,进一步探讨AChR亚单位诱导产生的自身免疫反应与oMG和oEAMG的关系。
     方法:通过PT-PCR检测HLA-DQ8转基因小鼠出生后0,1,2,4周EOM和LM的AChR α, γ和ε亚单位表达水平变化。HLA-DQ8转基因小鼠用乳化于CFA的重组H-AChR ε亚单位,或E. Coli提取物,或纯CFA分别于0,30,60天免疫,第二次免疫后每周进行一次小鼠眼部和全身症状评估,小鼠肌肉握力测量,第二次免疫后第45天收集小鼠血清,RIA检测小鼠血清中AChR-Ab水平,ELISA检测小鼠血清中IgG、IgG1、IgG2b、IgG2c、IgM水平,第3次免疫后30天,免疫荧光法检测小鼠NMJ处IgG或补体沉积情况。
     结果:EOM的AChR α, γ和ε亚单位的mRNA转录水平随出生后时间的增加无明显改变(P均>0.05),在出生后第0周小鼠LM的中可见AChR γ亚单位的表达,无AChR ε亚单位的表达,出生后第1周LM中,AChR γ亚单位的表达消失,出现AChR ε亚单位的表达,而α亚单位表达无明显变化(P均>0.05)。H-AChR ε亚单位免疫组9只小鼠中3只(33%)有眼部症状,2只(22%)小鼠有轻度的全身症状(1级),而E.coti免疫组,CFA免疫组无明显眼部和全身改变,H-AChR ε亚单位免疫组眼部和全身临床症状严重度评分明显高于其它两组(P均<0.05)。H-AChR ε亚单位免疫组小鼠平均肌力与E-coli免疫组,CFA免疫组两组比较无显著性差异(P均>0.05)。第二次免疫后45天,H-AChR ε亚单位免疫组小鼠血清中AChR-Ab和抗-AChR Ig(IgM、IgG、Ig2b、Ig2c’IgG1)水平均明显高于E.coli免疫组、CFA免疫组(P均<0.01)。有明显眼部和全身症状的H-AChRε亚单位免疫组小鼠EOM和LM NMJs处可见大量IgG,C3,和MAC沉积,而E.coli提取物和CFA免疫组小鼠NMJs基本没有IgG,C3,和MAC沉积(P均<0.01)。
     结论:HLA-DQ8转基因小鼠对H-AChR ε亚单位免疫诱导的oEAMG的易感性低,可能与AChR ε亚单位与HLA-DQ8分子的交互作用所诱导的自身免疫应答反应较弱有关。
Objective:To investigate the ocular experimental autoimmune myasthenia gravis (oEAMG) induced by E. coli plasmid expressing recombinant human acetycholine receptor (H-AChR) γ subunit immunization in HLA-DQ8transgenic mice, and to determine the role and characteristic of acetylcholine receptor antibody (AChR-Ab) in the pathogenesis of oEAMG.
     Methods:Twenty-seven HLA-DQ8transgenic mice were divided equally into H-AChR γ subunit-immunized, crude E. coli extract-immunized and only CFA-groups randomly. Mice were immunized with AChR y subunit in CFA emulsion,20μg of crude E. coli extract in CFA or CFA only on day0,30and60. After the2nd immunization, the gMG and oMG scores and were evaluated weekly, generalized muscle weakness was also measured by grip strength machine weekly. The study of vestibulo-ocular reflexes was performed before termination, serum samples from individual mice were collected on day15,45after the2nd immunization, and the serum anti-AChR antibody levels were tested by RIA and serum anti-AChR Ig (Ig G、IgG1、IgG2b、IgG2c、IgM) isotype levels were tested by ELISA.
     Results:As opposed to the crude E. coli extract-and CFA-immunized mice with no ocular or generalized symptoms,8of9γ subunit-immunized mice (89%) had ocular symptoms,6of9mice with H-AChR γ subunit-immunization had complete ptosis in one or both eyes at termination, Mild generalized muscle weakness (grade1) was observed in6of9H-AChR γ subunit-immunized mice at termination. The scores of ocular and generalized symptoms of the γ subunit-immunized group were significantly higher than those in other two groups (all P<0.001). The difference among the three groups in grip strengths attained statistical significance starting on day35after the2nd H-AChR γ subunit immunization (all p<0.05) and reached the lowest level at termination. The horizontal optokinetic response gains were significantly lower in H-AChR γ subunit immunization group mice as compared to other two group mice(all P<0.05). On day15and45after the2nd immunization, the levels of anti-AChR Abs and anti-AChR Ig (Ig G、IgG1、IgG2b、 IgG2c、IgM) isotype levels were significantly higher in the sera of H-AChR γ subunit-immunized mice as compared to other two groups (all P<0.001)
     Conclusions:oEAMG can be generated in HLA-DQ8transgenic mice by H-AChR γ subunit immunization, and AChR-Abs played a key role in the pathogenesis of oEAMG.
