大同盆地6个栽培树种耐盐能力评价及甘蒙柽柳耐盐性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
山西大同盆地地区土壤盐渍化严重。为了进行合理有效地生态修复与利用,本文首先在苗圃栽培甘蒙柽柳、枸杞、樟子松、杜松、白榆和新疆杨6个当地树种幼苗,以5%、3%、1%、0%(CK)4个盐浓度进行盐胁迫试验,并测定幼苗的形态特征、光合速率、气孔阻力、蒸腾速率、胞间C02含量及细胞膜透性等指标,进行综合评价,耐盐性从高到低依次为甘蒙柽柳>枸杞>樟子松>杜松>白榆>新疆杨。根据第一阶段的结果,利用盆栽方法研究不同浓度NaCl(0%、0.5%、1.0%、2.0%、4.0%)胁迫对甘蒙柽柳生长和生理特性的影响,探讨其耐盐性。结果表明,较低浓度(0.5%)的NaCl对植株各项生理指标影响很小;对较高浓度(1.0%、2.0%、4.0%)NaCl处理,植株在气孔调节、保护酶系统、渗透调节物质均能做出较快响应并能在胁迫的初期(前8d)维持相对正常生长,但随着胁迫时间的延长、NaCl浓度增加,植物生长受到明显影响,第8d时4.0%NaCl处理的植株相对电导率明显上升接近CK的4倍,MDA的含量与它成正相关关系;脯氨酸在甘蒙柽柳受到盐胁迫后逐渐上升而可溶性蛋白则在盐胁迫初期增加后期逐渐减小;3种保护酶活性在胁迫后均呈先升高后下降的趋势,其中SOD与CAT的活性在第14d达到最高,POD活性则是在第20d达到最高;叶片叶绿素含量、PSⅡ原初光能转化效率与Pn逐渐下降并呈正相关关系;叶片泌盐量逐渐增大,最大可达1.624mg/g。洗盐后,1%和2%NaCl处理的植株各项指标均可得到恢复,而4.0%NaCl处理的植株其各项指标很难恢复,但甘蒙柽柳从自身形态生长、保护酶调节,渗透调节等方面都表现出不错的耐盐性能力,能够在较高盐浓度土壤中生长。
Soil salinization is serious in Datong Basin.In order to carry out a reasonable and effective ecological restoration and utilization in the region, this article first cultivated six native tree species of Tamarix chinensis Lour.,Lycium chinense Miller var., Pinus sylvestris Linn. var. mongolica Litv. Juniperus rigida Sieb. et Zucc.,Ulmus pumila L., Populus alba L. var. pyramidalis Bge. seedlings in the nursery, and irrigation treatment of NaCl with various levels of salt stress(0%,1%,3%,5%), researched the effects of salt stress on the morphological characteristics, photosynthetic rate, stomatal resistance, transpiration rate, intercellular CO2content and membrane permeability and other indexs, And the result of comprehensive evaluation of salt tolerance is:from high to low is Tamarix chinensis Lour.,Lycium chinense Miller var., Pinus sylvestris Linn. var. mongolica Litv., Juniperus rigida Sieb. et Zucc.Ulmus pumila L., Populus alba L. var.pyramidalis Bge. After the first stage results, To understand the responses of Tamarix austromongolica Nakai to various levels of salt stress (0%,0.5%,1.0%,2.0%,4.0%) and discuss its salt tolerance, this paper conducted a study with pot experiments. NaCl at low concentration of0.5%has tiny effect on each physiological index of the plants. Upon treatment of NaCl at high concentrations of1.0%,2.0%and4.0%, the plants can quickly respond at stoma adjustment, protective enzyme system and osmotic regulation substances. The plants can maintain comparatively regular growth during the early treatment period (first8days). With time passing and the increase of NaCl concentration, obvious effects on plants'growth show up. On the8th day, relative conductivity of plants treated with NaCl concentration of4.0%obviously rises to4times of CK and MDA content has direct correlativity with relative conductivity. Praline content of Tamarix austromongolica Nakai under salt stress gradually rises, while soluble protein content increases in early treatment period and then gradually decreases. Activities of3protective enzymes all increase first and then decrease under salt stress. Activities of SOD and CAT reach the peak on the14th day, while the activity of POD reaches the peak on the20th day. Chlorophyll content in leaves, optimal photochemical efficiency of photosystem Ⅱ and Pn gradually decrease and have correlativity with each other, the leaves secrete salt gradually incr-eased up to1.624mg/g.. After salt-leaching, all the indices of plants treated with NaCl concentration of1%and2%can be recovered, while the indices of plants treated with NaCl concentration of4.0%can barely recover, but from their own form of growth, osmotic adjustment, antioxidant enzyme regulation of Tamarix austromongolica Nakai, have shown a good salt-tolerant capabilities, able to grow in the higher salt concentration in soil.
