仁用杏‘围选1号’花期低温适应机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以8年生仁用杏(Prunus armeniaca Linn.)抗晚霜优异品种‘围选1号’花器官为试材,晚霜敏感品种‘龙王帽’花器官为对照,利用人工智能霜箱模拟自然霜降过程,研究了不同低温下花器官膜透性和膜脂过氧化、渗透调节物质含量、保护酶活性和抗氧化物质含量,内源激素含量及雌蕊在不同温度下蛋白组分的变化,探索了‘围选1号’花器官低温适应的生理机制和蛋白组学机制,研究结果表明:
     1.‘围选1号’花器官相对电导率、MDA含量、O-2产生速率、H2O2含量均随温度的下降而升高,-7℃时,‘围选1号’花瓣中相对电导率、MDA含量、O-2产生速率、H2O2含量分别为对照温度下的3.77倍、2.8倍、2.0倍、4.5倍,雄蕊分别为对照温度下的3.91倍、3.1倍、2.3倍、4.8倍,雌蕊分别为对照温度下的4.41倍、3.6倍、2.9倍、5.5倍。-7℃时,对照‘龙王帽’花瓣中相对电导率、MDA含量、O-2产生速率、H2O2含量分别为对照温度下的4.33倍、3.9倍、2.9倍、4.8倍,雄蕊分别为对照温度下的4.38倍、5.3倍、3.5倍、5.9倍,雌蕊分别为对照温度下的5.13倍、6.3倍、4.3倍、7.2倍。
     2.‘围选1号’花器官中可溶性糖和可溶性蛋白含量随温度的下降呈先升高后降低的变化趋势,脯氨酸含量则不断升高,-7℃时,‘围选1号’花瓣中可溶性糖、可溶性蛋白和脯氨酸含量分别为对照温度下的1.28倍、2.1倍、4.97倍,雄蕊分别为对照温度下的1.24倍、2.0倍、4.92倍,雌蕊分别为对照温度下的1.03倍、1.5倍、3.95倍。-7℃时,对照‘龙王帽’花瓣中可溶性糖、可溶性蛋白和脯氨酸含量分别为对照温度下的1.03倍、1.4倍、4.03倍,雄蕊分别为对照温度下的97%、1.2倍、4.0倍,雌蕊分别为对照温度下的63%、1.9倍、3.7倍。3.‘围选1号’花器官抗氧化酶sod、pod、cat、apx、dhar、gpx和gr活性均随温度的下降呈先升高后降低的变化趋势,-7℃时,不同花器官不同酶活性的变化大小不同,花瓣apx的活性最大,为对照温度下的2.49倍,雌蕊sod活性最小,为对照的76%,asa、dha、gsh、gssg中,除雌蕊中的gssg含量随温度的下降而降低以外,均随温度的下降先升高后降低,不同花器官不同抗氧化剂含量的变化不同,花瓣gsh的含量最大,为对照温度下的1.37倍,雌蕊gssg含量最小,为对照温度下的47%。同一抗氧化物质,在相同条件下,‘围选1号’花器官高于对照‘龙王帽’。4.‘围选1号’花器官内源激素中ga3含量随温度的下降先增加后减少,zt含量先升后降再升高后又降低,iaa含量不断下降,aba含量不断升高,-7℃时,‘围选1号’花瓣中ga3、zt、iaa和aba含量分别为对照温度下的61%、71%、33%、7.21倍,雄蕊分别为对照温度下的
     56%、85%、24%、6.36倍,雌蕊分别为对照温度下的54%、96%、18%、6.24倍。-7℃时,对照‘龙王帽’花瓣中ga3、zt、iaa和aba含量分别为对照温度下的56%、90%、30%、5.98倍,雄蕊分别为对照温度下的54%、84%、21%、5.73倍,雌蕊分别为对照温度下的52%、80%、14%、4.74倍。5.采用tca/丙酮沉淀法和tris-hcl提取法提取‘围选1号’雌蕊总蛋白,获得的双向电泳图谱中,均有颜色较深的纵条纹、蛋白点大部分聚集在图谱的上部,分别得到937个蛋白点和951个蛋白点,利用酚-甲醇/醋酸铵沉淀法提取雌蕊总蛋白,所获得的图谱中,无横纵条纹、分辨率高、蛋白点分布均匀,获得了1160个清晰的蛋白点。6.18℃下,在‘围选1号’雌蕊和‘龙王帽’雌蕊中发现了56个差异蛋白质,10个蛋白质在‘围选1号’雌蕊中的表达量高于‘龙王帽’,其中有4个蛋白质参与信号转导,4个蛋白质参与其他代谢,2个功能未知蛋白。46个蛋白质在‘围选1号’雌蕊中的表达量低于‘龙王帽’,其中18个蛋白质参与蛋白质的合成、运输与分解代谢,11个蛋白质参与核糖体的构成,6个蛋白质参与糖类化合物的代谢,4个蛋白质参与信号转导,2个蛋白质参与三羧酸循环,5个蛋白质参与其他代谢过程。7.轻度低温胁迫下(过冷却点之前),‘围选1号’与‘龙王帽’雌蕊表达量存在差异的蛋白质有37个。‘围选1号’雌蕊中有27个蛋白质表达量高于‘龙王帽’,其中10个蛋白质参与蛋白质的合成、运输与分解,6个蛋白质参与糖类化合物的代谢,2个蛋白质参与脂质代谢,2个蛋白质参与信号转导,2个蛋白质参与过氧化氢的分解,7个蛋白质参与其他代谢过程。‘围选1号’雌蕊中有10个蛋白质表达量低于‘龙王帽’,其中5个蛋白质参与信号转导,2个蛋白质参与氨基酸的合成,3个蛋白质参与其他代谢过程。
     8.重度低温胁迫下(过冷却点之后),‘围选1号’与‘龙王帽’雌蕊表达量存在差异的蛋白质有23个。‘围选1号’雌蕊中有20个蛋白质的表达量高于‘龙王帽’,其中11个蛋白质参与蛋白质合成及分解代谢,4个蛋白质参与信号转导,5个蛋白质参与其他代谢过程。‘围选1号’雌蕊中有3个蛋白质的表达量低于‘龙王帽’,分别参与mRNA的剪切、脂肪酸代谢和ATP水解耦合质子运输过程。
In order to explore the low-temperature tolerant physiologicalmechanism and molecular mechanisms that kernel apricot‘weixuan1hao’flower organ resist the late spring frost, the artificial intelligent freezerchamber were employed on which to simulate the process of nature hoarfrostfalls,studied the changes of membrane permeablity and membrane lipidperoxidation,the changes of osmoregulation substance content,the changesof protective enzymes activity and antioxidant content,the changes of theendogenous hormones content in flower organ,and different proteins in pistilsof the frost resistant cultivar ‘weixuan1hao’(8-years-old) compared with thefrost sensitive cultivar ‘longwangmao’(8-years-old) under low temperaturestresses. The results showed that:
     1. The relative electrolytic leaking、MDA content、O-2generation arte andH2O2content in ‘weixuan1hao’flower organ increased with the decreasingtemperature. At-7℃, the relative electrolytic leaking、MDA content、 O-2generation arte and H2O2content in ‘weixuan1hao’petals were respectively3.7times,2.8times,2times,4.5times more than those at controlled temperature,were3.91times、3.1times、2.3times、4.8times more than those at controlledtemperature in ‘weixuan1hao’ stamens, and were4.41times、3.6times、2.9times、5.5times more than those at controlled temperature in ‘weixuan1hao’pistils. At-7℃, the relative electrolytic leakin、MDA content、O-2generationarte and H2O2content in ‘longwangmao’petals were respectively4.33times,3.9times,2.9times,4.8times more than those at controlledtemperature, were4.38times、5.3times、3.5times、5.9times more than those atcontrolled temperature in ‘weixuan1hao’ stamens, and were5.13times、6.3times、4.3times、7.2times more than those at controlled temperature in‘weixuan1hao’ pistils.