     Objective:To explore the immunologic pathogenesis of oEAMG induced by recombinant H-AChR γ subunit immunization.
     Methods:DQ8mice were immunized as described above with20μg of AChR γ subunit,20μg of crude E. coli extract or CFA only. Seven days following y subunit immunization, mice were euthanized and draining lymph node cells (LNC) and spleen lymphocytes were cultured in vitro. The lymphocyte proliferation was estimated by the3H-TdR incorporation, and the supernatant were collected to observe the IL-2, IFN-y, IL-6, IL-10production by ELISA. The day30after the3rd immunization, The percentages of CD4+CD25+and CD19+cell in LNC and spleen lymphocytes of the mice from H-AChR γ subunit-immunized, crude E. coli extract-immunized and CFA-groups were detected by flow cytometry. IgG, C3and membrane attack complex (MAC) deposits at the NMJ from LM and EOM samples of the mice were detected by immunofluorescence assay. The levels of AChR α, γ and s subunit mRNA expression of LM and EOM samples of the mice were evaluated by RT-PCR.
     Results:LNCs and spleen lymphocytes of H-AChR γ subunit-immunized mice showed significantly increased proliferative responses as compared to E. coli extract-immunized and CFA-immunized mice (all P<0.05). LNCs and spleen lymphocytes of H-AChR γ subunit-immunized mice exhibited significantly enhanced IFN-γ and IL-2as compared to those of the other two groups (all P<0.05). There were no significant differences in IL-6, IL-10levels among three groups (all P>0.05). The percentages of CD4+CD25+and CD19+cell in LNC and spleen lymphocytes of the mice from H-AChR γ subunit-immunized were significantly higher than those in other two groups (all P<0.05). H-AChR γ subunit-immunized mice had abundant amounts of C3, IgG and MAC deposits in extraocular and limb muscle NMJs, whereas these deposits could hardly be detected on the NMJs of crude E. coli extract and CFA immunized mice (all P<0.001). The EOM and limb muscle samples from H-AChR γ subunit-immunized mice demonstrated significantly increased mRNA levels for AChR α, γ and ε subunit(all P<0.05)
     Conclusions:oEAMG and gEAMG could be triggered by autoimmunity to the recombinant H-AChR γ subunit. Multiple mechanisms including cellular Immunity, humoral immunity and complement are involved in the pathogenesis of oEAMG.
     Objective:To study the role of H-AChR ε immunity in the pathogenesis of oEAMG, and to further explore the relationship between the autoimmune response induced by AChR subunit and oEAMG.
     Methods:Semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) was used to detect the levels of AChR α,γ andesubunit genes mRNA expression in the extra-ocular and limb muscles of HLA-DQ8transgenic mice of Ow,1w,2w,4w of their development. HLA-DQ8transgenic mice were immunized with AChR ε subunit in CFA emulsion,20μg of crude E. coli extract in CFA or CFA only on day0,30and60. Mice After the2nd immunization, the gMG and oMG scores and were evaluated weekly, and grip strength machine was also used to measure the generalized muscle weakness weekly, serum samples from individual mice were collected on day45after the2nd immunization, and the serum anti-AChR antibody levels were tested by RIA and serum anti-AChR Ig (Ig G、IgG1、IgG2b、IgG2c、IgM) isotype levels were tested by ELISA. IgG, C3and membrane attack complex (MAC) deposits at the NMJ from LM and EOM samples of the mice were detected by immunofluorescence assay before termination.
     Results:There were no significant differences in AChR α,γ and ε subunit expression of EOM samples from HLA-DQ8mice at different stages of ontogeny (P>0.05). At Ow after birth, the AChR Y subunit was detected whereas AChR ε subunit was not detected in the LM samples. The AChR ε subunit mRNA was initially detected at1w, the beginning of AChR ε subunit expression was coincident with the beginning of disappearance in AChR Y subunit expression. There were no significant differences in AChR a subunit expression of LM samples at different stages (P>0.05). As opposed to the crude E. coli extract-and CFA-immunized mice with no ocular or generalized symptoms,3of9ε subunit-immunized mice (33%) had ocular symptoms, Mild generalized muscle weakness (grade1) was observed in2of9H-AChR ε subunit-immunized mice at termination (P<0.05). The scores of ocular and generalized symptoms of the s subunit-immunized group were significantly higher than those in other two groups (all P<0.05). There were no significant differences in grip strengths among three groups (all P>0.05). On day45after the2nd immunization, the levels of anti-AChR Abs and anti-AChR Ig (Ig G、IgG、IgG2b、IgG2c、IgM) isotype levels were significantly higher in the sera of H-AChR ε subunit-immunized mice as compared to other two groups (all P<0.01). H-AChR ε subunit-immunized mice with prominent ocular symptoms had abundant amounts of C3, IgG and MAC deposits in extraocular and limb muscle NMJs, whereas these deposits could hardly be detected on the NMJs of crude E. coli extract and CFA immunized mice (all P <0.01).
