交直流混联电力系统暂态仿真及其稳定性分析与参数优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着西电东送和全国联网工程的实施,已建和在建直流输电系统不断增多,大规模交直流混联电力系统已经成为我国电网输电的基本格局。交直流混联系统所呈现的稳定性特性十分越复杂,迫切需要一套快速有效的数学工具用于研究和分析混联电力系统的稳定特性及其控制方法。本论文根据直流输电系统的数学模型及其与交流系统的耦合关系,从交流和直流系统的接口技术入手,探索了交直流混联电力系统数字计算的新方法,取得的主要成果如下:
     对现有的交直流混联电力系统潮流计算方案提出改进,将直流输电系统数学方程变换为一组具有明确概念的约束方程,在保证收敛精度和收敛速度的前提下,简化了程序设计。并根据互联电力系统的联网特性,将交流和直流联络线进行分割,得到一个不连通的根结点和若干个由区域电网组成的叶结点,实现互联电力系统分区潮流计算。
     设计了一套可用于大规模交直流混联电力系统静态电压稳定分析的实用化预测校正连续潮流算法。在交流系统连续潮流计算中,通过直流系统的约束方程改进预测环节和校正环节,并提出直流系统控制方式随交流电压变化的逻辑转换策略和实现方法,将直流输电系统嵌入到连续潮流算法中。在南方电网的方式数据上验证了该算法的效果和效率。
     发展了交直流混联电力系统机电暂态仿真方法,将交流系统仿真算法扩展为可计及直流输电系统调节器、VDCOL环节、功率调制、闭锁与重启动等复杂控制功能的仿真算法。在华中华东测试系统的方式数据上取得满意的效果。
     尝试采用时域仿真技术优化直流输电系统调节器参数,并提出一种新的目标函数,旨在抑制交流系统和直流系统受扰后的振荡。通过轨迹灵敏度方法,获得系统动态性能指标相对于直流系统调节器参数的梯度信息,求得更新调节器参数向量的搜索方向,找到改善系统功角稳定性参数配置方案。在四机双区域测试系统验证其效果。
With the countrywide interconnection and power transmission from West to East, more and more HVDC systems have been established during the several years. The fundamental framework of Chinese national power grid has been developed into a large-scale multi-area ultra-high-voltage AC/DC hybrid power system, as a result the characteristics of the system stability become more and more complicated. It is necessary and desirable to enhance the mathematical tools for researching the stability and analyzing the control method of the power system. On the Basis of the HVDC model and the relationship between the AC and DC systems, new digital computation techonolgy therefore is studied as follows:
     The current load flow method used for AC/DC hybrid power system is improved with the currents of convector transformer. Thus the restrict equations of the DC system is derived, which is used to form a novel bi-directional iteration approach. Meanwhile, a network division method, named two-level tree model, is developed to partition the AC/DC systems into one root-node and several leaf-nodes with AC/DC tie-lines buses. The method is easy to implement, and its convergence precision and speed is preserved well.
     A novel continuation power flow method for static voltage stability analysis of large-scale AC/DC hybrid power system is designed. With the restrict equations of the DC system, the predictor and the corrector of the continuous power flow method are improved as well as the switch strategy of the HVDC system is proposed while the AC voltage fluctuation. The effectiveness and efficiency of this method is proved on the South China AC/DC power grid system.
     The electromechanical transient simulation arithmetic of the AC system is further extended to apply to AC/DC system which could consider the complex control model of HVDC, such as HVDC regulator, VDCOL, modulation controller, bipolar block logic and auto-restart function. Promising effect is suggested by the case studies on Central-China East-China test power system.
     A scheme using time domain simulation to optimize HVDC regulator parameters is carried out with a new objective function to enhance the stability of both the AC system and the DC system. Trajectory sensitivity method is utilized to compute the gradient vector of the dynamic performance index of the power system with respect to the HVDC regulator parameters to be tuned. Furthermore, the search direction for updating the HVDC regulator parameters is given, and new HVDC regulator parameter configuration could be found for better angle stability. The result is tested on the 4-machine 2-area test power system.
引文
[1] Prabha Kundur. Power System Stability and Control[M]. New York: McGraw-Hill, 1994.
    [2] Edward Wilson Kimbark. Direct Current Transmission[M]. New York: John Wiley & Sons, 1971.
    [3]浙江大学发电教研组直流输电科研组.直流输电[M].北京:水利水电工业出版社, 1985.
    [4] K. R. Padiya. HVDC Power Transmission System, Technology and System Interactions[M]. New Delhi: Wiley Eastern Ltd, 1990.
    [5] Ronald W. Spahr, Karl F. Davis, Donald L. Mundy. A Feasibility Analysis for the Transamerica Grid Project (TAG)– A National Grid Proposal. Power System Conference and Exposition, 2004, 3: 1741-1744.