     2.The content of soluble protein and soluble sugar increased first and thendecreased in ‘weixuan1hao’flower organ with the decreasing temperature, andproline content increased with decreasing temperature. At-7℃, the content ofsoluble protein, soluble sugar and proline were respectively1.28times,2.1times,4.97times more than those at controlled temperature in‘weixuan1hao’petals, were1.24times、2.0times、4.92times more than thoseat controlled temperature in ‘weixuan1hao’ stamens, and were1.03times、1.5
     times、3.95times more than those at controlled temperature in‘weixuan1hao’ pistils. At-7℃, the content of soluble protein, soluble sugarand proline were respectively1.03times,1.4times,4.03times more than thoseat controlled temperature in ‘longwangmao’petals, were97%、1.2times、4.0times more than those at controlled temperature in ‘longwangmao’ stamens,and were63%、1.9times、3.7times more than those at controlled temperaturein ‘longwangmao’ pistils.
     3.The activity of SOD、POD、CAT、APX、MDHA、GPX and GRincreased first and then decreased in ‘weixuan1hao’flower organ with thedecreasing temperature. At-7℃, the changes of enzyme activities were notthe same, APX activity in ‘weixuan1hao’ petals was the highest, was2.49times more than those at controlled temperature, SOD activity in‘weixuan1hao’pistils was lowest, reduced to47%.The content of AsA、DHA、GSH and GSSG were increased first and then decreased in‘weixuan1hao’flower organ with the decreasing temperature except GSSGcontent in ‘weixuan1hao’ pistils, GSSG content in ‘weixuan1hao’ pistildecreased with the decreasing temperature. GSH content in ‘weixuan1hao’petals was the highest, was1.37times more than those at controlledtemperature, GSSG content in ‘weixuan1hao’ pistils was lowest47%,The same antioxidant substances in ‘weixuan1hao’ flower organ was higher thanthat in ‘longwangmao’ flower organ under the same conditions.
     4.The GA3content increased first and then decreased,ZT contentincreased first and then decreased and then increased and decreased again,IAA content decreased, ABA content increased in ‘weixuan1hao’flowerorgan with the decreasing temperature.At-7℃, the content of GA3、ZT、IAAand ABA in ‘weixuan1hao’ petals were respectively61%、71%、33%、7.21times more than those at controlled temperature, were56%、85%、24%、6.36times more than those at controlled temperature in ‘weixuan1hao’stamens, and were54%、96%、18%、6.24times more than those at controlledtemperature in ‘weixuan1hao’ pistils..At-7℃, the content of GA3、ZT、IAAand ABA in ‘longwangmao’ petals were respectively56%、90%、30%、5.98times more than those at controlled temperature, were54%、84%、21%、5.73times more than those at controlled temperature in ‘longwangmao’stamens, and were52%、80%、14%、4.74times more than those at controlledtemperature in ‘longwangmao’ pistils.
     5.There were darker vertical stripes and low resolution in2-DE gels byTCA/acetone precipitation method and Tris-HCl extraction method, mostspots clustered in the upper of the gels,the protein spots in2-DE gel by henol
     -methanol were clear and round, moreover, the spots could be betterspread out and easily identified. we got937protein spots by TCA/acetoneprecipitation method,951protein spots by Tris-HCl extraction method,1160protein spots by phenol-methanol/ammonium acetate precipitation method.
