大叶女贞与几种主要观赏树木抗寒性比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金枝国槐(Sophora japonica‘Golden Stem’)、蝴蝶槐(Sophora japonica var. 1oligpophylla)、西府海棠(Malus micromalus Mak.)、红宝石海棠(Malus spetabilis Royalty)、蜡梅(Chimonanthus praecox(L.) Link)和大叶女贞(Ligustrun lucidum Ait)是园林绿化中常用的观赏树木。尤其是大叶女贞是北方园林绿化中比较少见的常绿阔叶树种,在园林绿化中有较高的应用价值,但由于其原产南方,抗寒性较低,故研究观赏树木的抗寒性,为其引种提供理论依据,有着重要的意义。在脱锻炼期间,对6种观赏树木进行了电阻抗图谱(Electrical impedance spectroscopy, EIS)分析,以及抗寒性和生理指标的测定。分别用EIS法和电导法(Electrolyte leakage, EL)测定了6种观赏树木茎的抗寒性,测定了茎含水量、可溶性糖和淀粉、可溶性蛋白、脯氨酸的含量。得到EIS参数、抗寒性、生理指标在脱锻炼期间的变化规律,并验证了脱锻炼期间EIS参数与抗寒性和生理指标的相关性。主要结果如下:
     1、6种观赏树种的抗寒性随着脱锻炼的进程逐步下降。4月初6种树的抗寒性最强且抗寒性大小为红宝石海棠>西府海棠>蝴蝶槐>金枝国槐>蜡梅>大叶女贞。大叶女贞和红宝石海棠抗寒性相差18.1℃;5月初6种树的抗寒性降到最低点且抗寒性大小为大叶女贞>西府国海棠>红宝石海棠>蜡梅>蝴蝶槐>金枝国槐。金枝国槐和大叶女贞抗寒性相差3.5℃。
     2、6种观赏树种EIS参数和电阻抗图谱在脱锻炼期间随着抗寒性的降低而发生变化。
     3、金枝国槐、蝴蝶槐的可溶性糖与胞外电阻率re存在较高的相关性(R~2分别为0.91、0.95)。蝴蝶槐的可溶性糖与弛豫时间的分布系数ψ、西府海棠的淀粉与胞外电阻率re和胞外电阻率ri、蜡梅的可溶性糖与胞内电阻率ri、大叶女贞的可溶性糖与弛豫时间τ和弛豫时间的分布系数ψ都存在较高的相关性。
     4、脱锻炼期间,6种观赏树木的茎可溶性蛋白、脯氨酸含量都发生变化,且与部分EIS参数变化趋势相同或者相反,并有一定的相关性(R~2>0.55)。
     5、脱锻炼期间,6种观赏树木的茎含水量、可溶性糖和淀粉、可溶性蛋白、脯氨酸含量与抗寒性相关,说明这些生理指标都可用来估测抗寒性。
     6、脱锻炼期间,未经冷冻的样本胞外电阻率re、弛豫时间τ与EL法测得的抗寒性具有较高的相关性(R~2=0.94-0.96),说明可以用这两个EIS参数估测观赏树木的抗寒性。
Sophora japonica‘Golden Stem’, Sophora japonica var. 1oligpophylla, Malus micromalus Mak., Malus spetabilis Royalty, Chimonanthus praecox (L.) Link and Ligustrun lucidum Ait. are the common ornamental trees of landscape. Especially Ligustrun lucidum Ait. is an uncommon evergreen broad-leaved tree growing in the northern landscapes, which has high practical value. However, it originats from southern China and has lower cold resistance. This experiment studied on the frost hardiness (FH) of ornamental trees in order to provide theoretical basis for FH during the dehardering. The electrical impedance spectroscopy (EIS), FH and some physiological indexes, such as moisture content, soluble sugar and starch, as well as proline content of stem were analyzed. The FH was determined by means of the EIS and electrolyte leakage (EL) methods. The changes of the parameters of EIS and the physiological indexes were verified, and their correlations were found. The main results are as follows:
     1. As dehardening process, the FH of six ornamental trees gradually decreased. The FH of the six ornamental trees was the highest in the early of April during dehardening, and their FH order was Malus spetabilis Royalty > Malus micromalus Mak. > Sophora japonica var. 1oligpophylla > Sophora japonica‘Golden Stem’> Chimonanthus praecox (L.) Link > Ligustrun lucidum Ait. And the FH of Ligustrun lucidum Ait. was 18.1℃lower than that of Malus spetabilis Royalty. The FH of the six ornamental trees was the lowest in the early of May during dehardening, and the FH order was Ligustrun lucidum Ait. > Malus micromalus Mak. > Malus spetabilis Royalty > Chimonanthus praecox (L.) Link > Sophora japonica var. 1oligpophylla > Sophora japonica‘Golden Stem’, and the FH of Sophora japonica‘Golden Stem’was 3.5℃lower than that of Ligustrun lucidum Ait..
