交直流电力系统稳定性分析与控制相关问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稳定域估计在很多工程领域尤其电力系统是非常重要的。以往的文献中提出了非常多的估计稳定域的方法,但是有些只是估计了稳定域的一个子集而存在保守性问题,还有些虽然从数学上完整地描述了稳定边界的组成然而存在实际计算问题。传统的稳定域研究是只针对纯交流系统的,目前为止对交直流系统稳定域的研究还是非常缺乏,需要提出新的理论与新的方法进一步研究。
     随着直流输电的广泛应用以及交直流混合输电系统的日益增多,将会出现一系列的新问题。交流输电和直流输电虽然特性完全不同,但是两者在实际电网运行中有着非常紧密的联系以及非常复杂的相互影响。交直流的相互影响是电力系统稳定研究中的重要方面,也是电力工程界最为关注的问题之一,所以需要对这个课题继续开展广泛深入的研究。
     最近十年全世界发生了多起严重的大停电事故,对国民经济以及社会生活造成了严重后果。国内外学者将复杂系统等先进理论引入电力系统,开展了对连锁故障以及大停电相关课题的详尽研究,取得了很多突破性进展和成果。现在连锁故障与大停电的研究仍不可避免地存在一些问题,主要在于一是没有考虑系统完整的动态特性,二是鲜有针对交直流系统的研究。
     本文从上述的交直流系统稳定域与稳定边界、交直流系统相互影响、交直流系统连锁故障与大停电这三个方面研究交直流电力系统稳定性分析与控制相关问题,主要做了以下工作:
     1.提出了包含完整直流运行状态的全状态直流模型,很好地模拟了交直流系统固有的切换特性,计算了单机无穷交直流全状态系统在不同直流运行方式下的相图,分析了单机无穷交直流全状态系统的稳定域特性以及子系统切换规律,并与单机无穷纯交流系统以及单机无穷交直流简化系统的特性作了对应比较。
     2.给出了一种基于稳定约束最优潮流的交直流相互影响分析算法,根据实际电网运行经验进一步改进算法流程,可以减少计算量和提高计算效率,应用断面潮流暂稳极限计算、切机切载分析、直流紧急功率提升分析相应算法对2012年三华特高压互联电网进行了交直流影响计算分析。
     3.分别研究了区内直流线路以及区外直流线路发生闭锁故障后引发交流联络线发生功率波动的机理,给出了功率波动峰值的近似计算方法,分析了影响功率波动峰值的关键因素,通过2012年三华电网实际算例的仿真计算对计算结果和计算方法进行了对比和验证。
     4.提出了一种考虑紧急控制保护装置及直流系统概率动作特性的连锁故障动态仿真模型,应用这个模型对2010年华东电网实际系统进行了动态仿真,在不同的直流运行方式、直流控制参数、交直流互联方式、交直流容量分配下,计算了停电功率—停电概率幂律曲线,分析了对系统自组织临界性的影响。
     5.进行了交直流容量最优分配问题的初步分析和数学建模,提出了连锁故障蒙特卡洛仿真算法和交直流容量最优分配隐式枚举算法,对修改的IEEE39算例系统进行了仿真计算,求得使系统连锁故障与大停电风险最小的交直流容量分配最优解,分析了各种因素对交直流容量最优分配的影响。
Stability region estimation is very significant in many engineering fields especially in power systems. A lot of methods of stability region estimation have been proposed in the literature, some only estimate a subset of the stability region but with the problem of conservativeness, and others completely describe the composition of the stability boundary in mathematics but with the barrier of practical computation. The traditional study on stability region is only to the AC system, so far the study on the AC/DC power system stability region has been very lacked, and it needs further research by applying new theories and methods.
     Along with the DC transmission widely applied and the AC/DC hybrid power transmission system quickly increased, a series of new problems will appear. Although the characteristics of AC and DC transmission are totally different, the two have very close contact and very complicated interaction in the operation of actual power grids. AC/DC interaction is an important aspect in the study of power system stability, and is one of the most concerned problems in the field of power engineering, so wide and deep research on this subject should be continually developed.
     There has occurred several severe blackouts all over the world in recent ten years, which led to serious consequencies on the national economy and social life. Scholars domestic and abroad have applied advanced theories such as the complex system theory to the power system, detailed studies on the subject of cascading failure and blackout have been proceeded, and a lot of breakthroughs and achievements have been obtained. Now there still inevitably exists some problems in the issue of cascading failure and blackout, one is that the complete dynamics of the system is not considered, and the other is that there is little research on the AC/DC system.
     In this thesis, the relative problems of AC/DC power system stability analysis and control are studied in three aspects of AC/DC system stability region and stability boundary, AC/DC system interaction, and AC/DC system cascading failure and blackout, the main work is as follows:
     1. A full state DC model which includes complete DC operation modes is used, it nicely describes the inherent switching characteristics of AC/DC systems, the phase portraits of the single machine-infinite bus (SMIB) AC/DC full state system under different DC operation modes are calculated, the stability region characteristics and subsystem switching laws of the SMIB AC/DC full state system are analyzed, and the related characteristics of the SMIB AC system and the SMIB AC/DC simplified system are compared.
     2. An AC/DC interaction analysis algorithm based on the stability constrained optimal power flow is proposed, the algorithm is furtherly modified according to the operation experience of practical power grids, with which the computation burden can be reduced and the calculation efficiency can be increased, the AC/DC interaction of the2012North China-Central China-East China (3C) UHV interconnected power grid is calculated and analyzed applying the related algorithms of interface power flow transient stability limits calculation, generator trip and load shedding analysis, and DC emergency power lifting analysis.
     3. The mechanisms of the AC tie-line power swing phenomenon resulted from the interior and exterior DC line blocking contingency are respectively studied, the approximate calculation method of the power swing peak value is given, and the influential factors of the power swing peak value are analyzed, the calculation results and methods are compared and verified by simulation of the2012North China-Central China-East China (3C) UHV interconnected power grid.
     4. A dynamic cascading failure model considering the probability characteristics of the emergency control&protection device and DC system is proposed, with which dynamic simulation of the2010East China power grid is performed, under different DC operation modes, DC control parameters, AC/DC interconnection modes, and AC/DC capacity allocations, the outage power—outage probability power law curve is calculated, and the impact on the self-organized criticality of the system is analyzed.
     5. Preliminary analysis and mathematical modeling of the AC/DC capacity optimal allocation problem are proceeded, a cascading failure Monte Carlo simulation algorithm and an AC/DC capacity optimal allocation implicit enumeration algorithm are proposed, the modified IEEE39case system is calculated, the AC/DC capacity allocation optimal solution which can minimize the system cascading failure and blackout risk is obtained, the impact of various factors on the optimal AC/DC capacity allocation is analyzed.
引文
[1]刘振亚.中国电力与能源.北京:中国电力出版社,2012.
    [2]陈珩.电力系统稳态分析.北京:中国电力出版社,2007.
    [3]李光琦.电力系统暂态分析.北京:中国电力出版社,2007.
    [4]程时杰,张伯明,夏道止.电力系统分析.北京:中国电力出版社,2011.