    [6] X.–P. Zhang. L. Yao. B. Chong, et al. FACTS and HVDC Technologies for the Development of Future Power Systems. 8th Conference on Advances in Power System Control, Operation and Management, 2009, 1: 1-7.
    [7] Harrison K. Clark, Mohamed M. El-Gasserir, H. D. Keneth, et al. The Application of Segmentation and Grid Shock Absorber Concept for Reliable Power Grids. Power System Conference, 2008. MEPCON 2008. 12th International Middle-East. 2008: 34-38.
    [8] John Adams, Henry Chao, Clyde Custer, et al. Planning for Uncertainty: NYISO Planning Process and Smart Grid. Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century, 2008 IEEE. 2008: 1-4.
    [9] Colin C. Davidson, Guillaume de Preville. The Future of High Power Electronics in Transmission and Distribution Power Systems. Power Electronics and Applications, 2009. EPE '09. 13th European Conference on. 2009: 1-14.
    [10] W. Pimjaipong, T. Junrussameevilai, N. Maneerat. Blackout Prevention Plan - The Stability, Reliability and Security Enhancement in Thailand Power Grid. Transmission and Distribution Conference and Exhibition: Asia and Pacific, 2005 IEEE/PES, 2005: 1-6.
    [11] Graeme A. Chown, Jonathan Hedgecock, John Diaya, et al. Proposed Ancillary Services for the Southern African Power Pool. Power Engineering Society Conference and Exposition in Africa, 2007. 2007: 1-6.
    [12] A. J. M. I. Jowsick, A. Arulampalam, H. M. Wijekoon. HVDC Transmission Line for Interconnecting Power Grids in India and Sri Lanka. Industrial and Information Systems (ICIIS), 2009 International Conference on. 2009, 419-424.
    [13] N. M. Kirby, C. Horwill, N. M. Macleod, D. R. Crischley. Konti-Skan HVDC Refurbishment and Life Extension Methods for Other HVDC Projects. Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21stCentury, 2008 IEEE. 2008: 1-5.
    [14] Nelson Bacalao, A. Wayne Galli, Michael Hutson, Ramon Nadira. Considerations on the Use of HVDC for CREZ Transmission. Power Systems Conference and Exposition, 2009. PSCE '09. IEEE/PES. 2009: 1-7.
    [15] R. A. Valiquette. HVDC Life Extension for Nelson River HVDC System. Power Engineering Society Winter Meeting, 2002. IEEE, 2002, 2: 1059-1062.
    [16] Willis Long, Stig Nilsson. HVDC Transmission: Yesterday and Today[J]. Power and Energy Magazine. 2007, 5(2): 22-31.
    [17] Mao Xiao-ming, Zhang Yao, Guan Lin, Wu Xiao-chen. Coordinated Control of Interarea Oscillation in the China Southern Power Grid[J]. IEEE Trans Power System, 2006, 21(2): 845-852.
    [18]宋卫东.世界跨国互联电网现状及发展趋势[J].电力技术经济, 2009, 21(5): 62-67.
    [19]竺士章.发电机励磁系统试验[M].北京:中国电力出版社, 2005
    [20]陈建民,吴小建,王伟等.上海“2.19”500kV系统事故保护动作分析.华东电力, 2003, 31(8): 1-4.
    [21]高翔,高伏英,杨增辉.华东电网因直流故障的频率事故分析[J].电力系统自动化, 2006, 30(12): 102-107.
    [22]金敏杰,高远,刘蓓等.上海交直流混合输电系统运行分析及对策[J].华东电力, 2007, 35(9): 34-37.
    [23]蒙定中.建议直流远送/稳控互联各大区强化的同步网,避免全国1000kV联网. 2007, 27(5): 13-22.
    [24]中国南方电网超高压输电公司.高压直流输电系统设备典型故障分析[M].北京:中国电力出版社, 2009.
    [25]毛晓明,吴小辰.南方交直流并联电网运行问题分析[J].电网技术, 2004, 28(2): 6-9.
    [26]周保荣,陈志刚,陈建福,孙景强,陈永华.南方电网西电东送通道动态无功补偿应用研究[J].南方电网技术, 2007, 1(2): 58-62.
    [27]陈旭,康义.提高南方电网交流通道2010年西电东送能力研究[J].南方电网技术, 2008,2(1): 46-50.
    [28]董俊,束洪春,唐岚,吴琛. 2010年云南电网的稳定运行与控制问题[J].电网技术, 2005, 29(10): 20-29.
    [29]李颖,杨雄平.广东电网动态稳定特性分析及建议.南方电网技术, 2009, 3(2): 11-14.