引文
1.柴宝峰.甘蒙柽柳与沙棘抗旱性研究[J].应用与环境生物学报,1998,4(1):24-27.
    2.陈少良,李金克,等.钠盐和氯盐胁迫下胡杨木质部汁液ABA、离子浓度和叶片气体交换的变化[J].植物学报,2003,45(5):561-566.
    3.陈涛,王贵美,等.盐胁迫对红麻幼苗生长及抗氧化酶活性的影响[J].植物科学学报,2011,29(4):493-501.
    4.陈业婷,李彩凤,等.甜菜耐盐性筛选及其幼苗对盐胁迫的响应[J].植物生理学通讯,2010,46(11):1121-1128.
    5.崔江慧,谢登磊,常金华.高粱材料耐盐性综合评价方法的初步建立与验证[J].植物遗传资源学报,2012,13(1):35-41.
    6.崔心红,有祥亮,张群.长三角滨海城镇园林绿化植物耐盐性试验研究[J].中国园林,2011,2:93-96.
    7.崔云玲,王生录,等.不同品种油葵对盐胁迫响应研究[J].土壤学报,2011,48(5):1052-1058.
    8.丁能飞,傅庆林,等.盐胁迫对两个大白菜品种抗氧化酶活性及离子吸收的影响[J].浙江农业学报,2008,20(5):322-327.
    9.丁效东,张士荣.不同抗盐机制对柽柳适应盐渍环境的贡献[J].干旱区研究,2007,24(2):207-212.
    10.杜志钊,陈银华,等.空间诱变大麦的耐盐性筛选及大田鉴定[J].中国农学通报,2009,25(23):105-107.
    11.樊瑞苹,周琴,等.盐胁迫对高羊茅生长及抗氧化系统的影响[J].草业学报,2012,21(1):112-117.
    12.葛江丽,石雷,等.盐胁迫条件下甜高粱幼苗的光合特性及光系统Ⅱ功能调节[J].作物学报,2007,33(8):1272-1278.
    13.弋良朋,王祖伟.盐胁迫下3种滨海盐生植物的根系生长和分布[J].生态学报,2011,31(5):1195-1202.
    14.顾大形,陈双林.四季竹对不同浓度NaCl胁迫的生理响应[J].西北植物学报,2011,31(6):1209-1215.
    15.顾峰雪,潘晓玲.中国西北干旱荒漠区盐生植物资源与开发利用[J].干旱区研究,2002,19(4):18-20.
    16.管志勇,陈素梅,等.32个菊花近缘种属植物耐盐性筛选[J].中国农业科学,2010,43(19):4063-4071.
    17.芦治国,於朝广,等.盐胁迫对木槿属两个外来种质生长及叶绿素含量影响[J].林业科技开发,2012,26(1):40-43.
    18.黄有军,王正加,等.盐胁迫下罗汉松生长和生理变化的研究[J].中南林业科技大学学报,2007,27(5):58-61.
    19.克热木·伊力,侯江涛,等.盐胁迫对扁桃光合特性和叶绿体超微结构的影响[J].西北植物学报,2006,26(11):2220-2226.
    20.李宏,邓江宇,等.盐胁迫对盐桦幼树光合特性的影响[J].新疆农业科学,2010,47(2):213-217.
    21.李宏宇,李粉霞,李宝江.葡萄盐害症状与耐盐性鉴定研究[J].中国果树,2010,1:19-23.