    [5]何仰赞,温增银.电力系统分析.武汉:华中科技大学出版社,2002.
    [6]韩祯祥.电力系统分析.杭州:浙江大学出版社,2011.
    [7]倪以信,陈寿孙,张宝霖.动态电力系统的理论和分析.北京:清华大学出版社,2005.
    [8]王锡凡,方万良,杜正春.现代电力系统分析.北京:科学出版社,2006.
    [9]Anderson P M, Fouad A A. Power System Control and Stability. New Jersy:Wiley-IEEE, 2002.
    [10]Kundur P. Power System Stability and Control. New York:McGraw-Hill,1994.
    [11]孙华东,汤涌,马世英.电力系统稳定的定义与分类述评.电网技术,2006,30(17):31-35.
    [12]Crary S B, Herlitz I, Favez B. CIGRE SC32 report:system stability and voltage, power and frequency control. Paris:CIGRE,1948.
    [13]CIGRE Report. Definitions of general terms relating to the stability of interconnected synchronous machine. Paris:CIGRE,1966.
    [14]Barbier C, Carpentier L, Saccomanno F. CIGRE SC32 report:tentative classification and terminologies relating to stability problems of power systems. Electra,1978,56:57-67.
    [15]IEEE TF Report. Proposed terms and definitions for power system stability. IEEE Transactions on Power Apparatus and Systems,1982,101(7):1894-1897.
    [16]IEEE/CIGRE joint task force on stability terms and definitions. Definition and classification of power system stability. IEEE Transactions on Power Systems,2004,19(2):1387-1401.
    [17]国家经济贸易委员会.电力系统安全稳定导则(DL755-2001).北京:中国电力出版社,2001.
    [18]国家电网公司.国家电网安全稳定计算技术规范(Q/GDW404-2010).北京:中国电力出版社,2010.
    [19]邵洪泮.电力系统稳定性的直接法分析.北京:水利电力出版社,1991.
    [20]刘笙,汪静.电力系统暂态稳定的能量函数分析.上海:上海交通大学出版社,1996.
    [21]傅书逷,倪以信,薛禹胜.直接法稳定分析.北京:中国电力出版社,1999.
    [22]Chiang H D. Direct Methods for Stability Analysis of Electric Power Systems:Theoretical Foundation, BCU Methodologies, and Applications. New Jersey:Wiley,2010.
    [23]Pai M A. Energy Function Analysis for Power System Stability. Boston:Kluwer,1989.
    [24]Fouad A A, Vittal V. Power System Transient Stability Analysis Using the Transient Energy Function Method. New Jersey:Prentice-Hall,1991.
    [25]Magnusson P C. Transient energy method of calculating stability. AIEE Transactions on Power Apparatus and Systems,1947,66:747-755.
    [26]Ayllett P D. The energy integral criteron of transient stability limits of power systems. Proceedings of the IEE,1958,105(8):527-536.
    [27]Gless G E. Direct method of Lyapunov applied to transient power system stability. IEEE Transactions on Power Apparatus and Systems,1966,85:159-168.
    [28]Ei-Abiad A H, Nagappan K. Transient stability regions for multi-machine power systems. IEEE Transactions on Power Apparatus and Systems,1966,85:169-179.
    [29]Ribbens-Pavella M. Transient stability of multimachine power system by Lyapunov's method. IEEE Winter Power Meeting,1971.
    [30]Ribbens-Pavella M, Gruijc L T, Sabatel J, et al. Direct methods for stability analysis of large scale power systems. Proceedings of IFAC Symposium on Computer Applications in Large Scale Power Systems,1979.
    [31]Athay T, Sherkat E R, Podmore R, et al. Transient energy stability analysis. Conference on System Engineering for Power:Emergency Operating State Control,1979.
    [32]Kakimoto N, Ohsawa N Y, Hayashi M. Transient stability analysis of electric power system via lure-type Lyapunov function. Transactions IEE Japan,1978,98:566-604.
    [33]Michel A N, Fouad A A, Vittal V. Power system transient stability using individual machine energy functions. IEEE Transactions on Circuits and Systems,30(5):1983.
    [34]Fouad A A, Kruempel K. C, Mamandur K R C, et al. Transient stability margin as a tool for dynamic security assessment. EPRI Report EL-1755,1981.
    [35]Fouad A A, Vittal V, Ni Y, et al. Extending applications of the transient energy function method. EPRI Report EL-5215,1987.
    [36]Padiyar K R, Ghosh K K. Direct stability evaluation of power systems with detailed generator models using structure preserving energy functions. International Journal of Electric Power and Energy Systems,1989,11(1):47-56.
    [37]Chiang H D, Wu F F, Varaiya P P. Foundations of direct methods for power system transient stability analysis. IEEE Transactions on Circuits and Systems,1987,34(2):160-173.
    [38]Chiang H D, Wu F F, Varaiya P P. Foundations of the potential energy boundary surface method for power system transient stability analysis. IEEE Transactions on Circuits and Systems,1988,35:712-718.
    [39]Zaborsky J, Huang G, Zheng B H, et al. New results for stability monitoring of the large electric power system:the phase portrait of the power system. IFAC Symposium on Power Systems and Power Plant Control,1986.
    [40]Chiang H D, Wu F F, Varaiya P P. A BCU method for direct analysis of power system transient stability. IEEE/PES Summer Meeting,1991.
    [41]Xue Y, Cutsem T V, Ribbens-Pavella M. A simple direct method for fast transient stability assessment of large power systems. IEEE Transactions on Power Systems,1988,3(2): 400-412.
    [42]Xue Y, Belhemme R, Rousseaux P, et al. Dynamic extended equal area criterion. Athens Power Tech,1993.
    [43]Xia D, Heydt G T. On-line transient stability evaluation by system decomposition aggregation and high order derivatives. IEEE Transactions on Power Apparatus and Systems, 1983,102(7):2038-2046.
    [44]Fu S, Pan J. A fast transient stability assessment approach by combined system decomposition aggregation and transient energy method. IFAC Symposium on Power System and Power Plant Control,1986:242-246.
    [45]Ni Y, Fouad A A. A simlified two-terminal HVDC model and its use in direct transient stability assessment. IEEE Transactions on Power Systems,1987,2(4).
    [46]Fouad A A, Vittal V, Ni Y, et al. Direct transient stability assessment with excitation control. IEEE Transactions on Power Systems,1989,4(1).
    [47]Cook P A, Eskicioglu A M. Transient stability analysis of electric power systems by the method of tangent hypersurface. IEE Proceedings C, Generation, Transmission, and Distribution,1983,130:183-193.
    [48]Chiang H D, Thorp J S. The closest unstable equilibrium point method for power system dynamic security assessment. IEEE Transactions on Circuits and Systems,1989,36(9): 1187-1200.
    [49]Chiang H D. Analytical results on the direct methods for power system transient stability analysis. Control and Dynamic Systems:Advances in Theory and Application,1991,43: 275-334.
    [50]Kakimoto N, Ohsawa N Y, Hayashi M. Transient stability analysis of large-scale power systems by Lyapunov's direct method. IEEE Transactions on Power Apparatus and Systems, 1984,103:160-167.