    [30]孙景强,郭小江,张健等.多馈入直流输电系统受端电网动态特性[J].电网技术, 2009, 33(4): 57-60.
    [31]李新年,李涛,王晶芳,胡涛.云广±800kV特高压直流对南方电网稳定性的影响[J].电网技术, 2009, 33(20): 21-26.
    [32]卢睿,潘武略,李晓坷,徐政.多馈入直流对华东电网稳定性影响研究[J].华东电力, 2005, 33(11): 3-8.
    [33]陈荔,刘会金,陈格桓.直流调制在多回直流输电系统中的作用[J].高电压技术, 2006, 32(3): 87-89.
    [34]齐旭,曾德文,史大军等.特高压直流输电对系统安全稳定影响研究[J].电网技术, 2006, 30(2): 1-6.
    [35]徐政,祝瑞金.华东电网次同步振荡特性研究[J].电网技术, 1999, 23(7): 20-23.
    [36]陈明,程浩忠,李舟演,翁维华.上海电网应对大功率直流事故的能力分析与对策[J].电网技术, 2006, 30(10): 34-38.
    [37]庄侃沁,武寒,黄志龙等.龙政直流双极闭锁事故华东电网频率特性分析[J].电力系统自动化, 2006, 30(22): 101-104..
    [38]中华人民共和国国家经济贸易委员会. DL755-2001,电力系统安全稳定导则.中华人民共和国电力行业标准.北京:中国电力出版社, 2001-07-01.
    [39] IEEE/CIGRE Joint Task Force on Stability Terms and Definitions. Definition and classification of power system stability. IEEE Transactions on Power Systems, 2004, 19(2): 1387-1401.
    [40]赵畹君.高压直流输电工程技术[M].北京:中国电力出版社, 2004.
    [41] C. W. Taylor. Power System Voltage Stability[M].北京:中国电力出版社, 2002.
    [42]徐政.交直流电力系统动态行为分析[M].北京:机械工业出版社, 2004.
    [43]原蔚鹏,张尧.多馈入直流线路的交直流混合电网静态电压稳定分析[J].中国电力, 2006, 39(7): 35-39.
    [44]杨秀,郎鹏越,靳希.高压直流输电系统功率/电压静态稳定性的建模与分析[J].华东电力, 2006, 24(3): 10-12.
    [45] F. D. T. Paulo, B. Bernt, A. Gunnar. Multiple Infeed Short Circuit Ratio-aspects Related to Multiple HVDC into One AC Network[C]. Transmission and Distribution Conference & Exhibition: Asia and Pacific, Dalian, China, 2005.
    [46] J. D. Ainsworth, et al. Static and Synchronous Compensators for HVDC Transmission Converters Connected to Weak AC Systems[C], CIGRE Conference, Paris, 1980, Paper No.31-01.
    [47] R. John. U. Edvina. Study on Power Transfer Capability of DC System in Cooperating AC Load and a Parallel AC Line[J]. IEEE Transactions on Power Delivery. 1997, 12(1): 426-434.
    [48] L. H. A. Denis. G. Andersson. Power Stability Analysis of Multi-infeed HVDC Systems[J] IEEE Transactions on Power Delivery. 1998, 13(3): 923-931.
    [49] A. E. Hammad, et al. A New Approach for the Stability Analysis and Solution of AC Voltage Stability Problems at HVDC Terminals[C]. International Conference on DC Power Transmission, Montreal, June 1984, pp 164-170.
    [50] B. Franken, G. Andersson. Analysis of HVDC Converters Connected to Weak AC Systems. IEEE Transactions on Power Systems, 1990, 5(1): 235-242.
    [51] R. S. Thallam. Review of the Design and Performance Feature of HVDC Systems Connected to Low Short Circuit Ratio AC Systems[J]. IEEE Transactions on Power Delivery, 1992, 7(4): 2065-2073.
    [52] L. A. S. Pilotto, M. Szechtman, A. E. Hammad. Transient AC Voltage Related Phenomena for HVDC Schemes Connected to Weak AC Systems[J]. IEEE Transactions on Power Delivery, 1992, 7(3): 1396-1404.
    [53]欧开建,荆勇,任震.多馈入直流输电系统换流母线电压稳定性评估模型和算法[J].电力自动化设备, 2003, 23(9): 24-26.
    [54] O. B. Nayak, A. M. Gole, D. G. Chapman, et al. Control Sensitivity Indices for Stability Analysis of HVDC Systems[J]. IEEE Transactions on Power Delivery, 1995, 10(4): 2054-2060.
    [55]刘明波,程劲辉,程莹.交直流并联电力系统动态电压稳定性分析[J].电力系统自动化, 1999, 23(16): 27-30.