     2. With the enhancement of the FH, some changes occurred for the EIS parameters and electrical impedance spectra of six ornamental trees during dehardening.
     3. During dehardening, there was a high correlation between the soluble sugar and the specific extracellular resistance re of Sophora japonica‘Golden Stem’, as well as re of Sophora japonica var. 1oligpophylla (R~2=0.91; 0.95). There was also a higher correlation between the soluble sugar and the distribution coefficient of relaxation timeψof Sophora japonica var. 1oligpophylla; the starch content and the re, the specific intracellular resistance ri of Ligustrun lucidum Ait.; the soluble sugar and ri of Chimonanthus praecox (L.) Link; the soluble sugar and the relaxation timeτ, as well as theψof Ligustrun lucidum Ait.
     4. During dehardening, the Protein contents and Proline contents of ornamental trees changed. The same or opposite trends between the Protein contents, Proline contents and some of EIS parameters were found with a certain degree of correlation between them.
     5. During dehardening, the FH correlated with the water content, the soluble sugar and starch contents, Protein contents, and Proline contents, so these physiological indicators could be used to estimate the frost hardiness.
     6. During dehardening, the FH measured by EL and the EIS parameters re andτwithout frozen treatment (R~2=0.94-0.96), thus these two EIS parameters could be used to estimate the FH of ornamental trees.
引文
[1]司剑华,卢素锦.低温胁迫对五种柽柳抗寒性生理指标的影响[J].中南林业科技大学学报, 2012, 8(30):78-81.
    [2]郭惠红.金边卫矛(Euonymus radicans‘Emorald & Gold’)低温抗性研究[D].北京林业大学, 2004,04, pp. 87.
    [3]罗娅.低温胁迫与锻炼对草莓生理特性的影响和草莓几丁质酶基因的克隆[D].四川农业大学, 2007, pp, 88.
    [4] Glerum C. Frost hardiness of coniferous seedling: principles and applications. In: Duryea, M.L. ed. Evaluating seedling quality: principles, procedures, and predictive abilities of major test. 1985, 107-123.
    [5] Fuchigami LH, Weiser CJ, Kobayashi K, et al. A degree growth stage model and cold acclimation in temperate woody plants. In: Li, P.H. and Sakai, A., (eds.). Plant Cold Hardiness and Freezing Stress. Mechanisms and Crop Implications. Vol.2. New York: Academic Press, 1982, pp. 93-116.
    [6] Guy CL. Cold acclimation and freezing stress tolerance: role of protein metabolism[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1990, 41: 187-223.
    [7] Nilsson JE, Walfridsson E. Phenological variation among plus-tree clones of Pinus sylvestris (L.) in northern Sweden. Silvae Genetica, 1995, 44: 20-28.
    [8] Litzow M, Pellett H. Relationship of rest to dehardening in red-osier dogwood. HortScience, 1980, 15: 92-93.
    [9]张钢.国外木本植物抗寒性测定方法综述[J].世界林业研究, 2005, 18(5): 14-20.