    [51]Xue Y, Cutsem T V, Ribbens-Pavella M. Extended equal area criterion justifications, generalizations, applications. IEEE Transactions on Power Systems,1989,4(1):44-52.
    [52]Chiang H D. The BCU method for direct stability analysis of electric power systems:theory and applications. Systems Control Theory for Power Systems,1995,64:39-94.
    [53]Chiang H D, Chu C C. Theoretical foundation of the BCU method for direct stability analysis of network-reduction power system model with small transfer conductances. IEEE Transactions on Circuits and Systems,1995,42(5):252-265.
    [54]Chiang H D, Wu F F, Varaiya P P. A BCU method for direct analysis of power system transient stability. IEEE Transactions on Power Systems,1994,8(3):1194-1208.
    [55]Tsolas N A,Arapostathis A, Varaiya P P. A structure preserving energy function for power system transient stability analysis. IEEE Transactions on Circuits and Systems,1985,32(10): 1041-1049.
    [56]Xin H, Gan D, Qiu J, et al. Methods for estimating stability regions with applications to power systems. European Transactions on Electric Power,2007,17:113-133.
    [57]Min Y, Chen L, Hou K, et al. The credible regions on the approximate stability boundaries of nonlinear dynamic systems. IEEE Transactions on Automatic Control,2007,52(8): 1486-1491.
    [58]辛焕海,甘德强,邱家驹.一组估计自治系统稳定域严格子集的通用方法.电力系统自动化,2005,29(13):24-28.
    [59]Levin A. An analytical method of estimating the domain of stability for polynomial differential equations. IEEE Transactions on Circuits and Systems,1994,39(12): 2471-2475.
    [60]Gensio R, Vicino A. New techniques for constructing asymptotic stability regions for nonlinear systems. IEEE Transactions on Circuits and Systems,1984,31(6):574-581.
    [61]Chiang H D, Chu C C, Cauley G. Direct stability analysis of electric power systems using energy functions:theory, applications, and perspective. Proceedings of the IEEE,1995, 83(11):1497-1529.
    [62]Krouse O, Lehnhoff S, Handschin E, et al. On feasibility boundaries of electrical power grids in steady state. Electrical Power and Energy Systems,2009,31:437-444.
    [63]Xue A, Wu F F, Ni Y, et al. Power system transient stability assessment based on quadratic approximation of stability region. Electric Power Systems Research,2006,76:709-715.
    [64]Chiang H D, Fekih-Ahmed L. A constructive methodology for estimating the stability regions of interconnected nonlinear systems. IEEE Transactions on Circuits and Systems, 1990,37(5):577-588.
    [65]Kamenetskiy V A. A method for construction of stability regions by Lyapunov functions. Systems and Control Letters,1995,26:147-151.
    [66]Jayasekara B, Annakkage U D. Derivation of an accurate polynomial representation of the transient stability boundary. IEEE Transactions on Power Systems,2006,21(4):1856-1863.
    [67]Moon Y H, Choi B K, Roh T H. Estimating the domain of attraction for power systems via a group of damping-reflected energy functions. Automatica,2000,36:419-425.
    [68]Chesi G. Estimating the domain of attraction via union of continuous families of Lyapunov estimates. Systems and Control Letters,2007,56:326-333.
    [69]Jing Z, Jia Z, Gao Y. Research of the stability region in a power system. IEEE Transactions on Circuits and Systems,2003,50(2):298-304.
    [70]Lee J, Chiang H D. Theory of stability regions for a class of nonhyperbolic dynamical systems and its application to constraint satisfaction problems. IEEE Transactions on Circuits and Systems,2002,49(2):196-209.
    [71]Venkatasubramanian V, Schattler H, Zaborszky J. Dynamics of large constrained nonlinear systems-a taxonomy theory. Proceedings of the IEEE,1995,83(11):1530-1561.
    [72]Venkatasubramanian V, Schattler H, Zaborszky J. Local bifurcations and feasibility regions in differential-algebraic systems. IEEE Transactions on Automatic Control,1995,40(12): 1992-2013.
    [73]Khalil H K. Nonlinear Systems. New Jersey:Prentice-Hall,2001.
    [74]Sastry S. Nonlinear Systems. New York:Springer-Verlag,1999.
    [75]Chiang H D, Thorp J S. Stability regions of nonlinear autonomous dynamical systems. IEEE Transactions on Automatic Control,1988,33(1):16-27.
    [76]Chiang H D, Thorp J S. Stability regions of nonlinear dynamical systems-a constructive methodology. IEEE Transactions on Automatic Control,1989,34(12):1229-1241.
    [77]Zaborszky J, Huang G, Zheng B, et al. On the phase portrait of a class of large nonlinear dynamic systems such as the power system. IEEE Transactions on Automatic Control,1988, 32(1):4-15.
    [78]Zaborszky J, Huang G, Zheng B. A counterexample on a theorem by Tsolas et al, and an independent result by Zaborszky et al. IEEE Transactions on Automatic Control,1988,33: 316-317.
    [79]Chiang H D, Fekih-Ahmed L. Quasi Stability regions of nonlinear dynamical systems:theory. IEEE Transactions on Circuits and Systems,1996,43(82):627-635.
    [80]Chiang H D, Fekih-Ahmed L. Quasi Stability regions of nonlinear dynamical systems: optimal estimation. IEEE Transactions on Circuits and Systems,1996,43:636-642.
    [81]Chiang H D, Chu C C.A systematic search method for obtaining multiple local optimal solutions of nonlinear programming problems. IEEE Transactions on Circuits and Systems, 1996,43(2):99-109.
    [82]李兴源.高压直流输电系统.北京:科学出版社,2010.
    [83]韩民晓,文俊,徐永海.高压直流输电原理与运行.北京:机械工业出版社,2009.
    [84]赵畹君.高压直流输电工程技术.北京:中国电力出版社,2011.
    [85]刘振亚.特高压直流输电理论.北京:中国电力出版社,2009.
    [86]Arrillaga J. High Voltage Direct Current Tranmission. London:IET,1998.
    [87]Padiyar K R. HVDC Power Transmission Systems. London:New Academic Science,2011.
    [88]徐政.交直流电力系统动态行为分析.北京:机械工业出版社,2004.
    [89]Arrillaga J, Smith B. AC-DC Power System Analysis. London:IET,1998.
    [90]刘振亚.特高压直流输电技术研究成果专辑(2006年).北京:中国电力出版社,2008.
    [91]徐政.含多个直流换流站的电力系统中交直流相互作用特性综述.电网技术,1998,22(2):16-19.
    [92]杨卫东,徐政,韩祯祥.多馈入交直流电力系统研究中的相关问题.电网技术,2000,24(8):13-17.
    [93]欧开健,任震,荆勇.直流输电系统换相失败的研究(一)——换相失败的影响因素分 析.电力自动化设备,2003,23(5):5-8,25.
    [94]任震,欧开健,荆勇.直流输电系统换相失败的研究(二)——避免换相失败的措施.电力自动化设备,2003,23(6):6-9.