     6.There are56differential proteins identified in ‘weixuan1hao’ pistilsand ‘longwangmao’ pistils under room temperature (18℃). The expression of10proteins in in ‘weixuan1hao’ pistils were more than thosein‘longwangmao’,4proteins involed in signal transduction,4proteins involedin other metabolic process,2proteins were unknown protein. The expressionof46proteins in ‘weixuan1hao’ pistils were lower than those in‘longwangmao’,18proteins involved in protein synthesis, transport anddecomposition metabolism,11proteins involved in ribosome constitution,6proteins involved in carbohydrate metabolism,4proteins involed in signaltransduction,6proteins involved three tricarboxylic acid cycle,5proteinsinvoled in other metabolic process,
     7.There are37differential proteins identified in ‘weixuan1hao’ pistilsand ‘longwangmao’ pistils under under mild low temperature stress(beforesuper-cooling point). The expression of27proteins in ‘weixuan1hao’ pistils were more than those in‘longwangmao’,10proteins involved in proteinsynthesis, transport and decomposition metabolism,6proteins involved incarbohydrate metabolism,2proteins involved in lipid metabolism,2proteinsinvolved in signal transduction,2proteins involved in hydrogendecomposition,7proteins involed in other metabolic process. The expressionof10proteins in ‘weixuan1hao’ pistils were lower than those in‘longwangmao’,5proteins involed in signal transduction,2proteins involvedin amino acid synthesis,5proteins involed in other metabolic process.
     8.There are23differential proteins identified in ‘weixuan1hao’ pistilsand ‘longwangmao’ pistils under under severe low temperature stress(aftersuper-cooling point).The expression of20proteins in ‘weixuan1hao’ pistilswere more than those in‘longwangmao’,11proteins involved in proteinsynthesis, transport and decomposition metabolism,4proteins involved insignal transduction,5proteins involed in other metabolic process.Theexpression of3proteins in ‘weixuan1hao’ pistils were lower than those in‘longwangmao’,1protein involed in nuclear mRNA splicing,1proteinsinvolved in Fatty acid metabolism,1protein involed in ATP hydrolysiscoupled proton transport.
引文
[1]卢存福.第七届国际植物抗寒会议概况[C].2004,617.
    [2]滕中华,周党卫,师生波等.青藏高原三种高寒植物的质膜透性变化与抗寒性的关系[J].中国草地,2001,23(4):37-47.
    [3]刘祖祺,张石城.植物抗性生理学[M].北京:中国农业出版社,1994,8-23.
    [4]孙中海.柑橘抗寒性与膜脂和脂肪酸组分的关系研究[J].武汉植物学研究,1990,8(1):79-85.
    [5]杨亚军,郑雷英,王新超.低温对茶树叶片膜脂脂肪酸和蛋白质的影响[J].亚热带植物科学,2005,34(l):5-9.
    [6]XuY. PaulS. Low temperature treatments induce an increase in the relativecontent of both linolenic And γ3-hexadecenoic acids in thylakoidmembrane Phosphatidylglycerol of squash cotyledons[J]. Plant and CellPhysiol,1997,38(5):611-618.
    [7]李玉梅.延边地区梨品种资源抗寒性测定及抗寒机理的研究[D].延边:延边大学,2005,6.
    [8]庞士锉.植物逆境生理学基础[M].哈尔滨:东北林业大学出版社,1990,4-9.
    [9]Steponkus PL. Role of the plasma membrane in freezing injury and coldacclimation[J]. Annu. Rev. Plant. Physiol,1984,35:543-584.
    [10]任雪,杨尧,杜兴翠等.阔叶麦冬对低温变化的生理响应[J].浙江农业科学,2012,2:180-183.
    [11]黄希莲,罗充,宋丽莎.低温胁迫对贵阳市9种绿篱植物抗寒性生理生化指标的影响[J].广东农业科学,2012,2:47-59.
    [12]何若锰.植物低温逆境生理[M].北京:中国农业出版社,1995.
    [13]陈娅娅.低温对三种玉兰生理特性影响的研究[D].太原:山西农业大学,2009.
    [14]利容千,王建波.植物逆境生理细胞及生理学研究[M].武汉:武汉人学出版社,2002.
    [15]HareP D,CressWA,VanStaden. Disseeting the roles of osmolyteaecumulation during stress[J]. Plant cell and environment,1998,21:535-554.
    [16]黄永红,陈学森,冯宝春.果树水分胁迫研究进展[J].山东农业大学学报,2005,36(3):481-484.
    [17]delaRochea IA,AndrewsaCJ,KatesbM. Changes in PhospholipidComposition of a winter Wheat Cultivar during Germination at2℃and24℃[J]. Plant physiol,1996,51:468-473.
    [18]罗新义,冯昌军,李红等.低温胁迫下肇东首糟SOD、脯氨酸活性变化初报[J].中国草地,2004,26(4):79-80.
    [19]范志强.不同温度低温处理对油菜抗寒性的影响[J].安徽农学通报,2011,17(22):18-20.
    [20]张勇,汤浩茹,罗娅等.低温锻炼对草莓组培苗抗寒性及抗氧化酶活性的影响[J].中国农学通报,2008,24(1):325-329.
    [21]李新国.钙信号系统调节柑橘抗寒生理生化机理的研究[D].武汉:华中农业大学,2006,20.
    [22]Manuel J,Reigosa Roger. Handbook of Plant EcophysiologyTechniques[M]. Dordrecht: Kluwer Academic Publishers,2001,365-383.
    [23]谢吉容,谈锋.自然降温过程中南方红豆杉叶片水分、渗透调节物质的动态变化与低温半致死温度的关系[J].西南民族学院学报(自然科学版),2002,28(l):61-64.
    [24]王红星,古红梅,周琳等.不同生长时期叶片中可溶性糖含量与抗寒性关系[J].周口师范学院学报,2003,20(5):51-52.
    [25]魏来.翅荚木抗寒生理及其鉴定指标的研究[D].长沙:中南林业科技大学硕士论文,2007,19.
    [26]朱政,蒋家月,江昌俊等.低温胁迫对茶树叶片SOD、可溶性蛋白和可溶性糖含量的影响[J].安徽农业大学学报,2011,38(1):24-26.
    [27]崔红,于晶,高秀芹等.苍3个紫斑牡丹品种的抗寒生理特性研究[J].东北农业大学学报.2009,40(7):24-27.
    [28]何开跃,李晓储,黄利斌等.3种含笑耐寒生理机制研究[J].南京林业大学学报,2004,28(4):62-64.
    [29]陶雅.22个国内外苜蓿品种抗寒性评价[D].北京:中国农业科学院硕士论文,2008,41.