    22.李景,刘群录.盐胁迫和洗盐处理对贴梗海棠生理特性的影响[J].北京林业大学学报,2011,33(6):40-46.
    23.李婧男,刘强,等.盐胁迫对沙冬青幼苗生长与生理特性的影响[J].植物研究,2009,29(5):553-558.
    24.李倩,刘景辉,等.盐胁迫对燕麦质膜透性及Na+、K+吸收的影响[J].华北农学报,2009,24(6):88-92.
    25.李永荣,刘永智,等.8个中山杉新无性系耐盐力的水培试验研究[J].江苏林业科技,2007,34(5):1-4.
    26.林栖凤.耐盐植物研究[M].北京:科学出版社,2004.
    27.柳奎,蔡成玺.甘蒙柽柳育苗技术初探[J].河北林业科技,2010,1:11.
    28.马翠兰,刘星辉,等.盐胁迫下柚实生苗生长、矿质营养及离子吸收特性研究[J].植物营养与肥料学报,2004,10(3):319-323.
    29.马焕成,王沙生.胡杨膜系统的盐稳定性及盐胁迫下的代谢调节[J].西南林学院学报,1998,18(1):15-23.
    30.马丽清,韩振海,等.盐胁迫对珠美海棠和山定子膜保护酶系统的影响[J].果树学报,2006,23(4):495-499.
    31.马秀英.ATPase与杨树耐盐性形成机制研究[D].北京林业大学,2009.
    32.米文精,刘克东.大同盆地盐碱地生态修复利用植物的初步选择[J].北京林业大学学报,2011,33(1):49-54.
    33.倪建伟,武香,等.3种白刺耐盐性的对比分析[J].林业科学研究,2012,25(1):48-53.
    34.潘晓飚,黄善军,等.大田全生育期盐水灌溉胁迫筛选水稻耐盐恢复系[J].中国水稻科学,2012,26(1):49-54.
    35.秦景,董雯怡,等.盐胁迫对沙棘幼苗生长与光合生理特征的影响[J].生态环境学报,2009,18(3):1031-1036.
    36.司剑华,卢素锦.低温胁迫对5种柽柳抗寒性生理指标的影响[J].中南林业科技大学学报,2010,30(8):78-81.
    37.宋福楠,杨传平,等.盐胁迫对柽柳超氧化物歧化酶活性的影响[J].东北林业大学学报,2006,34(3):54-56.
    38.童辉,孙锦,等.等渗Ca(NO3)2和NaCl胁迫黄瓜幼苗生长及渗透调节物质含量的影响[J].西北植物学报,2012,32(2):306-311.
    39.王进,李新荣.盐胁迫对盐芥悬浮培养细胞超微结构的影响[J].中国沙漠,2011,31(4):878-883.
    40.王仁雷,华春,等.盐胁迫下不同耐盐性水稻幼苗叶绿素荧光差异性研究[J].江苏农业科学,2008,4:34-37.
    41.王文卿,林鹏.不同盐胁迫时间下秋茄幼苗叶片膜脂过氧化作用的研究[J].海洋学报,2000,22(3):49-54.
    42.王喜艳,张恒明.盐胁迫下硅对黄瓜叶片抗氧化酶活性和膜脂过氧化物的影响[J].生态环境学报,2009,18(4):1455-1459
    43.王霞,侯平.土壤水分胁迫对柽柳体内膜保护酶及膜脂过氧化的影响[J].干旱区研究,2002,19(3):17-20.
    44.王志刚,包耀贤.12个树种耐盐性田间比较试验[J].防护林科技,2000,45(4):9-11.
    45.魏疆,张希明.甘蒙柽柳幼苗生长动态及其对沙漠腹地生境条件的适应策略[J].干旱区地理,2007,30(5):666-672.
    46.武俊英,刘景辉,李倩.盐胁迫对燕麦幼苗生长,K+、Na+吸收和光合性能的影响[J].西北农业学报,2010,19(2):100-105.
    47.谢小丁,邵秋玲,李扬.九种耐盐植物在滨海盐碱地的耐盐能力试验[J].湖北农业科学,2007,46(4):559-561.
    48.邢庆振,郁松林,等.盐胁迫对葡萄幼苗光合及叶绿素荧光特性的影响[J].干旱地区农业研究,2011,29(3):96-100.