     Conclusions:HLA-DQ8transgenic mice showed lower susceptibility to H-AChR ε subunit immunization, which can be explained by the weaker autoimmune response induced by the specific interaction between AChR ε subunit and HLA-DQ8molecular.
引文
[1]Tuzun E, Huda R, Christadoss P. Complement and cytokine based therapeutic strategies in my asthenia gravis. J Autoimmun,2011,37(2):136-143.
    [2]Montomoli C, Citterio A, Piccolo G, et al. Epidemiology and geographical variation of myasthenia gravis in the province of pavia, Italy. Neuroepidemiology,2012,38(2):100-105.
    [3]Angelini C. Diagnosis and management of autoimmune myasthenia gravis. Clin Drug Investig,2011,31(1):1-14.
    [4]Gunji K, Skolnick C, Bednarczuk T, et al. Eye muscle antibodies in patients with ocular myasthenia gravis:possible mechanism for eye muscle inflammation in acetylcholine-receptor antibody-negative patients. Clin Immunol Immunopathol,1998,87:276-281.
    [5]Kusner LL, Puwanant A, Kaminski HJ. Ocular myasthenia:diagnosis, treatment, and pathogenesis. Neurologist,2006,12:231-239.
    [6]Kaminski HJ, Li Z, Richmonds C, et al. Susceptibility of ocular tissues to autoimmune diseases. Ann N Y Acad Sci,2003,998:362-374.
    [7]Wu B, Goluszko E, Huda R, et al. Experimental autoimmune myasthenia gravis in the mouse. Curr Protoc Immunol,2011,Chapter 15:Unit 15.23.
    [8]Yang H, Wu B, Tuzun E, et al. A new mouse model of autoimmune ocular myasthenia gravis. Invest Ophthalmol Vis Sci,2007,48:5101-5111.
    [9]吴晓蓉.重组人乙酰胆碱受体γ亚单位蛋白诱导HLA-DQ8转基因小鼠实验性自身免疫性眼肌型重症肌无力的初步研究:[硕士学位论文].长沙:中南大学,2007.
    [10]Liu Y, Padgett D, Takahashi M, et al. Essential roles of the acetylcholine receptor gamma-subunit in neuromuscular synaptic patterning. Development, 2008,135(11):1957-1967.
    [11]Mishina M, Takai T, Imoto K, et al. Molecular distinction between fetal and adult forms of muscle acetylcholine receptor. Nature,1986,321:406-411.
    [12]Witzemann V, Schwarz H, Koenen M, et al. Acetylcholine receptor ε-subunit deletion causes muscle weakness and atrophy in juvenile and adult mice. Proc Natl Acad Sci,1996,93:13286-13291.
    [13]Kaminski HJ, Ruff RL. Insights into possible skeletal muscle nicotinic acetylcholine receptor (AChR) changes in some congenital myasthenias from physiological studies, point mutations, subunit substitutions of the AChR. Ann NY Acad Sci,1993,681:435-450.
    [14]Missias AC, Mudd J, Cunningham JM, et al. Deficient development and maintenance of postsynaptic specializations in mutant mice lacking an'adult' acetylcholine receptor subunit. Development,1997,124:5075-5086.
    [15]Cossins J, Webster R, Maxwell S, et al. A mouse model of AChR deficiency syndrome with a phenotype reflecting the human condition. Hum Mol Genet, 2004,13:2947-2957.
    [16]Hoffmann K, Muller JS, Stricker S, et al. Escobar syndrome is a prenatal myasthenia caused by disruption of the acetylcholine receptor fetal gamma subunit. Am J Hum Genet,2006,79:303-312.
    [17]Takahashi M, Kubo T, Mizoguchi A, et al. Spontaneous muscle action potentials fail to develop without fetal-type acetylcholine receptors. EMBO Rep,2002, 3:674-681.
    [18]Koenen M, Peter C, Villarroel A, et al. Acetylcholine receptor channel subtype directs the innervation pattern of skeletal muscle. EMBO Rep,2005,6:570-576.
    [19]Ragheb S., Lisak RP. Differences between the ε and y subunits of the acetylcholine receptor may be significant in autoimmune myasthenia gravis. Ann.N.Y.Acad.Sci,2003,998:336-338
    [20]Yu Wai Man CY, Chinnery PF, Griffiths PG. Extraocular muscles have fundamentally distinct properties that make them selectively vulnerable to certain disorders. Neuromuscul Disord,2005,15:17-23.