    [30]李斌,刘立强,罗淑萍等.低温胁迫对扁桃花芽抗寒性的影响[J].新疆农业大学学报,2012,35(1):13-17.
    [31]陈曦,周玉兰,刘志洋等.六种宿根花卉抗寒生理指标的比较研究[J].东北农业大学学报,2009,40(9):21-25.
    [32]简令成,孙德兰.不同柑桔种类叶片组织的细胞结构与抗寒性的关系[J].园艺学报,1986,13(3):163-168.
    [33]赵丽辉,黄国辉,聂小兰等.不同沙棘品种的抗逆性与形态特性研究[J].东北师范大学学报(自然科学版),2002,34(4):70-74.
    [34]Briggs D R, Siminovitch D. The chemistry of the living bark of theblack locust tree in relation to frost hardiness. II. Seasonal varation in theelectrophesis Pattern of the water soluble Proteins of the bark[J]. ArchBiochem,1949,23:8-11.
    [35]杜永吉,于磊,孙吉雄等.结缕草3个品种抗寒性的综合评价[J].草业学报,2008,17(3):6-16.
    [36]卢太白,吕金印,陆和平等.越冬及返青期冬小麦叶片中可溶性蛋白质、氨基酸含量与抗寒性的关系[J].西北农业学,2009,18(1):56-59.
    [37]王红星.寒胁迫对小麦幼苗生理生化特性的影响[J].周口师范高等专科学校学报,2002,17(2):4-5.
    [38]江福英.植物低温胁迫及其抗性生理[J].福建农业学报,2002,17(3):190-195.
    [39]黄小云,向邓云,谈锋.自然降温过程中草珊瑚抗寒性研究—水分、渗透调节物的动态变化与低温半致死温度的关系[J].重庆师范学院学报(自然科学版),2002,19(l):66-69.
    [40]高志红,章镇,韩振海.果梅种质枝条抗寒性鉴定[J].果树学报,2005,22(6):705-711.
    [41]严寒静,谈锋.桅子叶片生理特性与抗寒性的关系[J].植物资源与环境学报,2005,14(4):21-24.
    [42]陈杰忠,徐春香,梁立峰.低温对香蕉叶片中蛋白质及脯氨酸的影响[J].华南农业大学学报,1999,20(3):54-58.
    [43]Breusegem F. van,Slooten L,Stassart J M. Effects of over production oftobacco MnSOD in maize chloroplasts on foliar tolerace to cold and oxidativestress[J]. Exp. Bot,1999,50:71-78.
    [44]杜秀敏,殷文漩,赵彦修等.植物中活性氧的产生及清除机制[J].生物工程学报,2001,17(2):121-125.
    [45]Lee D H,Lee C B. Chilling stress-induced changes of antioxidantenzymes in the leaves of cucumber in gel enzyme activity assays[J]. PlantSci,2000,159:75-85.
    [46]Ruth G A,Neval E,Lenwood S H. Role of superoxide dismutases (SOD)in controlling oxidative stress in plants [J]. Journal of Experimental Botany,2002,53(372):1331-1341.
    [47]杨晓宇.扁桃枝叶生理指标与抗寒性相关性研究[D].太原:山西大学,2010,38.
    [48]张妍,冯连荣,宋立志等.植物抗寒指标的种类及测试原理[J].中国林副特产,2011,4:99-101.
    [49]陈卫国,刘勇,周冀衡.低温胁迫对烟草膜保护酶系统的影响[J].安徽农业科学,2011,39(7):3978-3980.
    [50]胡建芳,陈建中,姚延梼.杨树保护酶活性与抗寒性关系研究[J].天津农业科学,2011,17(6):18-20.
    [51]Nagalakshmi N and Prasad M N V. Responses of glutathione cycleenzymes and glutathione metabolism to copper stress in Scenedesmusbijugatus[J]. Plant Science,2001,160(2):291-299.
    [52]JinY H,TaoD L,HaoZ Q. Environmental stresses and red oxstatus ofaseorbate [J]. AetaBotaniea sinica,2003,45:795-801.
    [53]罗娅,汤浩茹,张勇.低温胁迫对草毒叶片SOD和AsA-GSH循环酶系统的影响[J].园艺学报,2007,34(6):1405-1410.
    [54]高俊杰,秦爱国,于贤昌.低温胁迫对嫁接黄瓜叶片抗坏血酸一谷肤甘肤循环的影响[J].园艺学报,2009,36(2):215-220.
    [55]陈坤明,宫海军,陈国仓.春小麦不同发育阶段抗氧化系统对田间缓慢干旱的响应[J].西北植物学报,2003,23(9):1497-1505.
    [56]李保珠,赵翔,安国勇.赤霉素的研究进展[J].中国农学通报,2011,27(1):1-5.
    [57]孙艳,周存田,王飞.低温胁迫对黄瓜耐冷性相关生理指标的影响[J].陕西农业科学,1997,(2):22-23
    [58]Waldman M,Rikin A,Dovrat A,et al. Hormonal regulation ofmorphogenesis and cold-resistance[J]. Exp Bot,1975,26:853-859.
    [59]Young R. Effect of growth regulators on citrus seedling cold hardiness[J].Amer. Soc.Hort. Sci,1971,96:708-710.
    [60]严寒静,谈锋.栀子对自然降温的适应性研究[J].植物研究,2006,26(2):238-241.
    [61]谢吉容,向邓云,梅虎等.南方红豆杉抗寒性的变化与内源激素的关系[J].西南师范大学学报(自然科学版),2002,27(2):231-234.
    [62]沈漫.常春藤质膜透性和内源激素与抗寒性关系初探[J].园艺学报,2005,32(1):141-144.
    [63]刘德兵,魏军亚,崔百明等.脱落酸对香蕉幼苗抗寒性的影响[J].热带作物学报,2007,28(2):1-4.
    [64]单守明,刘国杰,李绍华等.秋季叶面喷施IAA、6-BA或GA3对草莓植株的影响[J].果树学报,2007,24(4):545-548.