    [56] J. Dragan, P. Nalin, Z. Mohamed, et al. Small Signal Analysis of HVDC-HVAC Interactions[J]. IEEE Transactions on Power Delivery, 1999. 14(2): 525-530.
    [57] L. H. A. Denis, G. Andersson. Use of Participation Factors in Modal Voltage Stability Analysis of Multi-infeed HVDC Systems[J]. Transactions on Power Delivery, 1998, 13(1): 203-211.
    [58] L. H. A. Denis. G. Andersson. Voltage Stability Analysis of Multi-infeed HVDC Systems[J]. IEEE Transactions on Power Delivery, 1997, 12(3): 1318-1308.
    [59]胡林献,陈学允.崩溃点法交直流联合系统电压稳定分析[J].中国电机工程学报, 1997, 17(6): 395-398.
    [60] A. C. Claudio, L. A. Fernando, L. D. Christopher , et al. Point of Collapse Methods Applied to AC/DC Power Systems[J]. IEEE Transactions on Power System, 1992, 7(2): 673-683.
    [61]王秀婕,李华强,李波.基于内点法的交直流系统电压稳定性评估.电力系统及其自动化学报, 2007, 19(6): 72-77.
    [62]颜伟,胡刚,余娟等.交直流混合输电系统电压稳定临界点非线性规划[J].中国电力, 2009, 42(8): 10-14.
    [63] Liu Qtianqi, Zhang Mei, Li Xingyuan. Voltage Stability Analysis at Converter Buses in Combined AC/DC Systems. Power and Energy Engineering Conference, 2009, 1-4.
    [64]马冠雄,刘明波,王奇.一种识别静态电压稳定分岔点的混合方法.电力系统自动化, 2006, 30(24): 17-20.
    [65]余贻鑫,李鹏,贾宏杰.基于混合法的潮流可行域边界计算.电力系统自动化, 2004, 28 (13) : 18-25.
    [66]倪以信,陈寿孙,张宝霖.动态电力系统的理论和分析[M].北京:清华大学出版社, 2002
    [67]王锡凡,方万良,杜正春.现代电力系统分析[M].北京:科学出版社, 2003
    [68]中国南方电网公司.交直流电力系统仿真技术[M].北京:中国电力出版社, 2007.
    [69] D. A. Woodford. Validation of Digital Simulation of DC Links. IEEE Transactions on Power Apparatus and Systems, 1985, PSA-104(9): 2588-2595.
    [70] M. O. Faruque, Zhang Yuyan, V. Dinavahi. Detailed modeling of CIGRE HVDC Benchmark system using PSCAD/EMTDC and PSB/SIMULINK. IEEE Transactions on Power Delivery, 2006, 21(1): 378-387.
    [71]黄志岭,田杰.基于详细直流控制系统模型的EMTDC仿真.电力系统自动化, 2008,32(2): 45-48.
    [72] P. Lehn, J. Rittiger, B. Kulicke. Comparison of the ATP Version of the EMTP and the NETOMAC Program for Simulation of HVDC Systems[J]. IEEE Transactions on Power Delivery, 1995, 10(4): 2048-2053.
    [73]李鹏,吴小辰,张尧等.南方电网多直流调制控制的交互影响与协调[J].电力系统自动化, 2007, 31(21): 90-93.
    [74] G. E. Ott, L. N. Walker, D. T. Y. Wong. Hybrid Simulation for Long Term Dynamics[J]. IEEE Transactions on Power Apparatus and Systems, 1977, 96(3), Part1: 907-915.
    [75] H. T. Su, K. W. Chan, L. A. Snider. Parallel Interacting Protocol for Electromagnetic and Electromechanical Hybrid Simulation[J]. Generation, Transmission and Distribution, 2005, 152(3): 406-414.
    [76]柳勇军,闵勇,梁旭.电力系统数字混合仿真技术综述[J].电网技术, 2006, 30(13): 38-43.
    [77]张树卿,梁旭,童陆园等.电力系统电磁/机电暂态实时混合仿真的关键技术[J].电力系统自动化, 2008, 32(15): 89-96.
    [78]岳程燕.电力系统电磁暂态与机电暂态混合实时仿真的研究.中国电力科学研究院博士学位论文, 2005.
    [79]孔祥玉,李维,房大中等.采用模块化方法的交直流电力系统混合仿真[J].电网技术, 2010, 37(7): 41-46.
    [80] P. Mattavelli, G. C. Verghese, A. M. Stankovic. Phasor Dynamics of Thruster-controlled Series Capacitor Systems[J]. IEEE Transactions on Power Systems, 1997, 12(3): 1259-126.
    [81]戚庆茹,焦连伟,陈寿孙等.高压直流输电动态相量建模与仿真[J].中国电机工程学报, 2003, 23(12): 28-32.