    49.徐呈祥,马艳萍,徐锡增.15个枣树品种耐盐性研究[J].广东农业科学,2011,16:31-32.
    50.徐猛,马巧荣,等.盐胁迫下不同基因型冬小麦渗透及离子的毒害效应[J].生态学报,2011,31(3):784-792.
    51.徐威,王瑜,等.NaCl胁迫对白三叶生长及保护酶的影响[J].草地学报,2011,19(3):492-496.
    52.杨敏生,李艳华,等.白杨派杂种无性系及其亲本光合和生长对盐胁迫的反应[J].林业科学,2006,42(2):19-26.
    53.杨秀红,李建民,等.盐胁迫对甘草幼苗生长及其生理指标的影响[J].华北农学报,2006,21(4):39-42.
    54.尹建道,孙仲序.转抗盐碱基因八里庄杨大田释放试验[J].东北林业大学学报,2004,32(3):23-25.
    55.张道远,尹林克.柽柳泌盐腺结构、功能及分泌机制研究进展[J].西北植物学报,2003,33(1):190-194.
    56.张道远,尹林克.柽柳属植物抗旱性能研究及其应用潜力评价[J].中国沙漠,2003,23(3):252-256.
    57.张华新,宋丹,刘正祥.盐胁迫下11个树种生理特性及其耐盐性研究[J].林业科学研究,2008,21(2):168-175.
    58.张建锋.盐碱地的生态修复研究[J].水土保持研究,2008,15(4):74-78.
    59.张蜀秋.植物生理学实验技术教程[M].北京:科学出版社,2011.
    60.张孝仁,徐先英.柽柳属种间耐盐性比较试验[J].中国沙漠,1993,13(1):35-40.
    61.张志良.植物生理学实验指导[M].北京:高等教育出版社,2009.
    62.周希琴,吉前华.盐胁迫下木麻黄幼苗抗氧化酶活性的变化及Ca2+对它的调控[J].植物生理学报,2004,40(2):184-186.
    63. Abdul Wakeel,Stefan Hanstein,etc. Hydrolytic and pumping activity of H+-ATPase from leaves of sugar beet (Beta vulgaris L.) as affected by salt stress[J]. Journal of Plant Phy siology,2010, 167(9):725-731.
    64. Amin Ramezani,Ali Niazi,etc. Quantitative Expression Analysis of TaSOSl and TaSOS4 Genes in Cultivated and Wild Wheat Plants Under Salt Stress[J]. Molecular Biotechnology,2012, Online FirstTM.
    65. AndreDias de Azevedo Neto,etc. Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes[J]. Environmental and Experimental Botany,,2006,56(1):87-94.
    66. Burcu Seckin, Askim Hediye Sekmen. An Enhancing Effect of Exogenous Mannitol on the Antioxidant Enzyme Activities in Roots of Wheat Under Salt Stress[J]. Journal of Plant Growth Regulation,2008,28(1):12-20.
    67. Camilla Pandolfi, Igor Pottosin, Stefano Mancuso,Sergey Shabala. Specificity of Polyamine Effects on NaCl-induced Ion Flux Kinetics and Salt Stress Amelioration in Plants[J]. Plant and Cell Physiology,2009,51 (3):422-434.
    68. Dong-Ha Oh,Sang Yeol Lee,etc. Intracellular consequences of SOS 1 deficiency during salt stress[J]. Journal of Experimental Botany,2010,61 (4):1205-1213.
    69. Gaber M. Abogadallah,Mamdouh M.Serag,etc. Fine and coarse regulation of reactive oxygen species in the salt tolerant mutants of barnyard grass and their wild-type parents under salt stress[J]. Physiologia Plantarum,2010,138(1):60-73.
    70. Gloria Irma Ayala-Astorga. Salinity effects on protein content, lipidperoxidation, pigments, and proline in Paulownia imperialis (Siebold&Zuccarini) and Paulownia fortune(Seemann&Hemsley) grownin vitro[J].ElectronicJournal ofBiotechnology.2010,13(5).