    [21]Kaminski HJ, Kusner LL, Block CH. Expression of acetylcholine receptor isoforms at extraocular muscle endplates. Invest Ophthalmol Vis Sci 1996, 37:345-351.
    [22]Horton RM, Manfredi AA, Conti-Tronconi BM. The "embryonic" T subunit of the nicotinic acetylcholine receptor is expressed in adult extraocular muscle. Neurology,1993,43:983-986.
    [23]Wang ZY, Okita DK, Howard J, et al. T-cell recognition of muscle acetylcholine receptor subunits in generalized and ocular myasthenia gravis. Neurology,1998, 50:1045-1054.
    [24]Yang H, Goluszko E, David C, et al. Mapping myasthenia gravis-associated T cell epitopes on human acetylcholine receptors in HLA transgenic mice. J Clin Invest,2002;109:1111-1120.
    [25]Shinder ME, Perachio AA, Kaufman GD.VOR and Fos response during acute vestibular compensation in the Mongolian gerbil in darkness and in light. Brain Res,2005,1038(2):183-197.
    [26]Tuzun E, Scott BG, Goluszko E, et al. Genetic evidence for involvement of classical complement pathway in induction of experimental autoimmune myasthenia gravis. J Immunol,2003,171:3847-3854.
    [27]Gomez AM, Van Den Broeck J, Vrolix K, et al. Antibody effector mechanisms in myasthenia gravis-pathogenesis at the neuromuscular junction. Autoimmunity,2010,43(5-6):353-370.
    [28]Milnai M, Ostlie N, Wang W, et al. T cells and cytokines in the Phathogenesis of acquired myasthenia garvis.Ann N Y Acad Sci,2003,998:284-307.
    [29]Patrick J, Lindstrom JM, Autoimmune response to acetylcholine receptor. Science,1973,180:871-872.
    [30]Hoedemaekers AC, Verschuuren JJ, Spaans F, et al. Age-related susceptibility to experimental autoimmune myasthenia gravis:immunological and electrophysiological aspects. Muscle Nerve,1997,20(9):1091-1101.
    [31]Wang HB, Shi FD, Li H,et al.Anti-CTLA-4 antibody treatment triggers determinant spreading and enhances murine myasthenia gravis. J Immunol, 2001,166(10):6430-6436.
    [32]Scelsa S, Frost M, Valderrama R, et al. Prevention and treatment of experimental autoimmune myasthenia gravis with anti-rabbit thymocyte serum and gammaglobulin in rabbits.Pathobiology,1995,63(3):168-174.
    [33]Fuchs SD, Neiro D, Tarrab-Hazdai R, et al. Strain differences in the autoimmune response of mice to acetylcholine receptors. Nature,1976,263: 329-330.
    [34]Carlsson B, Wallin J, Pirskanen R, et al. Different HLA DR-DQ associations in subgroups of idiopathic myasthenia gravis. Immunogeneties,1990, 31(5-6):285-290.
    [35]Hjelmstrom P, Giseombe R, Lefvert A K, et al. Polymorphic amino acid Domains of the HLA-DQ moleeule are associated with disease heterogeneity in Myasthenia gravis. J Neuroimmunol,1996,65(2):125-131.
    [36]Bartoccioni E, Scuderi F, AugugliaroA, et al. HLA class Ⅱ allele analysis in MuSK-Positive myasthenia gravis suggests a role for DQ5. Neurology,2009, 72(2):195-197.
    [37]Niks EH, Kuks JB, Roep BO, et al. Strong association of MuSK Antibody-Positive myasthenia gravis and HLA-DR14-DQ5. Neurology,2006, 66(11):1772-1774.
    [38]Giraud M, Beaurain G, Eymard B, et al. Genetic control of autoantibody expression in autoimmune myasthenia gravis:role of the self-antigen and of HLA-linked loci. Genes Immun,2004,5(5):398-404.
    [39]Drachman DB, Angus DW, Adams RN, et al. Myasthenia antibodies cross-link AChR to accelerate degradation. N Engl f Med,2002,298:1116-1122.
    [40]Conti-Fine BM, Milani M, Kaminski HJ. Myasthenia gravis:Past, Present, and future. J Clin Invest,2006,116(11):2843-2854.
    [41]Leite MI, Jacob S, Viegas S, et al. IgG1 antibodies to acetylcholine receptors in'seronegative'myasthenia gravis. Brain,2008,131(7):1940-1952.
    [42]Soltys J, Gong B, Kaminski HJ, et al. Extraocular muscle susceptibility to myasthenia gravis:unique immunological environment? Ann N Y Acad Sci,2008, 1132:220-224.
    [43]Li J, Tuzun E, Wu XR, et al. Inhibitory IgG receptor Fc gamma RIIB fails to inhibit experimental autoimmune myasthenia gravis pathogenesis. J Neuroimmunol,2008,194(1-2):44-53.