    [10] Steponkus PL, Lanphear FO. Refinement of the triphenyl tetrazolium chloride method of determining cold injury[J]. Plant Physiology, 1967, 42: 1423-1426.
    [11] Sutinen ML. Physiological changes in the needles of Pinus nigra and Pinus resinosa with seasonal changes in freezing stress resistance[J]. Acta Universitas Ouluensis, 1992, A240: 1-39.
    [12]刘林.低温对西瓜花药发育的影响[J].北方园艺, 2007, 4: 16-17.
    [13]韩雪,孙镜明,刘晓东.低温胁迫后灯台树的枝、叶、根的细胞膜透性分析[J].吉林林业科技, 2006, 35(1): 6-9.
    [14] Lyons JM. Chilling injury in plants[J]. Annual Review of Plant Physiology, 1973, (24): 445-466.
    [15]张毅,徐世昌.孕穗期低温对玉米雌穗的伤害作用[J].作物学报, 1995, 21 (2): 235-239.
    [16] Sukumaran NP. An excise leaflet test for evaluating potato frost tolerance[J]. Hortiscience, 1972, 7: 467-468.
    [17]万清林.草莓抗寒特性分析[J].北方园艺, 1990, (8): 4-7.
    [18] Burr K E, R W Tinus, S J Wallner, et al. Comparison of three cold hardiness tests for conifer seedlings. Tree Physiology, 1990, 6: 351-369.
    [19]郁继华,舒英杰,吕军芬.低温弱光对茄子幼苗光合特性的影响.西北植物学报, 2004,24(5): 831-836.
    [20] Ying J, Lee EA, Tollenaar M. Response of maize leaf photosynthesis to low temperature during the grain-filling period[J]. Field Crops Research, 2000, 68(2) : 87-96.
    [21] Perks MP, Osborne BA, Mitchell DT. Rapid predictions of cold tolerance in Douglas-fir seedlings using chlorophyll fluorescence after freezing[J]. New Forests, 2004, 28 (1): 49-62.
    [22]李国景,刘永华,吴晓花,等.长豇豆品种耐低温弱光性和叶绿素荧光参数等的关系[J].浙江农业学报,2005,17(6):359-362.
    [23]张守仁.叶绿素荧光动力学参数的意义及讨论[J].植物学通报, 1999, 16(4): 444-448.
    [24]陈建明,俞晓平,程家安.叶绿素荧光动力学及其在植物抗逆生理研究中的应用[J].浙江农业学报,2006, 18(1): 51-55.
    [25] Gillies SL, Binder WD. The effect of sub-zero temperatures in the light and dark on cold-hardened, dehardened and newly flushed white spruce (Picea glauca [Moench.] Voss) seedlings [J]. New Forests, 1997, 13: 91-104.
    [26] Repo T, Leinonen M, P??kk?nen T. Electrical impedance analysis of shoots of Scots pine: intracellular resistance correlates with frost hardiness. Proceedings of the Finnish-Japanese Workshop. Molecular and physiological aspects of cold and chilling tolerance of northern crops. Jokioinen. 1997, 27-30.
    [27] MacDougall RC, Thompson RG, Piene H. Stem electrical capacitance and resistance measurements as related to total foliar biomass of balsam fir trees[J]. Canadian Journal of Forest Research, 1987, 17: 1071-1074.
    [28] Cox MA, Zhang MIN, Willison JHM. Apple bruise assessment through electrical impedance measurements[J]. Journal Horticultural Science, 1993, 68: 393-398.
    [29] Repo T, Zhang MIN. Modelling woody plant tissues using a distributed electrical circuit[J]. Journal of Experimental Botany, 1993, 44: 977-982.
    [30] Repo T, Zhang Gang, Ryypp? A, et al. The electrical impedance spectroscopy of Scots pine (Pinus sylvestris L.) shoots in relation to cold acclimation[J]. Journal of Experimental Botany, 2000, 51: 2095-2107.
    [31] Stout DG. Effect of cold acclimation on bulk tissue electrical impedance. I. Measurementswith birdsfoot trefoil at subfreezing temperatures[J]. Plant Physiology, 1988, 86: 275-282.