    71. Hagemeyer J, Waisel Y. Excretion of ions (Cd2+, Li+, Na+ and Cl-) by Tamarixaphylla.[J] PhysiologiaPlantarum,1988,73(4):541-546.
    72. HichemHajlaoui,Naceur Ei Ayeb,etc. Differential effects of salt stress on osmotic adjustment and solutes allocation on the basis of root and leaf tissue senescence of two silage maize(Zea mays L.) varieties[J]. Industrial Crops and Products,2010,31(1):122-130.
    73. K. Chakraborty,Raj K.Sairam,etc. Differential expression of salt overly sensitive pathway genes determines salinity stress tolerance in Brassicagenotypes[J]. Plant Physiology andBiochemistry, 2012,51:90-101.
    74. Lijuan Yu,Jianing Nie,etc. Phosphatidic acid mediates salt stress response by regulation of MPK6 in Arabidopsis thaliana[J]. New Phytologist,2010,188(3):762-773
    75. LI-Ting Chen, Ming Luo,etc. Involvement of Arabidopsis histone deacetylase HDA6 in ABA and salt stress response[J]. Journal of Experimental Botany,61(12):3345-3353.
    76. Maali Benzarti, Kilani Ben Rejeb, Ahmed Debez,etc. Photosynthetic activity and leaf antioxidative responses of Atriplex portulacoides subjected to extreme salinity[J]. Acta Physiologiae Plantarum,2012, Online FirstTM.
    77. M. C. Shannon,J.D.Rhoades,etc. Assessment of Salt Tolerance in Rice Cultivars in Response to Salinity Problems in California[J]. Crop Science,1998,38(2):394-398.
    78. Md. AnamulHoque,Eiji Okuma.Exogenous proline mitigates the detrimental effects of salt stress more than exogenous betaine by increasing antioxidant enzyme activities[J].Journal of Plant Physiology.2007,164(5):553-561.
    79. M.M.Azooz,etc. Growth, Lipid Peroxidation and Antioxidant Enzyme Activities as a Selection Criterion for the Salt Tolerance of Maize Cultivars Grown under Salinity Stress[J]. International Journal of Agriculture & Biology,2009,11(1):21-26.
    80. Mohamed Ali Ghars,etc. Phospholipases C and D Modulate Proline Accumulation in Thellungiella halophila/salsuginea Differently According to the Severity of Salt or Hyperosmotic Stress[J]. Plant and Cell Physiology,2012,53(1):183-192.
    81. M.R.Amirjani. Effect of salinity stress on growth, mineral composition.proline content, antioxidantenzymes of soybean [J].American Journal of Plant Physiology.2010,5(6):350-360.
    82. Niya Li, Shaoliang Chen,etc. Effect of NaCl on photosynthesis, salt accumulation and ion compartmentation in two mangrove species, Kandelia candel and Bruguiera gymnorrhiza[J]. Aquatic Botany,2008,88(4):303-310.
    83. R.K Sairam,G.C Srivastava. Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress [J]. Plant Science,2002,162(6):897-904.
    84. ShilpiMahajan,Girdhar K.Pandey,etc. Calcium-and salt-stress signaling in plants:Shedding light on SOS pathway [J]. Archives of Biochemistry and Biophysics,2008,471(2):146-158.
    85. Tsai-Hung Hsieh, Chia-Wen Li.etc. A tomato bZIP transcription factor, S1AREB, is involved in water deficit and salt stress response[J].Planta,2010,231(6):1459-1473.
    86. Vinay Kumar, Varsha Shriram. Enhanced proline accumulation and salt stress tolerance of transgenic indica rice by over-expressing P5CSF129A gene[J].plant biotechnology reports,2010, 4(1):37-48.
    87. YANG Xiao cui. Impact of Salt Stress on Growth and Ion Uptake of Different Parts of Oil Sunflower Seedlings[J]. Agricultural Science &Technology,2011,12(3):354-358.
    88. Y. L. Yang, Y. Y. Zhang, J. Lu, H. Zhang, Y. Liu, Y. Jiang and R. X. Shi. Exogenous H2O2 increased catalase and peroxidase activities and proline content in Nitraria tangutorum callus[J]. Biologia Plantarum,2012,56(2):330-336.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700