    [44]Farrugia ME, Bonifati DM, Clover L, et al. Effect of sera from AChR-antibody negative my asthenia gravis patients on AChR and MuSK incell cultures. J Neuroimmunol,2007,185:136-144.
    [45]Mu L, Sun B, Kong Q, et al. Disequilibrium of T helper type 1,2 and 17 cells and regulatory T cells during the development of experimental autoimmune myasthenia gravis. Immunology,2009,128:826-836.
    [46]Abbas AK, Murphy KM, Sher A. Funetional diversity of helper T lymphocytes. Nature,1996,383(6603):787-793.
    [47]Saoudi A, Bernard I, Hoedemaekers A, et al. Experimental autoimmune myasthenia gravis may occur in the context of a polarized Th1- or Th2- type immune response in rats. J Immunol,1999,162(12):7189-7197.
    [48]Link H, Xiao BG. Rat models as tool to develop new inununotherapies. Immunol Rev,2001,184:117-128.
    [49]Zhang J, Zhou WB, Wang HL. The effects of T cell subpopulations and recombinant interleukin (IL)-2 on peripheral B cell function in patients with myasthenia gravis. Hum Antibodies,1997,8(2):90-94.
    [50]Onfalonieri P, Antozzi C, Cornelio F, et al. Immune activation in myasthenia gravis:soluble interleukin-2 receptor, interferon-gamma and tumor necrosis factor-alpha levels in patients' serum. J Neuroimmunol,1993,48(1):33-36.
    [51]Poea Guyon S, Christadoss P, Le Panse R et al. Effects of cytokines o acetylcholine receptor expression:implications for myasthenia gravis.J. Immunnol,2005,174(10):5941-5949.
    [52]Bongioanni P, Ricciardi R, Romano MR, et al. T-cell interleukin-6 receptor binding in patients with myasthenia gravis.J Neurol Sci,1998,158(2):215-220.
    [53]Shimada K, Koh CS, Yanagisawa N. Detection of interleukin-6 in serum and cerebrospinal fluid of patients with neuroimmunological diseases.Arerugi,1993, 42(8):934-940.
    [54]Sassano P, Paparo F, Ramieri V, et al. Interleukine-6(IL-6)may be a link between myasthenia gravis and myoepithelioma of the parotid gland. Med Hypotheses,2007,68(2):314-317.
    [55]Poussin MA, Fuller CL, Goluszko E, et al. Suppressed clinical experimental autoimmunemyasthenia gravis in bm12 mice is linked to reduced intracellular calcium mobilization and IL-10 and IFN-gamma release by acetylcholine receptor-specific T cells. J Neuroimmunol,2003,134:104-110.
    [56]Hagenbaugh A, Shanna S, Dubinett SM, et al. Altered immune responses in interleukin 10 transgenic mice. J Exp Med,1997,185(12):2101-2110.
    [57]Sakaguchi S, Yamaguchi T, Nomura T, et al. Regulatory T cells and Immune tolerance. Cell,2008,133:775-787.
    [58]Yi H, Zhen Y, Jiang L,et al. The phenotypic characterization of naturally occurring regulatory CD4+CD25+T cells.Cell Mol Immunol,2006,3(3): 189-195.
    [59]SunY,Qiao J,LuCZ,et al. Increase of circulating CD4+CD25+T cells in myasthenia gravis patients with stability and thymectomy. Clin Immunol,2004, 112(3):284-289.
    [60]Balandina A, Lecart S, Dartevelle P, etal. Functional defect of regulatory CD4+CD25+T cells in the thymus of patients with autoimmune myasthenia gravis.Blood,2005,105(2):735-741.
    [61]Aruna BV, Sela M, Mozes E. Suppression of myasthenogenic responses of a T cell line by a dual altered peptide ligand by induction of CD4+CD25+ regulatory cells. Proc Natl Acad Sci,2005,102:10285-10290.
    [62]Liu R, La Cava A, Ba XF,et al. Cooperation of invariant NK T cells and CD4+CD25+T regulatory cells in the prevention of autoimmune myasthenia. J. Immunol,2005,175:7898-7904.
    [63]Dipaolo RJ,Glass DD, Bijwaard KE,et al. CD4+CD25+T cells prevent the developmentoforgan-specific autoimmune disease by inhibiting the differentiation of autoreactive effectorT cells. J Immunol,2005,175(11): 7135-7142.
    [64]Browning JL. B cells move to centre stage:novel opportunities for autoimmune disease treatmen. Nat Rev Drug Discov,2006,5(7):564-576.