    [95]林凌雪,张尧,钟庆,等.多馈入直流输电系统中换相失败研究综述.电网技术,2006,30(17):40-46.
    [96]邵瑶,汤涌.多馈入交直流混合电力系统研究综述.电网技术,2009,33(17):24-30.
    [97]林伟芳,汤涌,卜广全.多馈入交直流系统电压稳定性研究.电网技术,2008,32(11):7-12.
    [98]汪娟娟,张尧,夏成军,等.交直流电力系统暂态电压稳定性综述.电网技术,2008,32(12):30-34.
    [99]张步涵,陈龙,李皇,等.利用直流功率调制增强特高压交流互联系统稳定性.高电压技术,2010,36(1):116-121.
    [100]许爱东,金小明,贺静波,等.特高压直流输电系统调制研究.南方电网技术,2008,2(4):55-58.
    [101]郭小江,马世英,卜广全,等.多馈入直流系统协调控制综述.电力系统自动化,2009,33(3):9-15.
    [102]慈文斌,刘晓明,刘玉田.+660kV银东直流换相失败仿真分析.电力系统保护与控制,2011,39(12):134-139.
    [103]吴冲,李兴源,黄宗君.高压直流输电系统换相失败及其相关问题研究.现代电力,2007,3:
    [104]何朝荣,李兴源,金小明,等.高压直流输电系统换相失败的判断标准.电网技术,2006,30(22):19-23,58.
    [105]何朝荣,李兴源,金小明,等.高压直流输电系统换相失败判断标准的仿真分析.电网技术,2007,31(1):20-24.
    [106]艾飞,李兴源,徐大鹏,等.贵广二回高压直流输电系统换相失败的仿真分析.现代电力,2008,25(5):30-34.
    [107]王智冬.交流系统故障对特高压直流输电换相失败的影响.电力自动化设备,2009,29(5):25-29,38.
    [108]荆勇,任震,欧开健.天广直流输电系统换相失败的研究.继电器,2003,31(10):32-36.
    [109]洪潮.直流输电系统换相失败和功率恢复特性的工程实例仿真分析.南方电网技术,2011,5(1):1-7.
    [110]朱韬析,宁武军,欧开健.直流输电系统换相失败探讨.电力系统保护与控制,2008,36(23):116-120.
    [111]项玲,郑建勇,胡敏强.多端和多馈入直流输电系统中换相失败的研究.电力系统自动化,2005,29(11):29-33.
    [112]刘健,李兴源,傅孝韬,等.多馈入短路比与多馈入交互作用因子与换相失败的关系.电网技术,2009,33(12):20-25.
    [113]吴冲,李兴源,何朝荣.多馈入直流交互作用因子在换相失败研究中的应用.继电器,2007,35(9):26-31.
    [114]程道卫,刘天琪,张金,等.多落点直流输电系统换相失败影响因素的仿真分析.电网技术,2010,34(11):59-64.
    [115]汪隆君,王钢,李海锋,等.交流系统故障诱发多直流馈入系统换相失败风险评估.电力系统自动化,2011,35(3):9-14.
    [116]周长春,徐政.联于弱交流系统的HVDC故障恢复特性仿真分析.电网技术,2003,27(11):18-21.
    [117]杨卫东,徐政,韩祯祥.NETOMAC在直流输电系统仿真研究中的应用.电力自动化设备,2001,21(4):10-14.
    [118]吴宝英,陈允鹏,陈旭,等.±800kV云广直流输电工程对南方电网安全稳定的影响.电网技术,2006,30(22):5-12.
    [119]陈荔,刘会金,陈格桓.多回直流输电系统稳定性研究.电力自动化设备,2005,25(8):47-49.
    [120]卢睿,潘武略,李晓坷,等.多馈入直流对华东电网稳定性影响研究.华东电力,2005,33(11):4-8.
    [121]杨秀,陈鸿煜.多馈入直流输电系统故障对上海电网暂态稳定性影响的仿真研究.华东电力,2007,35(6):26-28.
    [122]李峰,管霖,钟杰峰,等.广东交直流混合电网的运行稳定性研究.电网技术,2005,29(11):1-4,35.
    [123]徐政,杨靖萍,高慧敏.南方电网多直流落点系统稳定性分析.高电压技术,2004,30(11):21-23,26.
    [124]荆勇,侯卫东,黄蔚亮.南方电网西电东送交直流混合输电系统安全稳定性分析.中国电力,2004,37(3):10-13.
    [125]管秀鹏,孙元章,赵国梁,等.南方电网西电东送暂态功率传输极限研究.电网技术,2004,28(2):1-5.
    [126]陈虎,贺洋,张英敏,等.四川电网多送出直流输电系统交互影响分析.电力系统及其自动化学报,2011,23(4):21-26.
    [127]董俊,束洪春,司大军,等.特高压远距离大容量云电送粤中的稳定问题研究.电网技术,2006,30(24):10-]5.
    [128]周保荣,金小明,吴小辰,等.特高压直流对交直流并联电网安全稳定影响.南方电网技术,2010,4(2):31-34.
    [129]王晓晖,杨增辉,郭明星,等.特高压直流接入对华东受端交流系统稳定性影响的研究. 华东电力,2009,37(1):86-90.
    [130]齐旭,曾德文,史大军,等.特高压直流输电对系统安全稳定影响研究.电网技术,2006,30(2):1-6.
    [131]荆勇,任震,湛军,等.天广交直流并联系统运行稳定性的研究.中国电力,2002,35(1):46-49.
    [132]汤涌,刘泽洪,刘增煌,等.天广交直流电网安全稳定控制系统研究之一——稳定性分析.电网技术,1998,22(2):1-5,15.
    [133]汤涌,刘泽洪,刘增煌,等.天广交直流电网安全稳定控制系统研究之二——稳定控制系统研究.电网技术,1998,22(3):19-23,28.
    [134]李新年,李涛,王晶芳,等.云广+800kV特高压直流对南方电网稳定性的影响.电网技术,2009,33(20):21-26.
    [135]原蔚鹏,张尧.多馈入直流线路的交直流混合电网静态电压稳定性研究.中国电力,2006,39(7):35-39.
    [136]邵瑶,汤涌,郭小江,等.多直流馈入华东受端电网暂态电压稳定性分析.电网技术,2011,35(12):50-55.
    [137]莫琦,张尧,武志刚,等.交直流互联系统暂态电压稳定问题仿真分析.电力系统及其自动化学报,2006,18(6):87-90,95.
    [138]廖民传,蔡广林,张勇军.交直流混合系统受端电网暂态电压稳定分析.电力系统保护与控制,2009,37(10):1-4,18.
    [139]赵国梁,孙元章,程林,等.南方电网动态电压稳定对其西电东送能力的影响.电网技术,2004,28(14):1-5.
    [140]杨雄平,罗向东,李扬絮,等.南方电网直流闭锁故障时受端系统电压稳定问题分析.电力系统保护与控制,2008,36(22):40-43.
    [141]束洪春,孙士云,张加贝,等.云电送粤交直流混联系统全过程动态电压稳定研究.中国电力,2008,41(10):14.