    [65]Reid D M,Pharis R P,Roberts D W A. Effects of Four TemperatureRegimens onthe Gibberellin Content of Winter Wheat cv. Kharkov[J]. Physiol Plant,1974,30:53-57.
    [66]王文举,王振平,平吉成等.乙烯利对赤霞珠葡萄几种抗寒性指标的影响[J].中外葡萄与葡萄酒,2005,4:13-14.
    [67]Xin Z,Browse J. Cold comfort farm: the acclimation of plants to freezingtemperatures[J]. Plant Cell and Envrionment,2000,23:893-902.
    [68]Kiegle E,Moore C A,Haseloff J. Cell-type-specific calcium Responses todrought,salt and cold in the Arabidopsis root[J]. The Plant Journal,2000,23(2):265-278.
    [69]Medvedevss. Calcium signaling system in Plants[J]. Russian J PlantPhysiol,2005,52(2):249-270.
    [70]YangT,Poovaiah B W. Calcium/calmodulin-mediated signal net work inPlants[J]. Trends in Plant Sei,2003,8(10):505-512.
    [71]Orvar B L,Sangwan V, Omann F,et al. Early steps in cold sensing byplant cells: the role of action cytoskeleton and membrane fluidity[J]. Plant J,2000,23(6):785-794.
    [72]Lang V,Mntyl E, Welin B. Alterations in water status,endogenousabscisic acid content and expression of rab18gene during the development offreezing tolerance in Arabidopsis thaliana[J]. Plant Physiol,1994,104:1341-1349.
    [73]Mntyl E,Lang V,Palva E T. Role of abscisic acid in drought-inducedfreezing tolerance cold acclimation and accumulation of LT178and RAB18proteins in Arabidopsis thaliana[J]. Plant Physiol,1995,107:141-148.
    [74]Yanaguchi-Shinozaki K,Koizum M,Urao S. Molecular cloning andcharacterization of9cDNA clone that encodes a putative transmembranechannel protein[J]. Plant Cell Physiol,1992,33:217-224.
    [75]Hajela K K,Horvath D P,Gilmour S J. Molecular cloning and expressionof cor (cold regulated) genes in Arabidopsis thaliana[J]. Plant Physiol,1990,93:1246-1252.
    [76]Wen JQ,Oono K,Imai R. Two novel mitogen-activated protein signalingcomponents, OsMEK1and OsMAP1, are involved in a moderatelow-temperature signaling pathway in rice[J]. Plant Physiol,2002,129:1880-1891.
    [77]xiong L M,ShumakerK S,Zhu J K. Cell signaling during cold,droughtand salt stresses[J]. Plant Cell,2002,14:5165-5183.
    [78]ArilzumiT,Kishitanis,InatsugiR,et al. An inerease In unsaturation offatty aeids in Phosphatidylglycerol from leaves improves the rates ofPhotosynthesis and growth at low temperatures intransgenic rice seedlings[J].Plant Cell Physiol,2002,43(7):751.
    [79]Orlova I V,Serebriiskaya T S,Popov V,et al. Transformation of tobaccowith a gene for the Thermophilic acyl-lipid desaturase enhances the chillingtolerance of Plants[J]. Plant Cell Physiol,2003,44(4):447-450.
    [80]Sato Y,Murakami T,Funatsuk1H,et al.Heat Shock—mediated APX geneexpression and Protection against chilling injury in rice seedlings [J]. ExpBot,2001,52(354):145-151.
    [81]HsiehT H,LeeJ T,YangP T,et al. Heterologyex Pression of theArabidopsisC-repeat/dehydratlon response element binding faetor1geneconfers elevated tolerance to chilling and oxidative stresses in Transgenictomato[J]. Plant Physiol,2002,129(3):1056-1094.
    [82]Saikia R,Singh T,Kumar R,et al. Role of salicylic acid in systemicresistance induced by Pseudomonas fluorescens Against Fusarium oxysporumf.sP. ciceri in chickpea[J]. MierobiolRes,2003,158(3):203-213.
    [83]PennyeookeJ C,JonesM L,Stushnoff C. Down-regulating a-galactosidase enhanees freezing tolerance in transgenic Petunia[J]. PlantPhy,101,2003,133(2):901-909.
    [84]Gorg A,Obermaier C,Bogutll G,et al. The current state of two-dimensional electrophoresis with immobilized PH gradients[J]. Electrophoresis,1988,9:531-546.
    [85]Tonge R,Shaw J,Middleton B,et al. Validation and differential gel offluores-cence Electrophoresis technology[J]. Proteomics,2001,l:377-396.
    [86]Smyth W F,Brooks P. A critical evaluation of HPLC-ESI-MS andCE-ESI-MS for the detection and determination of small molecules ofsignificance in clinical and forensic science[J]. Electrophores,2004,25(10-11):1413-1446.
    [87]Ishihama Y,OdaY,TabataT,et al. Exponentially modified Proteinabundance index (emPAI) for estimation of absolute Protein amount inProteomics by the number of Sequenced Peptides Per protein[J]. Mol Cel]Proteomics,2005,4(9):1265-1272.
    [88]Chen M,Ying W,SongY,et al. An alysis of human liver Proteome usingreplicate shotgun strategy[J]. Proteomics,2007,7(14):2479-2488.
    [89]Hoogland C,Mostaguir K,SanchezJ C,et al. SWISS-ZDPAGE,ten yearslater[J]. Proteomics,20O4,4:2352-2356.
    [90]Gao F,Zhou Y,Zhu W,et al. Proteomic analysis of coldstress-responsive proteins in the llungiella rosette leaves[J]. Planta,2009,230(5):1033-1046.
    [91]郝强,张睿鹂,冷平生等.北海道黄杨叶片应答低温胁迫的蛋白质组分析[J].园艺学报,2011,38(11):2169-2179.
    [92]Bae M S,Cho E J,Choi E Y,et al. An alysis of the Arabidopsis nuclearproteome and its response to cold stress[J]. Plant J,2003,36:652-663.