    [82]王钢,李志铿,李海锋等.交直流系统的换流器动态相量模型[J].中国电机工程学报, 2010, 30(1): 59-64.
    [83] S. Arabi, P. Kunder, J. H. Sawada. Appropriate HVDC Transmission Simulation Models for Various Power Systems Stability Studies[J]. IEEE Transactions on Power Systems, 1998, 13(4): 1292-1297.
    [84]王路,李兴源,罗凯明等.交直流混联系统的多速率混合仿真技术研究[J].电网技术, 2005, 29(15): 23-27.
    [85] R. M. Brandt, U. D. Annakkage, D. P. Brandt, et al. Validation of a Two-time Step HVDC Transient Stability Simulation Model Including Detailed HVDC Controls and DC Line L/R Dynamics[C]. 2006 IEEE Power Engineering Society General Meeting,Montreal,Canada,2006, 1-6.
    [86]王成山,高毅,王丹等.考虑直流系统开关特性控制的变步长仿真算法[J].中国电机工程学报, 2009, 29(34): 14-21.
    [87] A.A.Found, S. E. Stanto. Transient Stability of Multi-machine Power System Parts I and II. IEEE Transactions on Power Apparatus and Systems, 1981, 100(7): 3408-3424.
    [88] N. Kakimoto, M. Hayashi. Transient Stability Analysis of Multi-machine Power System by Lypunov’s Direct Method. Proceeding of 20th IEEE Conference on Decision and control, 1981: 464-470.
    [89] H. D. Chiang, F. F. Wu, P. P. Varaiya. A BCU Method for Direct Analysis of Power System Transient Stability[J]. IEEE Transactions on Power Systems, 1994, 9(3): 1194-1208.
    [90] Xue Y, Van Custem T, Pavella M. A Simple Direct Method for Fast Transient Stability Assessment of Large Power Systems[J]. IEEE Transactions on Power Systems, 1988, 3(2): 400-412.
    [91] Xue Y, Van Custem T, Pavella M. Extended Equal Area Criterion Justifications, Generalizations, Applications[J]. IEEE Transactions on Power Systems, 1989, 4(1): 44-52.
    [92] M. A. Pai, K. R. Padiyar, C. Radhakrishna. Transient Stability Analysis of Multi-machine AC/DC Power Systems via Energy-function Method. IEEE Transactions on PAS, 1981, 100(12): 5027-5035.
    [93] Y. Mizukami, H. Doi, K. Katsuki, et al. Study of Fast Synchronous-reclose Method for Parallel AC Line Fault in AC/DC Power Transmission System. IEEE Transactions on PAS, 1984, 103(6): 1135-1141.
    [94] Christopher L. DeMarco, Claudio A. Canizares. A Vector Energy Function Approach for Security Analysis of AC/DC Systems. IEEE Transactions on Power System, 1992, 7(3): 1001-1011.
    [95] Nilkamal Fernandopulle, Robert T. H. Alden. Improved Dynamic Security Assessment for AC/DC Power Systems Using Energy Functions. IEEE Transactions on Power Systems, 2003, 18(4): 1470-1477.
    [96] Nilkamal Fernandopulle, Robert T. H. Alden. Incorporation of Detailed HVDC Dynamics into Transient Energy Functions. IEEE Transactions on Power Systems, 2005, 20(2): 1043-1052.
    [97]胡林献,陈学允. Taylor级数法交直流联合系统直接暂态稳定分析.电网技术, 1996, 20(5): 16-18.
    [98]苏小林,闫晓霞,黄东惠. EEAC法交直流电力系统暂态稳定分析.电网技术, 21(8): 10-12.
    [99] T. S. Chung. Assessment of Stability Effects of HVDC Link by an Improved EnergyFunction Method. IEEE 1999 International Conference on PEDS, 1999, 2, 837-842.
    [100] T. S. Chung, D. Z. Fang. Corrected Transient Energy Function and Transient Stability Limit Assessment. 2000 IEEE Meeting on PESW, 2000, 1: 72-77.
    [101]林玉章,蔡泽祥.基于PEBS法的交直流输电系统暂态稳定分析.电力自动化设备, 2009, 29(1): 24-28.
    [102] CIGRE technical brochure. Guide for Planning DC Links Terminating at AC Locations Having Low Short Capacities. 1997.
    [103] A. R. Wood, J. Arrillage. Composite Resonance: A Circuit Approach to the Waveform Distortion Dynamics of an HVDC Converter. IEEE Transactions on Power Delivery, 1995, 10(4): 1882-1888.