    [142]白岩,陈辉祥,王仲鸿.直流双极闭锁故障下提高暂态电压稳定性策略探讨.电力系统自动化,2006,30(15):93-95.
    [143]毛晓明.大规模交直流电力系统的稳定性与协调控制研究.广州:华南理工大学,2002.
    [144]段献忠.电压稳定问题的机理和建模及适用算法的研究.武汉:华中理工大学,1992.
    [145]林伟芳,汤涌,卜广全.多馈入交直流系统短路比的定义和应用.中国电机工程学报,2008,28(31):1-8.
    [146]林伟芳,汤涌,郭小江.多馈入交直流系统短路比影响因素分析.电网技术,2011,35(8):64-68.
    [147]陈文滨,张尧,谢惠藩.UHVDC故障下紧急直流功率支援方案研究.电力系统及其自动化学报,2010,22(6):113-118.
    [148]王珂,杨胜春,姚建国,等.考虑无功功率协调控制的并行直流系统紧急功率支援.电力系统自动化,2011,35(18):103-107.
    [149]徐政,高慧敏,杨靖萍.南方电网中直流紧急功率调制的作用.高电压技术,2004,30(11):24-26.
    [150]杨卫东,薛禹胜,荆勇,等.南方电网中直流输电系统对交流系统的紧急功率支援.电力系统自动化,2003,27(17):68-72.
    [151]陈汉雄,莫骏.双侧频率调制改善特高压直流输电系统暂态稳定性研究.中国电力,2009,42(2):34-38.
    [152]谢惠藩,张尧,夏成军.特高压紧急直流功率支援策略研究.电力自动化设备,2008,28(8):1-7.
    [153]许德操.多回送出直流输电对交流系统影响的研究.北京:华北电力大学,2007.
    [154]余涛,沈善德,任震.华中—华东多回HVDC紧急功率转移控制的研究.电网技术,2004,28(12):1-4,19.
    [155]杨卫东.多馈入直流输电系统的控制策略研究.杭州:浙江大学,2001.
    [156]束洪春,董俊,孙士云,等.直流调制对南方电网交直流混联输电系统暂态稳定裕度的影响.电网技术,2006,30(20):29-33.
    [157]荆勇,杨晋柏,李柏青,等.直流调制改善交直流混联系统暂态稳定性的研究.电网技术,2004,28(10):1-4.
    [158]李刚,刘晓瑞,赵强,等.直流调制技术在西北电网应用的可行性研究.电网与清洁能源,2010,26(5):39-44.
    [159]徐梅梅,李兴源,王渝红,等.德宝直流调制对四川电网阻尼特性的影响.电力系统保护与控制,2010,38(23):141-146.
    [160]杨卫东,徐政,韩祯祥.混合交直流电力系统的非线性调制策略.中国电机工程学报,2002,22(7):1-6.
    [161]吴华坚,王渝红,李兴源,等.基于综合性能指标的交直流混合系统直流调制研究.电力系统保护与控制,2010,38(22):68-73.
    [162]朱浩骏,兰洲,蔡泽祥,等.交直流互联系统鲁棒自适应直流功率调制.电力系统自动化,2006,30(7):21-26.
    [163]荆勇,洪潮,杨晋柏,等.直流调制抑制南方电网区域功率振荡的研究.电网技术,2005,29(20):53-56.
    [164]刘书棠.信号与系统.西安:西安交通大学出版社,1998.
    [165]王梅义.大电网事故分析与技术应用.北京:中国电力出版社,2008.
    [166]国家电力调度通信中心.电网典型事故分析(1999-2007).北京:中国电力出版社,2008.
    [167]韩水,苑舜,张近珠.国外典型电网事故分析.北京:中国电力出版社,2005.
    [168]US-Canada Power System Outage Task Force. Final report on the August 14,2003 blackout in the United States and Canada:causes and recommendations[R].2004.
    [169]Larsson S, Danell A. The blackout in southern Sweden and eastern Denmark, September 23, 2003. Power systems conference and exposition,2006:309-313.
    [170]Union for the Coordination of Electricity Transmission (UCTE). Interim report of the investigation committee on the 28 September 2003 blackout in Italy[R],.
    [171]Union for the Coordination of Electricity Transmission (UCTE). UCTE released detailed interim report on the disturbances of 4 Nov[R].
    [172]周孝信,郑健超,沈国荣,等.从美加东北部电网大面积停电事故中吸取教训.电网技术,2003,27(9):1-1.
    [173]胡学浩.美家联合电网大面积停电事故的反思和启示.电网技术,2003,27(9):72-76.
    [174]印永华,郭剑波,赵建军,等.美加“8·14”大停电事故初步分析以及应吸取的教训.电网技术,2003,27(10):8-11,16.
    [175]薛禹胜.综合防御由偶然故障演化为电力灾难——北美“8·14”大停电的启示.电力系统自动化,2003,27(18):1-5,37.
    [176]甘德强,胡江溢,韩祯祥.2003年国际若干停电事故思考.电力系统自动化,2004,28(4):1-5.
    [177]何大愚.一年以后对美加“8·14”大停电事故的反思.电网技术,2004,28(21):1-5.
    [178]唐葆生.伦敦南部地区大停电及其教训.电网技术,2003,27(11):1-5,12.
    [179]鲁顺,高立群,王坷,等.莫斯科大停电分析及启示.继电器,2006,34(16):27-31,67.
    [180]葛睿,董昱,吕跃春.欧洲“11·4”大停电事故分析及对我国电网运行工作的启示.电网技术,2007,31(3):1-6.
    [181]李春艳,孙元章,陈向宜,等.西欧“11·4”大停电事故的初步分析及防止我国大面积停电事故的措施.电网技术,2006,30(24):16-21.
    [182]李再华,白晓民,丁剑,等.西欧大停电事故分析.电力系统自动化,2007,31(1):1-3,32.
    [183]高翔,庄侃钦,孙勇.西欧电网“11·4”大停电事故的启示.电网技术,2007,31(1):25-31.
    [184]林伟芳,孙华东,汤涌,等.巴西大停电事故分析及启示.电力系统自动化,2010,34(7):1-5.
    [185]陈亦平,洪军.巴西“1 1·10”大停电原因分析及对我国南方电网的启示.电网技术,2010,34(5):77-82.
    [186]林伟芳,汤涌,孙华东,等.巴西“2·4”大停电事故及对电网安全稳定运行的启示.电力系统自动化,2011,35(9):1-5.
    [187]袁季修.防御大停电的广域保护和紧急控制.北京:中国电力出版社,2007.
    [188]梅生伟,张雪敏,薛安成.电力系统自组织临界特性与大电网安全.北京:清华大学出 版社,2009.
    [189]Home P. Edge overload breakdown in evolving networks. Physical Review E,2002,66(2): 036119.1-036119.7.
    [190]Home P, Kim B J. Vertex overload breakdown in evolving networks. Physical Review E, 2002,65(1):066109.1-066109.8.
    [191]Home P, Kim B J, Yoon C N, et al. Attack Vulnerability of complex networks. Physical Review E,2002,65(1):056109.1-056109.14.