    [93]Renaut J,Lutts S,Hoffmann L,et al. Responses of pop lar to chillingtemperatures: proteomic and physiological aspects[J]. Plant Biology,2004,6:81-90.
    [94]LeeDG,Ahsan N,LeeS H,et al. An approach to identify cold-inducedlow-abundant proteins in rice leaf[J]. C R Biol.2007,330(3):215-25.
    [95]张加延,张钊.中国果树志-杏卷[M].北京:中国林业出版社,2003.30-57
    [96]杨建民,周怀军,张加延.李杏资源研究与利用进展(四)[M].北京:中国农业出版社,2006,247-249.
    [97]张秀国,吴建梁,王喜军等.杏树花期霜害的影响因素调查及防治措施[J].河北林业科技,2004,3:35-36.
    [98]周国华,张醒春,常中波.仁用杏的春季冻害及预防措施[J].内蒙古林业科技,2005,1:14-15.
    [99]白琳,白靳来.杏树花期、幼果期抗寒力调查[J].北方园艺,1992(6):69-70.
    [100]Currero P,Scalabreli C,Flocchi C. Influence of light and chillingcondition on apricot bud opeing[J]. Acta Hort,1991,293:285-289.
    [101]Suranyz D. Hormonal control of frost injuries on apricot trees[J].ActaHort,1991,293:341-344.
    [102]张军科,桑春果,李嘉瑞等.杏品种资源抗寒性主成分分析[J].西北农业大学学报,1999,27(6):79-84.
    [103]郝彦平.仁用杏花耐寒性研究进展及延迟花期措施总结[J].山西果树,2011,1:43-45.
    [104]孟庆瑞.杏花器官霜冻害生理机制研究[D].保定:河北农业大学博士论文,2009,12.
    [105]杨建民,李艳华,杨敏生等.几个仁用杏品种抗寒性比较研究[J].中国农业科学,1999,32(1):46-50.
    [106]吕增仁.我国杏研究进展[J].河北果树,1996,(1):1-5.
    [107]彭伟秀,杨建民,张芹等.几个仁用杏品种枝条组织结构与抗寒性关系的初步研究[J].河北农业大学学报,2002,25(1):48-50.
    [108]李荣富,梁莉,胡晓红等.杏叶片组织结构特征、质膜透性与花期耐寒力的关系[J].内蒙古农业科技,2005(5):15-16.
    [109]杨向娜,魏安智,杨途熙等.仁用杏3个生理指标与抗寒性的关系研究[J].西北林学院学报,2006,21(3):30-33.
    [110]王华,王飞,陈登文等.低温胁迫对杏花SOD活性和膜脂过氧化的影响[J].果树科学,2000,17(3):197-201.
    [111]魏安智.仁用杏抗寒机理研究与抗寒物质筛选[D].杨陵:西北农林科技大学硕士论文,2006,40-41.
    [112]张永泉,梁隐泉,李思平.低温胁迫对仁用杏花器官抗寒性的影响[J].河北林果研究,2010,25(3):244-248.
    [113]杨建民,孟庆瑞,彭伟秀等.冰核细菌对杏花器官抗寒性的影响[J].园艺学报,2002,29(1):20-24.
    [114]孟庆瑞,徐秀英,杨建民等.杏花器官抗寒性初步研究[J].河北农业大学学报,2006,29(3):22-25.
    [115]魏安智,杨途熙,张睿等.抗寒剂诱导仁用杏花期抗寒力研究[J].西北植物学报,2008,28(3):535-541.
    [116]孟庆瑞.杏花器官霜冻害生理机制研究[D].保定:河北农业大学博士论文,2009,35.
    [117]孙福在,赵廷昌,杨建民等.杏树上冰核细菌种类及其冰核活性与杏花霜冻关系的研究[J].中国农业科学,2000,33(6):50-58.
    [118]杨建民. INA细菌与杏树花器官霜冻害关系研究[D].北京:中国农业大学,2002,59-73.
    [119]彭伟秀,杨建民,张芹等.冰核细菌对仁用杏胚珠超微结构的影响[J].园艺学报,2004,29(1):21-24.
    [120]张倩.冰核细菌对仁用杏授粉生物学特性影响的研究[D].保定:河北农业大学硕士论文,2007,25.
    [121]李疆,罗淑萍,杨序德等.花期低温对仁用杏花器官危害程度的影响[J].新疆农业大学学报,2001,24(4):22-24.
    [122]李彦慧,高连祥,任士福等.耐寒仁用杏新品种‘围选1号’[J].园艺学报,2010,37(1):155-156.
    [123]宁超.‘围选1号’仁用杏花器官抗寒性及生物学特性研究[D].保定:河北农业大学硕士论文,2010,15.
    [124]李合生,孙群,赵世杰.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000.
    [125]赵世杰,许长城,邹琦等.植物组织中丙二醛测定方法的改进[J].植物生理学通讯,1994,30(3):207-210.
    [126]林植芳,李双顺,林桂珠等.衰老叶片和叶绿体中H2O2的累积与膜脂过氧化的关系[J].植物生理学报,1988,14(1):12-16.
    [127]王爱国,罗广华.植物的超超氧阴离子与羟胺反应的定量关系[J].植物生理学通讯,1990,19(6):55-57.
    [128]张殿忠,汪沛洪,赵会肾.测定小麦叶片游离脯氨酸含量的方法[J].植物生理学通讯,1990,26(4):62-65.
    [129]邹奇.植物生理学实验指导[M].北京:中国农业出版社,2000.
    [130]Cakmak I,Marschner H. Magnesium deficiency and high light intensityenhance activities of superoxide dismutase, as corbate peroxidase andglutathione reductase in bean leaves[J]. Plant Physiol,1992,98:1222-1227.
    [131]Ellmen G L. Tissue sulfhyryl groups[J]. Archives of Biochemistry andBiophysics,1959,82:70-77.
    [132]沈文飚,徐朗莱,叶茂炳等.抗坏血酸过氧化物酶活性测定的探讨[J].植物生理学通讯,1996,32(3):203-205.