    [32]刘晓红,王国栋,张钢.干旱胁迫下不同品种小麦叶片电阻抗参数与生理参数关系的研究[J].西北植物学报,2007,27(5):970-976.
    [33] Ozier-Lafontaine H, Bajazet T. Analysis of root growth by impedance spectroscopy (EIS) [J]. Plant Soil, 2005, 277: 299-313.
    [34] Mancuso S, Rinaldelli E. Response of young mycorrhizal and non-mycorrhizal plants of olive tree (Olea europaea L.) to saline conditions. II. Dynamics of electrical impedance parameters of shoots and leaves[J]. Advances in horticultural science, 1996, 10: 135-145.
    [35]刘晓红,王国栋,张钢.外源重金属胁迫对小麦叶片电阻抗参数的影响[J].农业环境科学学报,2007,26(6):2014-2020.
    [36] Repo T, Zhang MIN, Ryypp? A, et al. Effects of freeze-thaw injury on parameters of distributed electrical circuits of stems and needles of Scots pine seedlings at different stages of acclimation [J]. Journal of Experimental Botany, 1994, 45: 823-833.
    [37] Burr KE, Hawkins CDB, L’Hirondelle SJ, et al. Methods for measuring cold hardiness of conifers. In: Bigras, F.J. & S.J. Colombo (eds.) Conifer Cold Hardiness. Kluwer Academic Pubishers. Dordrecht/Boston/London. 2001, pp. 369-401.
    [38] Mancuso S. Seasonal dynamics of electrical impedance parameters in shoots and leaves relate to rooting ability of olive (Olea europaea) cuttings[J]. Tree Physiology, 1998, 19: 95-101.
    [39] Zhang G, Ryypp? A, Repo T. The electrical impedance spectroscopy of Scots pine needles during cold acclimation[J]. Physiologia Plantarum, 2002, 115: 385-392.
    [40] Repo T, Zhang Gang, Ryypp? A, et al. The relation between growth cessation and frost hardening in Scots pines of different origins[J]. Trees, 2000, 14: 456-464.
    [41] Mancuso S, Nicese F P, Masi E, et al. Comparing fractal analysis, electrical impedance and electrolyte leakage for the assessment of cold tolerance in Callistemon and Grevillea spp[J]. Journal of Horticultural Science & Biotechnology, 2004, 79: 627-632.
    [42] Zhang MIN, Repo T, Willison JHM, et al. Electrical impedance analysis in plant tissues: on the biological meaning of Cole-Coleαin Scots pine needles[J]. European Biophysics Journal, 1995, 24: 99-106.
    [43] Ryypp? A, Repo T, Vapaavuori E. Development of freezing tolerance in roots and shoots of Scots pine seedlings at nonfreezing temperatures[J]. Canadian Journal of Forest Research, 1998, 28: 557-565.
    [44] Hurme P, Repo T, Savolainen O, et al. Climatic adaptation of bud set and frost hardiness in Scots pine (Pinus sylvestris)[J]. Canadian Journal of Forest Research, 1997, 27: 716-723.
    [45] Leinonen I, Repo T, H?nninen H, et al. A second order dynamic model for the frost hardinessof trees [J]. Annals of Botany, 1995, 76: 89-95.
    [46] Zhang G, Ryypp? A, Vapaavuori E, et al. Quantification of additive response and stationarity of frost hardiness by photoperiod and temperature in Scots pine [J]. Canadian Journal of Forest Research, 2003, 33: 1772-1784.
    [47]李晓储,万志州,黄利斌,等.乐昌含笑引种育苗技术研究[J].林业科技开发, 2001, 15(3): 14-15.
    [48]车代弟,王军虹,刘慧民.丰花月季抗寒生理指标和抗寒性的关系[J].北方园艺, 2000 (2): 57.
    [49] Sakai A. Seasonal variations in the amounts of polyhydric alcohol and sugar in fruit tress. Journal of Horticultural Science, 1966, 41: 207-213.