    [192]Lai Y C, Motter A E, Nishikawa T. Attacks and cascades in complex networks. Lecture Notes in Physics,2004,650(1):299-310.
    [193]Motter A E, Lai Y C. Cascade-based attacks on complex networks. Physical Review E,2002, 66(2):065102.1-065102.4.
    [194]Zhao L, Park K, Lai Y C. Attack Vulnerability of scale-free networks due to cascading breakdown. Physical Review E,2004,70(3):035101.1-035101.4.
    [195]Cructiti P, Latora V, Marchiori M. Model for cascading failures in complex networks. Physical Review E,2004,69(4):045101.1-045101.4.
    [196]Dobson I, Chen J, Thorp J S, et al. Examining criticality of blackouts in power system models with cascading events. Hawaii International Conference on System Sciences,2002.
    [197]Dobson I, Carreras B A, Newman D E. A probabilistic loading-dependent model of cascading failure and possible implications for blackouts. Hawaii International Conference on System Sciences,2003.
    [198]Dobson I, Carreras B A, Newman D E. A loading-dependent model of probabilistic cascading failure. Probability in the Engineering and Informational Sciences,2005,19(1): 15-32.
    [199]Dobson I, Carreras B A, Newman D E. A branching process approximation to cascading load-depandent system failure. Hawaii International Conference on System Sciences,2004.
    [200]Dobson I, Carreras B A, Newman D E. A criticality approach to monitoring cascading failure risk and failure propagation in transmission systems. Electricity Transmission in Deregulated Markets, Conference at Carnegie-Mellon University,2004.
    [201]Dobson I, Carreras B A, Newman D E. Branching process models for the exponentially increasing portions of cascading failure blackouts. Hawaii International Conference on System Sciences,2005.
    [202]Dobson I, Carreras B A, Lynch V E, et al. An initial model for complex dynamics in electric power system blackouts. Hawaii International Conference on System Sciences,2001.
    [203]Carreras B A, Lynch V E, Dobson I, et al. Modeling blackout dynamics in power transmission networks with simple structure. Hawaii International Conference on System Sciences,2001.
    [204]Carreras B A, Lynch V E, Newman D E, et al. Dynamics, criticality and self-organization in a model for blackouts in power transmission systems. Hawaii International Conference on System Sciences,2002.
    [205]Carreras B A, Lynch V E, Dobson I, et al. Complex dynamics of blackouts in power transmission systems. Chaos,2004,14(3):643-652.
    [206]Carreras B A, Lynch V E, Dobson I, et al. Critical points and transitions in an electric power transmission model for cascading failure blackouts. Chaos,2002,12(4):985-994.
    [207]Chen J, Thorp J S, Dobson I. Cascading dynamics and mitigation assessment in power system disturbances via a hidden failure model. International Journal of Electrical Power and Energy Systems,2005,27(4):318-326.
    [208]Tamaronglak S. Analysis of power system disturbances due to relay hidden failures. Virginia Polytechnic and State University, Blacksburg, Virginia,1994.
    [209]Phadke A G, Thorp J S. Expose hidden failures to prevent cascading outages. IEEE Computer Application in Power,1996,9(3):20-23.
    [210]Nedic D P, Dobson I, Kirschen D S, et al. Criticality in a cascading failure blackout model. Power System Computation Conference,2005.
    [211]Rios M A, Kirschen D S, Jayaweer A D, et al. Value of security:modeling time dependent phenomena and weather conditions. IEEE Transactions on Power Systems,2002,17(3): 543-548.
    [212]Kirschen D S, Jayaweer A D, Nedic D P, et al. A probabilistic indicator of system stress. IEEE Transactions on Power Systems,2004,19(3):1650-1657.
    [213]曹一家,郭剑波,梅生伟,等.大电网安全性评估的系统复杂性理论.北京:清华大学出版社,2010.
    [214]韩祯祥,曹一家.电力系统的安全性及防治措施.电网技术,2004,28(9):1-6.
    [215]陈为化,江全元,曹一家,等.基于风险理论的复杂电力系统脆弱性评估.电网技术,2005,29(4):12-17.
    [216]成思危,冯芷艳.复杂性科学探索.北京:民主与建设出版社,1999.
    [217]戴汝为.关于“复杂性”的研究—一门21世纪的科学.科学、前沿与未来.北京:科学出版社,1998.
    [218]Bak P. How Nature Works:the Science of Self-Organized Criticality. New York:Copernicus Press,1996.
    [219]Bak P, Chen K. Self-organized criticality. Scientific American,1991,264(1):26-33.
    [220]Bak P. Self-Organized Criticality. Cambridge:Cambridge University Press,1998.
    [221]Bak P, Tang C, and Wiesenfeld K. Self-organized criticality:an explanation of 1/f noise. Physical Review Letters,1987,59(1):381-384.
    [222]Carreras B A, Newman D E, Dobson I, et al. Initial evidence for self-organized criticality in electric power system blackouts. Hawaii International Conference on System Sciences, 2000.
    [223]Carreras B A, Newman D E, Dobson I, et al. Evidence for self-organized criticality in electric power system blackouts. Hawaii International Conference on System Sciences, 2001.
    [224]Carreras B A, Newman D E, Dobson I, et al. Evidence for self-organized criticality in a time series of electric power system blackouts. IEEE Transactions on Circuits and Systems,2004, 51(9):1733-1740.
    [225]于群,郭剑波.中国电网停电事故统计与自组织临界性特征.电力系统自动化,2006,30(2):16-21.
    [226]于群,郭剑波.我国电力系统停电事故自组织临界性的研究.电网技术,2006,30(6):1-5.
    [227]刘映尚,吴文传,冯永青,等.基于自组织临界理论的南方电网停电事故宏观规律研究.中国电力,2007,40(7):37-41.
    [228]IEEE PES CAMS Task Force on Understanding, Prediction, Mitigation and Restoration of Cascading Failures. Initial review of methods for cascading failure analysis in electric power transmission systems. IEEE Power Engineering Society General Meeting,2008.
    [229]IEEE PES CAMS Task Force on Understanding, Prediction, Mitigation and Restoration of Cascading Failures. Vulnerability assessment for cascading failures in electric power systems. IEEE Power and Energy Society Power Systems Conference and Exposition,2009.
    [230]Mei S, Ni Y, Wang G, et al. A study of self-organized criticality of power system under cascading failures based on AC-OPF with voltage stability margin. IEEE Transactions on Power Systems,2008,23(4):1719-1726.
    [231]Wierzbicki K R, Dobson I. An approach to statistical estimation of cascading failure propagation in blackouts. International Conference on Critical Infrastructures,2006.
    [232]Dobson I, Wierzbicki K R, Carreras B A, et al. An estimator of propagation of cascading failure. Hawaii International Conference on System Sciences,2006.
    [233]Mei S, He F, Zhang X, et al. An improved OPA model and blackout risk assessment. IEEE Transactions on Power Systems,2009,24(2):814-823.