    [133]Mafw, Chengll. The sun-exposed peel of apple fruit has higherxanthophy ll cycle-dependent thermal dissipation an d antioxidants of the ascorbate-glut athione pathway than the shade peel[J]. Plant Science,2003,165:819-827.
    [134]张景萍,吴珍龄.几种植物中谷胱甘肽过氧化物酶活性测定[J].广西农业科学,2004,35(3):177-178.
    [135]李金昶,石晶,赵晓亮.高效液相色谱法分离和测定3种植物内源激素[J].分析化学,1994,22(8):801-804.
    [136]Damerval C,De Vienne D,Zivy M,et al. Technical improvements intwo-dimensional electrophoresis increase the level of genetic variationdetected in wheat seedling proteins[J]. Electrophoresis,1986,7(1):52-54.
    [137]谷瑞升,刘群录,陈雪梅等.一种省时高效的木本植物蛋白双向电泳分析方法[J].北京林业大学学报,1999,21(5):7-10.
    [138]Wang W,Scali M,Vignani R,et al. Protein extraction fortwo-dimensional electrophoresis from olive leaf, a plant tissue containinghigh levels of interfering compounds[J]. Electrophoresis,2003,24(14):2369-2375.
    [139]Bradford M M. A rapid and sensitive method for the quantitation ofmicrograrn quantities of protein utilizing the principle of protein-dyebinding[J]. Anal Biochem,1976,72:248-254.
    [140]D M,Cheng D,Gearing M,et al. Proteomic analysis of hippocampaldentate granule cells in frontotemporal lobar degeneration: application oflaser capture Gozal YM, Dammer EB, Duong technology[J]. Front Neurol,2011,25:2-24.
    [141]Selote D S,Khanna-Chopra R. Drought acclimation confers oxidativestress tolerance by inducing coordinated antioxidant defense at cellular andsubcellular level in leaves of wheat seedlings[J]. Physiologia Plantarum,2006,127:494–500.
    [142]Shao H B,Chu LY,Shao M A,et al. Higher plant antioxidants and redoxsignaling under environmental stresses[J]. Comptes Rendus Biologies,2008,331:433–441.
    [143]徐春香,陈杰忠,梁立峰.低温对香蕉叶片中甘油等物质含量的影响[J].果树科学,2000,17(2):105-10.
    [144]江锡兵,宋跃朋,马开峰等.低温胁迫下美洲黑杨与大青杨杂种无性系若干生理指标变化研究[J].北京林业大学学报,2012,(34)1:58-63.
    [145]朱政,蒋家月,江昌俊等.低温胁迫对茶树叶片SOD、可溶性蛋白和可溶性糖含量的影响[J].安徽农业大学学报,2011,38(1):24-26.
    [146]高志红,章镇,韩振海.果梅种质枝条抗寒性鉴定[J].果树学报,2005,(22)6:709-711.
    [147]彭金光,孙玉宏,师瑞红等.10℃低温对西瓜幼苗耐性生理指标的影响[J].安徽农学通报,2006,12(10):42-45.
    [148]陈立松,刘星辉.果树逆境生理[M].北京:中国农业出版社,2003,58-65.
    [149]冯献宾,董倩,王洁等.低温胁迫对黄连木抗寒生理指标的影响[J].中国农学通报,2011,27(8):23-26.
    [150]司剑华,卢素锦.低温胁迫对5种柽柳抗寒性生理指标的影响[J].中南林业科技大学学报,2010,30(8):78-81.
    [151]Terzioglu S,Ekmekci Y. Variation of total soluble seminal root proteinsof tetraploid wild and cultivated wheat induced at cold acclimation andfreezing[J]. Acta Physiologiae Plantarum,2004,26(4):443-450.
    [152]汤章城.胁迫条件下植物体内脯氨酸的积累及其生态意义[J].植物生理学通报,1984,1:15-21.
    [153]王燕凌,廖康,刘君等.越冬前低温锻炼期间不同品种普通枝条中渗透物质和保护酶活性的变化[J].果树学报,2006,23(3):375-378.
    [154]王荣富,何若韫.零下低温对小麦线粒体酸性磷酸酶解离和膜脂过氧化的影响[J].安徽农学院学报,1990,17(3):173-179.
    [155]Nagalakshmi N,Prasad M N V.Responses of glutathione cycle enzymesand glutathione metabolism to copper stress in Scenedesmus bijugatus[J].Plant Science,2001,160(2):291-299.
    [156]Noctor G,Foyer C H. Ascorbate and glutathione: keeping active oxygenunder control[J]. Annual Review of Plant Physiology and Plant MolecularBiology,1998,49:249-279.
    [157]Jin Y H,TaoD L,Hao Z Q. Environmental stresses and redox status ofascorbate[J]. Acta Botanica Sinica,2003,45:795-801.
    [158]Rao M V,Hale B A,Ormrod D P. Amelioration of ozone inducedoxidative damage in wheat plants grown under high carbon dioxide[J]. PlantPhysiology,1995,109(2):421-432.
    [159]Calatayud A,Iglesias D J,Talón M,et al. Effects of2-month ozoneexposure in spinach leaves on photosynthesis,antioxidant systems and lipidperoxidation[J]. Plant Physiology and Biochemistry,2003,41(9):839-845.
    [160]Srivalli B,Sharma G,Khanna-chopra R. Antioxidative defense systemin an upland rice cultivar subjected to increasing intensity of water stressfollowed by recovery[J]. Physiologia Plantarum,2003,119:503-512.
    [161]严寒静,谈锋.自然降温过程中栀子叶片脱落酸、赤霉素与低温半致死温度的关系[J].西南师范大学学报(自然科学版),2001,26(2):195-199.
    [162]罗正荣.植物激素与抗寒力的关系[J].植物生理学通讯,1989,3:1-5.
    [163]Thomas H,JamesA R. Freezing tolerance and solute changes incontrastion genotypes ofLolium pereruneL. acclimated to cold and drought[J].Physiology Plant,1993,72:249-254.