    [50]王孝宣,李树德,东惠茹,等.番茄品种耐寒性与ABA和可溶性糖含量的关系.园艺学报,1998,25(1):56-60.
    [51]刘祖祺,张石城,主编.植物抗性生理学.中国农业出版社,1994,43-44.
    [52] Crowe JH, Crowe LM, Carpenter JF, et al. Interaction of sugars with membranes. Biochim Biophy Acta, 1984, 947: 367-384.
    [53] Hirsh AG. Vitrification in plants as natural form of Cryoprotection. Crybiology, 1987, 24: 214-228.
    [54] Koster KL. Glass formation and desiccation resistance in seeds. Plant Physiology, 1991, 96: 302-304.
    [55] Blackman SA, Obendorf RL, Leopold AC. Maturation proteins and sugar in desiccation resistance of developing soybean seeds. Plant Physiology, 1992, 100: 225-230.
    [56]简令成. 40年“植物抗寒机理的细胞生物学研究”的一个简单总结.植物学通报,1999,(专辑):15-29.
    [57]王淑杰,王家民,李亚东.可溶性蛋白、可溶性糖含量与葡萄抗寒性关系的研究[J].北方园艺, 1996(2): 13-14.
    [58]姚胜蕊,曾骧,简令成.桃花芽越冬过程中的多糖的积累和质壁分离动态与品种抗寒性的关系[J].果树科学,1991,8(1):13-18.
    [59]武惠肖,吉艳芝,何海龙,等.落叶松几个抗寒生理指标研究[J].河北林果研究, 2000,15(2):46-47.
    [60]左永忠,李俊英,陆贵巧,等.低温驯化对苗木生理及核酸转录的影响[J].生物技术, 1999,9(3):9-11. [ 61 ]郭爱华,陈钰.不同品种杏花器官抗寒性研究[J].科技情报开发与经济, 2006,16(20):140-142.
    [62]周碧燕,陈杰忠,季作梁,等.香蕉越冬期间SOD活性和可溶性蛋白质含量的变化[J].果树科学,1999,16(3):192-196.
    [63]高庆玉,杨国慧.苹果黑豆越冬性与可溶性蛋白质脯氨酸含量变化[J].北方园艺, 1998,1:27
    [64]职明星,李秀菊.脯氨酸测定方法的改进[J].河南科技学院学报, 2005,4(33)10-12.
    [65] Cleff MD. Proline accumulation during the environmental stress[J]. Crop Science, 1983, 23(1): 23-26.
    [66]汤章成.逆境条件下植物体脯氨酸的累积及可能意义[J].植物生理学通讯, 1984, (1): 15-27.
    [67]黄印冉,张钧营,等.金叶国槐的园林应用技术[J].河北林业科技. 2008,1:39-44.
    [68]孟庆杰,王光全,等.蝴蝶槐的组织培养和快速繁殖技术[J].林业科技. 2006, 3(31): 63-64.
    [69]马书燕.西府海棠嫁接繁殖技术[J].现代农业科技. 2006,12: 47-48.
    [70]刘晓芳,李萍,等.红宝石海棠生长适应性综合指标排序及其分析[J].新疆农业科学. 2007, 44( 4) : 481- 486
    [71]张文军.红宝石海棠育苗技术[J] .北方果树, 2006, ( 1) : 52.
    [72]张钢,刘民,任元新.春季白皮松实生苗的脱锻炼与再锻炼[J].植物生理学通迅, 2005, 41(6): 761-764.
    [73]刘辉,张钢. CaCl2对金叶女贞茎抗寒性和电阻抗图谱参数的影响[J].植物学研究, 2008, 28 (4): 442-446.
    [74]上海植物生理学会:《植物生理学实验手册》[M], 134-138页,上海科技出版社, 1985年
    [75]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000:67-169.
    [76]王爱芳,张钢,魏士春,等.不同发育时期樟子松(Pinus sylvestris L. var. mongolica Litv.)的电阻抗参数与抗寒性的关系[J].生态学报, 2008, 28(11): 5741-5749.