    [234]Dobson I, Newman D E, Carreras B A, et al. An initial complex systems analysis of the risks of blackouts in power transmission systems. Power Systems and Communications Infrastructures for the future,2002.
    [235]Kim J, Dobson I. Approximating a loading-dependent cascading failure model with a branching process. IEEE Transactions on Reliability,2010,59(4):691-699.
    [236]Carreras B A, Lynch V E, Newman D E, et al. Blackout mitigation assessment in power transmission systems. Hawaii International Conference on System Science,2003.
    [237]Dobson I, Carreras B A, Lynch V E, et al. Complex systems analysis of series of blackouts: cascading failure, critical points, and self-organization. Chaos,2007,17(2):
    [238]Carreras B A, Lynch V E, Newman D E, et al. Dynamical and probabilistic approaches to the study of blackout vulnerability of the power transmission grid. Hawaii International Conference on System Sciences,2004.
    [239]Dobson I, Carreras B A, Lynch V E, et al. Estimating failure propagation in models of cascading blackouts. International Conference on Probability Methods Applied to Power Systems,2004.
    [240]Newman D E, Carreras B A, Lynch V E, et al. Evaluating the effect of upgrade, control and development strategies on robustness and failure risk of the power transmission grid. Hawaii International Conference on System Sciences,2008.
    [241]Newman D E, Carreras B A, Lynch V E, et al. Exploring complex systems aspects of blackout risk and mitigation. IEEE Transactions on Reliability,2011,60(1):134-143.
    [242]Ren H, Dobson I, Carreras B A. Long-term effect of the n-1 criterion on cascading line outages in an evolving power transmission grid. IEEE Transantions on Power Systems, 2008,23(3):1217-1225.
    [243]Newman D E, Nkei B, Carreras B A, et al. Risk assessment in complex interacting infrastructure systems. Hawaii International Conference on System Science,2005.
    [244]Duan X, Su S. Self-organized criticality in time series of power systems fault, its mechanism, and potential application. IEEE Transactions on Power Systems,2010,25(4): 1857-1864.
    [245]Newman D E, Carreras B A, Lynch V E, et al. The impact of various upgrade strategies on the long-term dynamics and robustness of the transmission grid. Electricity Transmission in Deregulated Markets,2004.
    [246]Dobson I, Wierzbicki K. R, Kim J, et al. Towards quantifying cascading blackout risk. Bulk Power System Dynamics and Control,2007.
    [247]Ren H, Dobson I. Using transmission line outage data to estimate cascading failure propagation in an electric power system. IEEE Transactions on Circuits and Systems,2008, 55(9):927-931.
    [248]Dobson I. Where is the edge for cascading failure?:challenges and opportunities for quantifying blackout risk. IEEE Power Engineering Society General Meeting,2007.
    [249]Mei S, Xue A, Zhang X. On power system blackout modeling and analysis based on self-organized criticality. Science in China, Series E:Technology Sciences,2008,51(2): 209-219.
    [250]邓慧琼,艾欣,赵亮,等.大停电自组织临界特征的若干问题探讨.电网技术,2007,31(8):42-46.
    [251]曹一家,江全元,丁理杰.电力系统大停电的自组织临界现象.电网技术,2005,29(15):1-5.
    [252]易俊,周孝信,肖逾男.电力系统自组织临界特性分析与仿真模型.电网技术,2008,32(3):7-12.
    [253]赵兴勇,张秀彬,何斌.电网大停电自组织临界性的概率统计分析法.电网技术,2008,32(20):60-63.
    [254]于群,郭剑波.电网停电事故的自组织临界性及其极值分析.电力系统自动化,2007, 31(3):1-3,90.
    [255]梁才,刘文颖,温志伟,等.电网组织结构对其自组织临界性的影响.电力系统保护与控制,2010,38(20):6-11.
    [256]于群,曹娜,郭剑波.负载率对电力系统自组织临界状态的影响分析.电力系统自动化,2012,36(1):24-27,37.
    [257]夏德明,梅生伟,侯云鹤.基于OTS的停电模型及其自组织临界性分析.电力系统自动化,2007,31(12):12-18,91.
    [258]何飞,梅生伟,薛安成,等.基于直流潮流的电力系统停电分布及自组织临界性分析.电网技术,2006,30(14):7-12.
    [259]梅生伟,翁晓峰,薛安成,等.基于最优潮流的停电模型及自组织临界性分析.电力系统自动化,2006,30(13):1-5,32.
    [260]王刚,梅生伟,胡伟.计及无功/电压特性的停电模型及自组织临界性分析.电力系统自动化,2007,31(1):9-13,69.
    [261]于群,郭剑波.自组织临界性与大停电事故预测.中国电力,2011,44(7):21-25.
    [262]于洋,黄民翔,辛焕海,等.基于动态仿真的连锁故障分析.电力系统自动化,2008,32(20):15-21.
    [263]Arabi S, Kundur P, Sawada J H. Appropriate HVDC transmission simulation models for various power system stability studies. IEEE Transactions on Power Systems,1998,113(4): 1292-1297.
    [264]Johnson B K. HVDC models used in stability studies. IEEE Transactions on Power Delivery, 1989,4(2):1153-1163.
    [265]Siemens Energy, Inc. Program Application Guide. PSS(?)E 32.0.5 Online Documentation, 2010.
    [266]Susuki Y, Hikihara T, Chiang H D. Stability boundaries analysis of electric power system with DC transmission based on differential-algebraic equation system. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences,2004, E87-A(9): 2339-2346.
    [267]Fernandopulle N, Alden R. Domain of stability of AC-DC power systems. Canadian Journal of Electrical and Computer Engineering,2007,32(4):215-220.
    [268]任震,冉立,李正然.交直流并联系统可靠性与概率动态安全分析.华南理工大学学报,1997,25(6):1-11.
    [269]丁明,黄凯,李生虎.交直流混合系统的概率稳定性分析.中国电机工程学报,2002,22(8):11-16.
    [270]陈修宇,韩民晓,刘崇茹.直流控制方式对多馈入交直流系统电压相互作用的影响.电力系统自动化,2012,36(2):58-63.
    [271]刘晓明,慈文斌,刘玉田.直流控制方式对受端电网电压稳定性影响.电力自动化设备, 2011,31(4):69-73,77.
    [272]吴红斌,丁明,李生虎.直流输电模型和调节方式对暂态稳定影响的统计研究.中国电机工程学报,2003,23(10):32-37.
    [273]杨卫东,薛禹胜,荆勇,等.直流系统的控制策略对南方电网暂态稳定性的影响.电力系统自动化,2003,27(18):57-60.
    [274]张建设,张尧,张志朝,等.直流系统控制方式对大扰动后交直流混合系统电压和功率恢复的影响.电网技术,2005,29(5):20-24.
    [275]高磊,张文朝,濮钧,等.华北—华中—华东特高压联网大区模式下低频振荡模式的频率特性.电网技术,2011,35(5):15-20.
    [276]张文亮,周孝信,印永华,等.华北—华中—华东特高压同步电网构建和安全性分析.中国电机工程学报,2010,30(16):1-5.
    [277]印永华.特高压大电网发展规划研究.电网与清洁能源,2009,25(10):1-3.