    [65]Dedhia V, Goluszko E, Wu B, et al. The effect of B cell defieieney on the immune response to aeetyleholine receptor and the development of experimental autoimmune my asthenia gravis.Clin Immunol Immunopathol, 1998,87(3):266-275.
    [66]Christadoss P, Poussin M, Deng C. Animal models of myasthenia gravis.Clin Immunol,2000,94(2):75-87.
    [67]Nielsen CH, Fischer EM, Leslie RG. The role of complement in the acquired immune response. Immunology,2000,100:4-12.
    [68]Christadoss P, Tuzun E, Li J, et al. Classical complement pathway in experimental autoimmune myasthenia gravis pathogenesis. Ann N Y Acad Sci, 2008,1132:210-219.
    [69]Fredrik R, Kristoffersen K, Johan A, et al. The role of complement in myasthenia gravis:serological evidence of complement consumption in vivo. Neuroimmunol,2005,158:191-194.
    [70]Miwa T, Song WC. Membrane complement regulatory proteins:insight from animal studies and relevance to human diseases. Int Immunopharmacol,2001, 1:445-459.
    [71]Asher O, Neumann D, Witzemann V, et al. Acetylcholine receptor gene expression in experimental autoimmune myasthenia gravis. FEBS Lett,1990, 267:231-235.
    [72]Asher O, Kues WA, Witzemann V, et al. Increased gene expression of acetylcholine receptor and myogenic factors in passively transferred experimental autoimmune myasthenia gravis. J Immunol,1993,151:6442-6450.
    [73]Guyon T, Wakkach A, Poea S, et al. Regulation of acetylcholine receptor gene expression in human myasthenia gravis muscles. Evidences for a compensatory mechanism triggered by receptor loss. J Clin Invest,1998,102:249-263.
    [74]Poea-Guyon S, Christadoss P, Le Panse R, et al. Effects of cytokines on acetylcholine receptor expression:implications for myasthenia gravis. J Immunol,2005,174:5941-5949.
    [75]Sheng JR., Li LC, Prabhakar BS, et al. Acetylcholine receptor-alpha subunit expression in myasthenia gravis:a role for the autoantigen in pathogenesis? Muscle Nerve,2009,40:279-286.
    [76]Yamane A, Saito T, Nakagawa Y, et al. Changes in mRNA expression of nicotinic acetylcholine receptor subunits during embryonic development of mouse masseter muscle.Zoolog Sci,2002,19(2):207-213
    [77]Yamane A, Ohnuki Y, Saeki Y. Developmental changes in the nicotinic acetylcholine receptor in mouse tongue striated muscle.J Dent Res,2001, 80(9):1840-1844.
    [78]Zoubine MN, Ma JY, Smirnova IV, et al. A molecular mechanism for synapse elimination:novel inhibition of locally generated thrombin delays synapse loss in neonatal mouse muscle. Dev Biol,1996,179(2):447-457.
    [79]Koenen M, Peter C, Villarroel A, et al. Acetylcholine receptor channel subtype directs the innervation pattern of skeletal muscle. EMBO Rep,2005,6:570-576.
    [80]Yamane A, Ohnuki Y, Saeki Y. Delayed embryonic development of mouse masseter muscle correlates with delayed MyoD family expression.J Dent Res, 2000,79(12):1933-1936.
    [1]Angelini C.Diagnosis and management of autoimmune myasthenia gravis. Clin Drug Investig,2011,31(1):1-14.
    [2]Montomoli C,Citterio A, Piccolo G, et al. Epidemiology and geographical variation of myasthenia gravis in the province of pavia,Italy. Neuroepidemiology,2012,38(2):100-105.
    [3]Gunji K, Skolnick C, Bednarczuk T, et al. Eye muscle antibodies in patients with ocular myasthenia gravis:possible mechanism for eye muscle inflammation in acetylcholine-receptor antibody-negative patients. Clin Immunol Immunopathol,1998,87:276-281.
    [4]Kusner LL, Puwanant A, Kaminski HJ. Ocular myasthenia:diagnosis, treatment, and pathogenesis. Neurologist,2006,12:231-239.
    [5]Kaminski HJ, Li Z, Richmonds C, et al. Susceptibility of ocular tissues to autoimmune diseases. Ann N Y Acad Sci,2003,998:362-374.
    [6]Gomez AM, Van Den Broeck J, Vrolix K, et al. Antibody effector mechanisms in myasthenia gravis-pathogenesis at the neuromuscular junction. Autoimmunity,2010,43(5-6):353-370.
    [7]Conti-Fine BM, Milani M, Kaminski HJ. Myasthenia gravis:Past, Present, and future. J Clin Invest,2006,116(11):2843-2854.
    [8]Yang H, Wu B, Tiizun E, et al. A new mouse model of autoimmune ocular myasthenia gravis. Invest Ophthalmol Vis Sci,2007,48:5101-5111.