    [77]肖平,朱俊义,肖智,等.抗寒与非抗寒植物实生苗根茎结构的差异[J].东北林业大学学报, 2007, 35 (7): 78-79.
    [78]李亚青,张钢,郤书鹏,等.白皮松茎和针叶的电阻抗参数与抗寒性的相关性[J].林业科学, 2008, (04): 28-34.
    [79]董胜豪,张钢,卻书鹏,等.脱锻炼期间白皮松针叶的电阻抗图谱参数和生理指标的相关性[J].园艺学报, 2009, (6): 891-897.
    [80]董丽,路艳红,黄亦工,等.常绿阔叶植物越冬期间叶片水分及淀粉粒的动态变化[J].北京林业大学学报, 2002, (Z1): 77-82.
    [81]庄国庆,胡天宇,郭洪英,等.不同种源地桉树抗寒性能的比较[J].桉树科技, 2010, (1):14-20.
    [82]马翠兰,刘星辉,胡又厘.渗透调节物质和水分状态与琯溪蜜柚抗寒性的关系[J].福建农业大学学报, 2000, (1): 31-34.
    [83] Levitt J. Responses of plants to environmental stresses. Vol 1.Chilling, freezing, and high temperature stresses. 2nd edition. New York: Academic Press, 1980.
    [84]董胜豪,张钢,卻书鹏,等.抗寒锻炼期间白皮松电阻抗图谱参数对可溶性糖与淀粉含量变化的响应[J].河北农业大学学报, 2009, (3):53-58.
    [85]孙群,胡景江.植物生理学研究技术[M] .杨凌:西北农林科技大学出版社,2006 :70.
    [86]何跃军,钟章成,刘济明,等. VA真菌对构树(Broussonetia papyrifera)幼苗物质代谢的影响[J].生态学报,2007,27(12):5456-5462.
    [87]毛桂莲,哈新芳,孙婕,等. Nacl胁迫下枸杞愈伤组织可溶性蛋白含量的变化[J].宁夏大学学报(自然科学版),2005, 26 (1) : 64-66.
    [88]杜金友,陈晓阳,胡东南,等.干旱胁迫条件下胡枝子渗透物质的变化[J].福建林学院学报, 2006, 26 (4): 349-352
    [89]樊卫国,刘国琴,何嵩涛,等.刺梨对土壤干旱胁迫的生理响应[J].中国农业科学,2002,35 (10) :1243-1248.
    [90]陈成升,谢志霞,刘小京.等渗盐分、干旱胁迫下冬小麦叶片部分渗透调节物质的动态变化[J].植物研究, 2009, 29(6): 708-713.
    [91]张福锁.环境胁迫与植物营养.北京:北京农业大学出版社,1993: 134-329.
    [92]罗华健,刘星辉.水分胁迫条件下枇杷若干生理指标的变化[J].亚热带植物科学,2004,33(1):19-21.
    [93]吴国训,吴田兵,查宝源,等.低温胁迫对刨花楠苗期细胞保护系统及生理生化物质的影响[J].江西林业科技,2008, 4, 14-16.
    [94]王宝山.生物自由基与植物膜脂伤害[J].植物生理学通讯,1988,24(2):12-16.
    [95] Sun J-Y, Zhao Y-T. Study on the p rotective function and mechanism of cellwall glycop roteins in salt tolerance of wheat. Scientia Agricultura Sinica, 1997, 30(4): 9-15.
    [96]韩蕊莲,李丽霞,梁宗锁.干旱胁迫下沙棘叶片细胞膜透性与渗透调节物质研究[J].西北植物学报2003, 23 (1): 23-27.
    [97] Cannell MB, Sheppard LJ. Frost hardiness of red alder (Alnus rubra) provenances in Britain. Forestry, 1987, 60: 57-67.
    [98] Ackmann JJ, Seitz MA. Methods of complex impedance measurements in biological tissue[J]. Crc Critical Reviews in Biomedical Engineering, 1984, 11: 281-311.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700