    [104] X. Jiang, A. M. Gole. A Frequency Scanning Method for the Identification of Harmonic Instabilities in HVDC Systems. IEEE Transactions on Power Delivery, 1995, 10(4):1875-1881
    [105] J. Reeve, P. C. S. Krishnayya. Unusual Current Harmonics Arising from High Voltage DC Transmission. IEEE Transactions on Power Apparatus and Systems, 1968, PAS-87(3): 883-893.
    [106] J. Reeve, J. A. Baron, P. C. S. Krishnayya. A General Approach to Harmonic Current Generation by HVDC Converters. IEEE Transactions on Power Apparatus and Systems, 1969, PAS-88(3): 989-995.
    [107] J. D. Ainsworth. Harmonic Instability between Controlled Static Converters and AC Networks. Proceedings of the Institution of Electrical Engineers, 1967, 114(7): 949-957.
    [108] J. D. Ainsworth. The Phase Locked Oscillator - A New Control System for Controlled Static Converters. IEEE Transactions on Power Apparatus and Systems, 1968, PAS-87(3): 859-865.
    [109] P. S. Bodger, D. D. Irwin, D. A. Woodford. Controlling Harmonic Instability of HVDC Links Connected to Weak AC Systems. IEEE Transactions on Power Delivery, 1990, 5: 2039-2046.
    [110] E. V. Persson. Calculation of Transfer Functions in Grid Controlled Converter Systems. With Special Reference to HVDC Transmissions. Proceedings of the Institution of Electrical Engineers, 1970, 117(5): 989-997.
    [111] J. P. Sucena-Paiva, L. L. Freris. Stability of A DC Transmission Link between Weak AC Systems. Proc. IEE Proceedings on Generation Transmission and Distribution, 1974, 121(6): 508–515.
    [112] J. M. Ferreira, L. L. Freris, J. P. Sucena Paiva. Describing Function Applied to HVDC Systems Harmonic Instability. IEE Proceedings on Generation Transmission and Distribution, 1987, 134(2): 131-137.
    [113] S. Todd, A. R. Wood, P. S. Bodger. An s-domain Model of an HVDC Converter. IEEE Transactions on Power Delivery, 1997, 12(4): 1723-1729.
    [114] J. O. Reilly, A. R. Wood, C. M. Osauskas. Frequency Domain Based Control Design for an HVDC Converter Connected to a Weak AC Network. IEEE Transactions on Power Delivery, 2003, 18(3): 1028-1033.
    [115] D. Jovcic, N. Pahalawaththa, M. Zavahir. Novel Current Controller Design for Elimination of Dominant Oscillatory Mode on an HVDC Line. IEEE Transactions on Power Delivery, 1999, 14(2): 543-548.
    [116] D. Jovcic, N. Pahalawaththa, M. Zavahir. Analytical Modeling of HVDC-HVAC Systems. IEEE Transactions on Power Delivery, 1999, 14(2): 506-511.
    [117] C. M. Osauskas, D. J. Hume, A. R. Wood. Small Signal Frequency Domain Model of an HVDC Converter. IEE Proceedings on Generation Transmission and Distribution, 2001, 148(6): 573-578.
    [118]卢强,梅生伟,孙元章.电力系统非线性控制[M].北京:清华大学出版社, 2008.
    [119]朱浩骏.多馈入直流输电系统的动态建模及稳定分析与协调控制研究.华南理工大学博士学位论文. 2006.
    [120]李兴源,陈凌云,颜泉等.多馈入高压直流输电系统非线性附加控制器的设计[J].中国电机工程学报, 2005, 25(15): 16-19.
    [121]李春文,刘艳红.基于逆系统方法的HVDC系统一般非线性控制[J].电力系统自动化, 2000, 24(22): 1-4.
    [122]孙元章,焦晓红,申铁龙.电力系统非线性鲁棒控制[M].北京:清华大学出版社,2007.
    [123]朱明,刘玉生,李兴源等.高压直流换流站分散鲁棒自适应控制器的设计[J].电力系统自动化, 2003, 27(25): 41-45.
    [124]杨建华,刘玉生,李兴源.高压直流换流站分散鲁棒自适应输出反馈控制[J].电力系统自动化, 2004, 28(17): 32-36.
    [125]李明,梁小冰,程丽.高压直流输电系统的鲁棒非线性控制规律的设计[J].电力系统自动化, 2004, 16(1): 19-21.
    [126]倪林林,陶瑜.葛洲坝-上海直流输电工程控制调节系统参数优化[J].电网技术, 1989, 13(3): 26-31.
    [127] Jin Yong, Ren Zhen, Ou Kaijian, et al. Parameter Estimation of Regulators in Tian-Guang HVDC Transmission System Based on PSCAD/EMTDC[C]. Proceedings of 2002 International Conference on Power System Technology, Kunming, 2002: 538-541.