    [278]张晋华,蒋卫平,印永华,等.特高压规划电网安全稳定性研究.中国电机工程学报,2008,28(22):64-68.
    [279]舒印彪,张文亮,周孝信,等.特高压同步电网安全性评估.中国电机工程学报,2007,27(34):1-6.
    [280]印永华,郭强,张运洲,等.特高压同步电网构建方案论证及安全性分析.电力建设,2007,28(2):1-4.
    [281]赵良,郭强,覃琴,等.特高压同步电网稳定特性分析.中国电机工程学报,2008,28(34):47-51.
    [282]孙听,刘泽洪,印永华,等.中国特高压同步电网的构建以及经济型和安全性分析.电力建设,2007,28(10):7-11.
    [283]Liberzon D, Morse A S. Basic problems in stability and design of switched systems. Lecture notes,1999
    [284]Decarlo R A, Branicky M S, Pettersson S, et al. Perspectives and results on the stability and stabilizability of hybrid systems. Proceedings of the IEEE,2000,88(7):1069-1082
    [285]Scala M L, Trovato M, Antonelli C. On-line dynamic preventive control:An algorithm for transient security dispatch. IEEE Transactions on Power Systems,1998,13(2):601-608.
    [286]Gan D Q, Thomas R J, Zimmerman R D. Stability-constrained optimal power flow. IEEE Transactions on Power Systems,2000,15(2):535-540.
    [287]Xia Y, Chan K W, Liu M. Direct Nonlinear Primal-dual Interior-point Method for Transient Stability Constrained Optimal Power Flow. IEE Proceedings-Generation, Transmission and Distribution,2005,152(1):11-16.
    [288]Hakim L, Kubokawa J, Yuan Y, et al. A Study on the Effect of Generation Shedding to Total Transfer Capability by Means of Transient Stability Constrained Optimal Power Flow. IEEE Transactions on Power Systems,2009,24(1):347-355.
    [289]Anitha, Subramanian S, Gnanadass R. FDR PSO-based transient stability constrained optimal power flow solution for deregulated power industry. Electric Power Components and Systems,2007,35(11):1219-1232.
    [290]Milano F, Canizares C A, Invernizzi M. Voltage stability constrained OPF market models considering N-1 contingency criteria. Electric Power Systems Research,2005,74(1):27-36.
    [291]Lefebvre D, Moors C, Custem T V. Design of an undervoltage load shedding scheme for the Hydro-Quebec system. IEEE PES General Meeting,2003.
    [292]Xin H, Gan D, Huang Z, et al. Applications of stability-constrained optimal power flow in East China System. IEEE Transaction on Power Systems,2010,25(3):1423-1433.
    [293]刘辉,吴涛,李群炬,等.特高压交流示范工程功率摆动机理分析.中国电力,2010,43(7):9-13.
    [294]汤涌,孙华东,易俊,等.两大区互联系统交流联络线功率波动机制与峰值计算.中国电机工程学报,2010,30(19):1-6.
    [295]陈磊,刘辉,闵勇,等.两区域互联系统联络线功率波动理论理论分析.电网技术,2011,35(10):53-38.
    [296]洪峰,陈金富,段献忠,等.弱互联大区电网联络线功率振荡研究.中国电机工程学报,2011,31(10):46-51.
    [297]邹伯敏.自动控制理论.北京:机械工业出版社,2005.
    [298]袁季修.电力系统安全稳定控制.北京:中国电力出版社,1996.
    [299]张运洲.1000kV交流输电技术在我国的应用前景分析.中国电力,2007,40(7):1-4.
    [300]舒印彪.1000kV交流特高压输电技术的研究与应用.电网技术,2005,29(19):1-6.
    [301]舒印彪,刘泽洪,袁骏,等.2005年国家电网公司特高压输电论证工作综述.电网技术,2006,30(5):1-12.
    [302]郭建波,姚国灿,徐征雄,等.我国未来大区电网互联可能出现或应该注意的若干技术问题——全国联网和更高一级交流电压等级技术问题研究之一.电网技术,1998,22(6):63-67.
    [303]郭剑波,姚国灿,徐征雄,等.2020年以前我国电网出现更高一级交流电压等级的系统技术问题研究——全国联网和更高一级交流电压等级技术问题研究之二.电网技术,1998,22(7):62-64.
    [304]郭剑波,姚国灿,徐征雄,等.对未来电网互联和更高一级交流电压等级的判断和建议—全国联网和更高一级交流电压等级技术问题研究之三.电网技术,1998,22(8):72-78.
    [305]孙寿广.从负荷密度看我国电网互联格局.中国电力,1998,31(11):6-8.
    [306]徐博文.大区电网互联的几个重要问题.电网技术,1999,23(9):32-34.
    [307]张运洲.对我国特高压输电规划中几个问题的探讨.电网技术,2005,29(19):11-14.
    [308]沈根才.关于全国电力系统联网问题的一些思考.中国电力,1995,3:2-7.
    [309]刘肇旭.关于全国跨大区联网目标网架的设想.电网技术,1998,22(2):30-32.
    [310]蒙定中.建议直流远送/稳控互联各大区强化的同步网,避免全国1000kV联网.电力自动化设备,2007,27(5):13-22.
    [311]黄万永,霍继安,曾南超,等.跨省电网以直流相联是全国联网的最佳模式.电网技术,1999,23(1):
    [312]沈根才.论电网结构.中国电力,1996,29(12):3-8,71.
    [313]曾德文.全国电力系统联网的基本格局及其分析.中国电力,1999,32(10):29-33.
    [314]胡学浩,丁功扬.全国电网互联中采用高压直流输电方式时国外经验之借鉴.电网技术,1998,22(5):64-70.
    [315]曾德文.全国联网安全稳定及其相互影响研究.中国电力,2001,34(11):28-33.
    [316]郑美特.全国联网和大区形成主干网架的研究.电网技术,1999,23(1):.
    [317]曾德文.实现全国电网互联的基本原则和措施建议.中国电力,2000,33(7):38-41.
    [318]张文亮,于永清,李光范,等.特高压直流技术研究.中国电机工程学报,2007,27(22):1-7.
    [319]袁清云.特高压直流输电技术现状及在我国的应用前景.电网技术,2005,29(14):1-3.
    [320]周小谦.我国“西电东送”的发展历史、规划和实施.电网技术,2003,27(5):1-5,36.
    [321]张运洲.我国电网规划与发展中的几个具体问题.中国电力,2003,36(9):50-53.
    [322]郭强,张运洲,吕健.我国未来同步电网构建研究.电网技术,2005,29(22):14-18,60.
    [323]沈根才.正确规划电网结构,重视电网稳定性.电力系统自动化,2001,38-41.
    [324]徐博文.中国电网的发展及其决策问题.电网技术,1998,22(2):26-29.
    [325]郑宝森,郭日彩.中国互联电网的发展.电网技术,2003,27(2):1-3.
    [326]IEEE Guide for Planning DC Links Terminating at AC Locations Having Low Short-Circuit Capacities[S]. IEEE Std 1204-1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700