    [164]Gusta L V. Stress tolerance induction: the role ofABA and heat stableproteins[J]. HorticulturalScience,1994,29:571.
    [165]于晶,张林,苍晶等.外源ABA对寒地冬小麦东农冬麦1号幼苗生长及抗冷性的影响[J].麦类作物学报,2008,28(5):883-887.
    [166]周碧燕,李宇彬,陈杰忠等.低温胁迫和喷施ABA对荔枝内源激素和成花的影响[J].园艺学报,2002,29(6):577-578.
    [167]祖未希,靳飞,印莉萍.植物COP9信号复合体的结构特征和功能[J].植物生理学通讯,2007,43(5):961-968.
    [168]Wolosink R A. Pontis HG. Studies on sucrose sythase [J]. Arch BiochemBiophys,1974,165:140-145.
    [169]Hong wei Luan,Ying Hu,Xingbao Liu,et al. Purification andCharacterization of a β-D-xylosidase from Leifsonia shinshuensis DICP16[J].Chinese Journal of Biotechnology,2008,24(5):867-873.
    [170]Tobias von derHaar, John D Gross, GerhardW agner, et al. The mRNAcap-binding protein eIF4E in post-transcriptional gene expression[J]. NatStruct MolBio,2004,9(11):503-511.
    [171]DONG Z,PATEL Y,SAIKUMAR P,et al. Development of porousdefects in plasma membrances of adenosine triphosphate deplered MardinDar by Canine kidneycells and its inhibition by glycine[J]. Lab Invest,1998,78(6)657-668.
    [172]Kim Yeon Ok,Kang Hunseung. The role of a zinc finger-containingglycine-rich RNA-binding protein during the cold adaptation process inArabidopsis thaliana[J]. Plant and cell physiology,2006,47(6):793-798.
    [173]Kim Jin Sun,Jung Hyun Ju,Lee Hwa Jung,et al. Glycine-richRNA-binding protein7affects abiotic stress responses by regulating stomataopening and closing in Arabidopsis thaliana[J]. The Plant Journal,2008,55(3):455-466.
    [174]Larsson C,Paohlman IL,AnsellR,et al. The importance of the glycerol3-phosphate shuttle during aerobic growth of Saccharomyces cerevisiae.Yeast[J],1998,14(4):347-357.
    [175] Beopoulos A,Mrozova Z,Thevenieau F,et al. Control of lipidaccumulation in the yeast Yarrowia lipolytica[J]. Applied and EnvironmentalMicrobiology,2008,74(24):7779-7789.
    [176]Nakamura T M,DuLL,Redon C,et al. Histone H2A phosphorylationcontrols Grb2recruitment at DNA breaks,maintains checkpoint arrest,andinfluence DNA repair in fission yeast [J]. Mol cell Biol,2004,24(14):6215-6230.
    [177]KIM M J,LIM G H,KIM E S,et al. Abiotic and biotic stress tolerancein Arabidopsis over expressing the Multi protein bridging factor1a (MBF1a)transcriptional coactivator gene [J]. Biochemical and Biophysical ResearchCommunications,2007,354:440-446.
    [178]Ohkama-Ohtsu N,Oikawa A,Zhao P,et al. A gamma-glutamyltranspeptidase-independent pathway of glutathione catabolism to glutamatevia5-oxoproline in Arabidopsis[J]. Plant Physiol,2008,148:1603-1613.
    [179]李娜,房伟民,陈发棣等.切花寒菊小花对低温胁迫的生理响应及其抗寒性分析[J].西北植物,2010,30(4):0645-0651.
    [180]陈曦,周玉兰,刘志洋等.六种宿根花卉抗寒生理指标的比较研究[J].东北农业大学学报,2009,40(9):21-25.
    [181]武雁军,刘建辉.低温胁迫对厚皮甜瓜幼苗抗寒性生理生化指标的影响[J].西北农林科技大学学报(自然科学版),2007,(35):139-143.
    [182]范月仙,张述义,李生泉.棉花苗期抗冷性与可溶性蛋白质含量增加关系的研究[J].山西农业大学学报,1995,15(l):56-58.
    [183]李斌,刘立强,罗淑萍等.低温胁迫对扁桃花芽抗寒性的影响[J].新疆农业大学学报,2012,35(1):13-17.
    [184]王娜,褚衍亮.低温对花生幼苗渗透调节物质和保护酶活性的影响[J].安徽农业科学,2007,35(29):9154-9156.
    [185]Fridovich I. Superoxide dismutase[J]. Annual Review of Biochemistry,1975,44:147-159.
    [186]Sanders D,Brownlee C,Harper JF. Communicating with calcium[J].THK Plant Cell,1999,11:691-706.
    [187]SatisburyFB. RossCW. PlantPhysiology[M].4thed.BelmontCalifornia:Wadsworth Publishing ComPan,1992.
    [188]Seeley S.D,Damavandy H. Anderson.Autumn applied growth regulatorsinfluence leaf retention,bud hardiness,bud and flower size,andendoendodormancy in peach and cherry[J]. Amer.Soc.Hort.Sci,1992,117(2):203-208.
    [189]潘根生,沈生荣,吴伯千等.茶树新梢生育过程内源激素水平的变化[J].茶叶科学,1997,17(增刊):86-91.
    [190]谢吉容,向登云,梅虎等.南方红豆杉抗寒性的变化与内源激素的关系[J].西南师范大学学报,2002,27(2):232-234.
    [191]孟庆瑞.杏花器官霜冻害生理机制研究[D].保定:河北农业大学博士论文,2009,29.
    [192]李春明,白卉,于文喜.低温驯化过程中大青杨叶片差异蛋白质分析[J].东北林业大学学报,2011,39(10):45-49.
    [193]康俊梅.低温胁迫下野牛草生理生化响应及蛋白质组学研究[D].北京:北京中国农业科学院博士学位论文,2008,89.
    [194]GAO F,ZHOU Y,ZHU W,et al. Proteomic analysis of coldstress-responsive proteins in Thellungiella rosette leaves[J]. Planta,2009,230(5):1033-1046.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700