    [128]李庚银,何富发.直流输电控制系统的参数优化[J].华北电力学院学报, 1991, 3: 23-31.
    [129]赵成勇,张一工,贾秀芳等.直流输电控制系统参数优化[J].中国电力, 1999, 1(30): 32-34.
    [130]杨卫东,徐政,韩祯祥.基于NETOMAC软件的直流输电系统混合仿真计算及参数优化[J].电网技术, 200, 24(12): 11-16.
    [131]杨汾艳,徐政,张静.直流输电比例-积分控制器的参数优化[J].电网技术, 2006,30(11): 15-20.
    [132]胡江,魏星.基于自适应粒子群算法的直流输电PI控制器参数优化[J].电网技术, 2008, 32(2): 71-74.
    [133]童泽,罗隆福,邵鹏飞等.新型直流输电系统变参数PID控制器的设计[J].中国农村水利水电, 2009, 1: 117-119.
    [134]蔡超豪. HVDC的非线性H∞控制]J].电网技术, 2004, 28(5): 38-40.
    [135]丁青青,王树民,郭静波. HVDC非放射非线性系统的定电流定电压控制[J].清华大学学报(自然科学版), 2004, 44(10): 1325-1327.
    [136]余涛,沈善徳,任震.华中-华东多回HVDC紧急功率转移控制的研究[J].电网技术, 2004, 28(12): 1-4.
    [137]房大中,杨晓东,宋文南.提高交直流电力系统稳定性的HVDC模糊逻辑控制器[J].电力系统自动化, 2005, 25: 23-27.
    [138]许秀芳,李兴源,颜泉等.改善系统暂态稳定性的HVDC模糊神经控制器[J].继电器, 2004, 32(11): 16-19.
    [139] A. Daneshpooy, A. M. Gole, D. G. Chapman, et al. Fuzzy Logic Control for HVDC Transmission[J]. IEEE Transactions on Power Delivery,1997, 12(4): 1690-1697.
    [140] V. K. Sood, N. Kandil, R. V. Patel, et al. Comparative Evaluation of Neural-Network-Based and PI Current Controller for HVDC Transmission[J]. IEEE Transactions on Power Electronics, 1994, 9(3): 288-296.
    [141] K. G. Narendra, V. K. Sood, K. Khorasani. Investigation into an Artificial Neural Network Based On-line Current Controller for an HVDC Transmission Link[J]. IEEE Transactions on Power Delivery, 1997, 12(4): 1425-1431.
    [142] A. Routray, P. K. Dash, S. K. Panda. A Fuzzy Self-turning PI Controller for HVDC Links[J]. IEEE Transactions on Power Electronic, 1996, 11(5): 669-679.
    [143] P. K. Dash, A. Routray, S. Mishra. A Neural Network Based Feedback Linearizing Controller for HVDC Links[J]. Electric Power Systems Research, 1999, 50(2): 125-132.
    [144]杨晓东.基于组件树模型和双向迭代技术的暂态稳定仿真方法研究[D].天津大学博士学位论文, 2006.
    [145]周保荣,房大中.双向模块简化技术在电力系统稳定性仿真中的应用[J].天津大学学报, 2004, 37(9): 797-801.
    [146]房大中,杨晓东.基于模块双向迭代的电力系统仿真新算法研究[J].中国科学E辑, 2005, 35(9): 981-995.
    [147] Fang Dazhong, Yang Xiaodong. A New Method for Fast Dynamic Simulation of Power Systems[J]. IEEE Transactions on Power Systems, 2006, 21(2): 619-628.
    [148]周双喜,朱凌志,郭锡玖等.电力系统电压稳定性及其控制[M].北京:中国电力出版社, 2004.
    [149] H. D. Chiang, A. J. Flueck, K. S. Shah, et al, CPFLOW: A Practical Tool for TracingPower System Steady State Stationary Behavior Due to Load and Generation Variations[J]. IEEE Transactions on Power Systems, 1995, 10(2): 623-634.
    [150]赵晋泉,张伯明.连续潮流及其在电力系统静态稳定分析中的应用[J].电力系统自动化, 2005, 29(11): 9197.
    [151] B. Gao, G. K. Morison, P. Kunder. Toward the Development of a Systematic Approach of Voltage Stability Assessment of Large-scale Power Systems[J]. IEEE Transactions on Power Systems, 1996, 11: 1314-1324.
    [152] V. Ajjarapu, C. Christy. The Continuation Power Flow: A Tool for Steady State Voltage Stability Analysis[J]. IEEE Transactions on Power Systems, 1992, 7(1): 416-423.
    [153]郭瑞鹏.电力系统电压稳定研究[D].浙江大学博士学位论文, 1999.
    [154]江伟.基于直接法的静态电压稳定临界点计算[D].天津大学博士学位论文. 2005.