    [9]Wu X, Tuzun E, Li J, et al. Ocular and generalized myasthenia gravis induced by human acetylcholine receptor y subunit immunization. Muscle and Nerve, 2012,45(2):209-216.
    [10]Li J, Tuzun E, Wu XR, et al. Inhibitory IgG receptor FcgammaRIIB fails to inhibit experimental autoimmune myasthenia gravis pathogenesis. J Neuroi-mmunol,2008,194(1-2):44-53.
    [11]Soltys J, Gong B, Kaminski HJ, et al. Extraocular muscle susceptibility to myasthenia gravis:unique immunological environment? Ann N Y Acad Sci,2008,1132:220-224.
    [12]Sommer N, Melms A, Weller M, et al. Ocular myasthenia gravis. A critical review of clinical and pathophysiological aspects. Doc Ophthalmol,1993, 84(4):309-33.
    [13]Kupersmith MJ, Iatkany R, Homel P. Devolopment of generalized disease at 2 years in patients with ocular myasthenia gravis.Arch Neurol,2003,60:243-248.
    [14]Provenzano C, Marino M, Scuderi F et al. Anti-acetylcholinesterase antibodies associate with ocular myasthenia gravis. J Neuroimmunol,2010,218(1-2):102-106.
    [15]Tuzun E, Huda R, Christadoss P. Complement and cytokine based therapeutic strategies in myasthenia gravis.J Autoimmun,2011,37(2):136-143.
    [16]Nielsen CH, Fischer EM,Leslie RG. The role of complement in the acquired immune response. Immunology,2000,100:4-12.
    [17]Christadoss P, Tuzun E, Li J, et al. Classical complement pathway in experimental autoimmune myasthenia gravis pathogenesis.Ann N Y Acad Sci, 2008,1132:210-219.
    [18]Fischer MD, Budak MT, Bakay M, et al. Definition of the unique human extrao-cular muscle allotype by expression profiling.Physiol Genomics,2005,22(3): 283-291.
    [19]Kaminski HJ, Li Z, Richmonds C, Lin F, et al.Complement regulators in extrao-cular muscle and experimental autoimmune myasthenia gravis.Exp Neurol, 2004,189(2):333-342.
    [20]Zhou Y, Gong B, Lin F, et al.Anti-C5 antibody treatment ameliorates weakness in experimentally acquired myasthenia gravis. J Immunol,2007, 179(12):8562-8567.
    [21]Yu Wai Man CY, Chinnery PF, Griffiths PG. Extraocular muscles have fundamentally distinct properties that make them selectively vulnerable to certain disorders. Neuromuscul Disord,2005,15:17-23.
    [22]Kaminski FU and Ruf RL. Ocular muscle involvement by myasthenia gravis Annals of Neurology,1997,41(4):419-420.
    [23]Kaminski HJ, Kusner LL, Block CH. Expression of acetylcholine receptor isoforms at extraocular muscle endplates. Invest Ophthalmol Vis Sci,1996, 37:345-351.
    [24]Horton RM, Manfredi AA, Conti-Tronconi BM. The "embryonic" T subunit of the nicotinic acetylcholine receptor is expressed in adult extraocular muscle. Neurology,1993,43:983-986.
    [25]李柱一刘爱东许贤豪.重症肌无力眼外肌易患性.中华神经科杂志,2005,38(9):588-590.
    [26]刘桂琴,申晓丽,周凤等.眼肌型重症肌无力86例临床分析.眼科,2010,19(6):379-383.
    [27]Labana SS, Qureshi S, Nandakumar T, et al. An atypical course of myasthenia gravis.Proc West Pharmacol Soc,2007,50:140-142.
    [28]Milea D, Laforet P, Eymard B. Atypical ocular myasthenia gravis.Rev Neurol, 2005,161(5):543-548.
    [29]Werner P, Kiechl S, Thaler C, et al. A relapsing-remitting type of ocular myasthenia gravis without typical muscle fatiguability.J Neurol Neurosurg Psychiatry,2002,73(2):205.
    [30]Gilbert ME, Savino PJ. Ocular myasthenia gravis. Int Ophthalmol Clin, 2007,47(4):93-103.
    [31]Oh SJ, Kim DE, Kuruoglu R, et, al. Diagnostic sensitivity of the laboratory tests In myasthenia gravis. Muscle and Nerve,1992,15:720-724.
    [32]Sanders DB, Massey JM. Clinical features of myasthenia gravis.Handb Clin Neurol,2008,91:229-252.
    [33]庄立.重症肌无力和吉兰-巴雷综合征周围神经肌肉电生理检查方法的特点.中国神经免疫学和神经病学杂志,2003,10(1):16-19.
    [34]柯将琼,郑国庆,陈洁.眼肌型重症肌无力的临床和电生理研究.2006,8(3):191-195.
    [35]Meriggioli MN, Sanders DB.Myasthenia gravis:diagnosis.Semin Neurol,2004, 24(1):31-39.
    [36]Valls-Canals J, Povedano M, Montero J, et al. Stimulated single-fiber EMG of the frontalis and orbicularis oculi muscles in ocular myasthenia gravis. Muscle Nerve,2003,28(4):501-503.
    [37]景筠,路阳,卢炜.眼眶冰试验和休息试验对重症肌无力的诊断价值.2007,33(10):577-580.
    [38]Sethi KD, Rivner MH, Swift TR. Iced pack test for myasthenia gravis. Neurology,1987,37:1383-1385.
    [39]GolnikKC, Pena R, LeeAG, et a.l An ice test for the diagnosis of myasthenia gravis. Ophthalmology,1999,106(7):1282-1286.
    [40]Odel JG, Winterkorn JM, Behrens MM. The sleep test formyasthenia gravis. A safe alternative to tensilon. J Clin Neuroophthalmol,1991,11 (4):288-292.
    [41]Kubis KC, Danesh-Meyer HV, Savino PJ, et al.The ice test versus the rest test in myasthenia gravis. Ophthalmology,2000,107(11):1995-1998.
    [42]Batocchi AP, Evoli A, Majolini L, et al. Ocular palsies in the absence of other neurological or ocular symptoms:analysis of 105 cases.J Neurol,1997,244 (10):639-645.
    [43]Luchanok U, Kaminski HJ. Ocular myasthenia:diagnostic and treatment recommendations and the evidence base. Curr Opin Neurol,2008,21:8-15.
    [44]Kupersmith MJ, Ying G. Ocular motor dysfunction and ptosis in ocular myasthenia gravis:effects of treatment. Br J Ophthalmol,2005,89 (10):1330-1334.
    [45]Somner N, Sigg B, Melms A. Ocular myasthenia gravis:response to long-term immunosuppressive treatment. J Neurol Neurosurg Psych,1997,62:156-162.
    [46]Marzo ME, Perez-Lopez-fraile I, Capablo JL, et al.Ocular myasthenia:clinical course and strategies for treatment. Rev Neurol,1998,26(151):398-400.
    [47]Monsul NT, Patwa HS, Knorr AM, et al. The effect of prednisone on the progression from ocular to generalized myasthenia gravis.J Neurol Sci,2004, 217:131-133.
    [48]Komiyama A, Arai H, Kijima M, et al.Extraocular muscle response to high dose intravenous methylprednisolone in myasthenia gravis.J Neurol Neurosurg Psychiatry,2000,68(2):214-217.
    [49]Chirapapaisan N, Tanormrod S, Chuenkongkaew W. Factors associated with insensitivity to pyridostigmine therapy in Thai patients with ocular myasthenia gravis. Asian Pac J Allergy Immunol,2007,25:13-16.
    [50]Chan JW. Mycophenolate mofetil for ocular myasthenia. J Neurol,2008, 255:510-513.
    [51]Mee J, Paine M, Byrne E, et al. Immunotherapy of ocular myasthenia gravis reduces conversion to generalized myasthenia gravis. J Neuroophthalmol,2003, 23:251-255.
    [52]Oosterhuis H. The natural course of myasthenia gravis:a long term follow up study.J Neurol Neurosurg Psychiatry,1989,52(10):1121-1127.
    [53]David HJ, Jackie P. The management of myasthenia gravis.Practical Neurol, 2005,5:18-27.
    [54]Roberts PF, Venuta F, Rendina E, et al. Thymectomy in the treatment of ocular myasthenia gravis.J Thoracic Cardiovas Surg,2001,122:562-567.
    [55]Papatestas AE, Gnekins G, Kornfeld P, et al. Effects of thymectomy in myasthenia gravis. Ann Surg,1987,206:79-88.
    [56]Witoonpanich R, Dejthevaporn C, Srisinroongruang T, et al. Long -term outcome and factors influencing the outcome of thymectomy for myasthenia gravis. J Med Assoc Thai,2004,87:1172-1175.
    [57]Hatton PD, Diehl JT, Daly BDT, et al. Transsternal radical thymectomy for myasthenia gravis:a 15 year review. Ann Thoracic Surg,1994,47:838-840.
    [58]Bentley CR, Dawson E, Lee JP. Active management in patients with ocular manifestations of myasthenia gravis. Eye,2001,15:18-22.
    [59]Nagane Y, Utsugisawa K, Suzuki S, et al. Topical naphazoline in the treatment of myasthenic blepharoptosis. Muscle Nerve,2011,44:41-44.
    [60]李劲频,刘竞丽,莫雪安.眼肌型重症肌无力的治疗进展.医学综述,2006,12(18):1126-1127.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700