    [155] Vijiay K. Sood著,徐政译.高压直流输电与柔性交流输电控制装置-静止换流器在电力系统中的应用[M].机械工业出版社. 2006.
    [156]中国电力科学研究院. PSD-BPA暂态稳定程序用于手册. 2007.
    [157]中国南方电网公司.交直流电力系统仿真技术[M]. 2007,北京:中国电力出版社.
    [158]刘云,印永华,曾南超等.数模混合式高压直流输电仿真系统的建立[J].电力系统自动化, 2006, 30(18): 38-44.
    [159] M. Sutan. Combined Transient and Dynamic Analysis of HVDC and FACTS Systems[J]. IEEE Transactions on Power Delivery, 1998, 13(4): 1271-1277.
    [160]王路,李兴源,颜泉等.复杂交直流系统的双时标混合协调仿真[J].电力系统自动化, 2005, 29(22): 28-32.
    [161] Arunkumar Muthusamy. Selection of Dynamic Performance Control Parameters for Classic HVDC in PSSS/E[M]. Chalmers University of Technology Master of Science Thesis. 2010.
    [162] C. C. Lee, O. T. Tan. A Weighted-Least-Squares Parameter Estimator for Synchronous Machines[J]. IEEE Transactions on Power Apparatus and Systems, 1977, PAS-96(1): 97-101.
    [163] J. J. Sanchez-Gasca, C. J. Bridenbaugh, C. E. J. Bowler, J. S. Edmonds. Trajectory Sensitivity Based Identification of Synchronous Generator and Excitation System Parameters[J]. IEEE Transactions on Power Systems, 1988, 3(4): 1814-1822.
    [164] S. M. Benchluch, J. H. Chow. A Trajectory Sensitivity Method for the Identification of Nonlinear Excitation System Models[J]. IEEE Transactions on Energy Conversion, 1993, 8(2): 159-164.
    [165] Ian A. Hiskens. Nonlinear Dynamic Model Evaluation from Disturbance Measurements[J]. IEEE Transactions on Power Systems, 2001, 16(4): 702-710.
    [166] M. J. Laufenberg, M. A. Pai. A New Approach to Dynamic Security Assessment Using Trajectory Sensitivity[J]. IEEE Transactions on Power Systems, 1998, 13(3): 953-958.
    [167] I. A. Hiskens, M. Akke. Analysis of the Nordel Power Grid Disturbance of January 1, 1997 Using Trajectory Sensitivities[J]. IEEE Transactions on Power Systems, 1999, 14(3): 987-993.
    [168]孙景强,房大中,周保荣.基于轨迹灵敏度的电力系统动态安全预防控制算法研究[J].电网技术, 2004, 28(21): 26-30.
    [169] D. Z. Fang, S. Q. Yuan, T. S. Chung, K. P. Wong. Sensitivity-based Hybrid Approach for Assessment of Stability-constrained Generation Limit[J]. IEE Proceedings, Part C: Generation, Transmission and Distribution, 2006, 153(3): 368-374.
    [170]常乃超,陈得治,于文斌,郭志忠.基于受控微分-代数系统灵敏度分析的紧急控制[J].电力系统自动化, 2003, 27(17): 19-22.
    [171]周保荣,房大中,孙景强.基于轨迹灵敏度分析的电力系统稳定器参数优化设计[J].电网技术, 2004, 28(19): 19-23.
    [172] J. W. Park, I. A. Hiskens. Damping Improvement Through Tuning Controller Limits of a Series FACTS Device[C]. IEEE International Symposium on Circuits and Systems, 2005, 5: 5928-5301.
    [173] D. Chatterjee, A. Ghosh. Transient Stability Assessment of Power Systems Containing Series and Shunt Compensators[J]. IEEE Transactions on Power Systems, 2007, 22(3): 1210-1220.
    [174]易海琼.基于轨迹灵敏度分析的电网临界切除时间的研究.重庆大学硕士学位论文. 2003.
    [175]解可新,韩健,林友联.最优化方法[M].天津:天津大学出版社, 2004.
    [176]周保荣.电力系统阻尼控制器参数优化设计研究[D].天大大学博士学位论文, 2004.
    [177]胡寿松,王执铨,胡维礼.最优控制理论与系统[M].北京:科学出版社, 2005.
    [178] http://thunderbox.uwaterloo.ca/~ccanizar/software/tefts.htm.
    [179]赵晋泉,江晓东,张伯明.潮流计算中PV-PQ节点转换逻辑的研究.中国电机工程学报, 2005, 25(1): 54-59.
    [180]范磊,陈珩.静态电压稳定分析中发电机的无功功率及其越限处理.电力系统自动化, 1998, 22(12): 20-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700