若干二聚体的结构和氢键、卤键性质的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Theoretical Studies on Structures and Properties of Hydrogen Bond and Halogen Bond in Some Dimers
  • 作者:李瑞延
  • 论文级别:博士
  • 学科专业名称:物理化学
  • 学位年度:2005
  • 导师:李志儒
  • 学科代码:070304
  • 学位授予单位:吉林大学
  • 论文提交日期:2005-04-01
  • 答辩委员会主席:付宏刚
摘要
使用精确的Counterpoise 优化方法,在MP2 水平得到了系列的氢键、π氢键及π卤键的结构体系。在CCSD(T)水平使用Counterpoise 方法得到了高水平的相互作用能结果,分析和研究了体系结构变化以及氢键和卤键的性质。主要贡献如下:
    1. 对不饱和与饱和分子形成的氢键二聚体CH2O-HF、CH2O-H2O 和CH2O-NH3 体系进行了理论研究,研究发现体系形成环形结构是因为体系中存在一个新的π-type 氢键相互作用。π-type 氢键弯曲了体系的σ-type 氢键,导致二聚体的环形结构形成。
    2. 在C2H4-HF 、C2H3F-HF 、g-C2H2F2-HF 、cis-C2H2F2-HF 和trans-C2H2F2-HF 五个π氢键体系的研究中,分析并总结了F 取代效应对π氢键体系结构和π氢键性质的影响。F 取代效应延长了π氢键,在C2H3F-HF、g-C2H2F2-HF 和cis-C2H2F2-HF 三个体系中,π氢键还进一步发生了偏移或倾斜。研究发现,上面三个体系中也存在着π-type 氢键,π-type 氢键使π氢键发生了弯曲。F 取代效应降低了体系的相互作用能,增大了相互作用能中电子相关贡献。
    3. π卤键C2H4-nFn-ClF (n=0-2) 与π氢键体系的F 取代效应基本类似。但在MP2/aug-cc-pVDZ 水平,使用高精度的CP(counterpoise)优化几何的方法,而得到的C2H4-ClF、C2H3F-ClF、g-C2H2F2-ClF、trans-C2H2F2-ClF 和cis-C2H2F2-ClF 五个二聚体的稳定结构与π氢键体系相比,有下面五个特点:(1).体系的π卤键具有较长的键长(比π氢键体系约长0.5?);(2).具有更大的电子相关效应(比π氢键体系大2-3 倍);
(1) The optimized structures of CH2O-HF, CH2O-H2O, CH2O-NH3, and CH2O-CH4.with all real frequencies were obtained by the MP2 level and four basis bets (6-311G(d,p), 6-31+G(d,p), 6-311++G(2d,2p), and 6-311++G(3df,3pd). The structures of CH2O-HF, CH2O-H2O, and CH2O-NH3 are cycle-shaped. This is because there is a larger bend of their σhydrogen bonds O???H-Y (Y= F, O, N). The results show that the larger bend of σhydrogen bond is caused by a secondary weak interaction. The secondary weak interaction is named π-type hydrogen bond in this paper, and The bend of σ-type H-bond O???H-Y (Y= F, O, N) is illustrated and interpreted by the attractive interaction of a chemically intuitive π-type hydrogen bond. The π-type hydrogen bond is the interaction between one of the H atoms of CH2O and lone pair(s) on the F atom in HF, the O atom in H2O, or the N atom in NH3. By contrast with π-type hydrogen bond in dimers saturated molecule, the π-type hydrogen bond is a new type in π-type hydrogen bond. For CH2O-CH4, because there is not a π-type hydrogen-bond to bend its linear hydrogen bond, the structure of CH2O-CH4
    is a non-cyclic shaped. The interaction energy of hydrogen bonds and the π-type H-bond are calculated and discussed at the CCSD(T) /6-311++G(3df,3pd) level.
    (2) By the counterpoise-correlated potential energy surface method (interaction energy optimization), five structures of C2H4-nFn?HF (n=0, 1, 2) dimers with all real frequencies have been obtained at MP2/aug-cc-pVDZ level. The structure and π-Hydrogen bond of dimer has been changed by the influence of F substituent effect, obviously. By contrast with the π-Hydrogen bond of C2H4-HF, the π-Hydrogen bonds of C2H4-nFn?HF (n=1, 2) are elongated by F substituent effect. For C2H3F-HF, g-C2H2F2-HF, cis-C2H2F2-HF, the π-Hydrogen bonds are further deformed. These changes (elongate, shift and deformation) of π-Hydrogen bond mainly come from deformation of π-electron cloud of C=C bond. The densities of π-electron cloud have deviated or shifted slightly from the molecular vertical plane passing through C=C bond, so the π-Hydrogen bond is also sloped or shifted. The π-Hydrogen bond of C2H3F-HF, g-C2H2F2-HF, and cis-C2H2F2-HF are bent by the π-type H-bond in the dimers. The F substituent effect added the electron correlation contribution of interaction energy. Intermolecular interaction energies of the dimers are calculated to be -3.9 for C2H4-HF, -2.8 for C2H3F-HF, -2.1 for g-C2H2F2-HF, -1.6 for cis-C2H2F2-HF, -1.3 kcal/mol for trans-C2H2F2-HF, at CCSD (T)/aug-cc-pVDZ level.
    (3) The dimers C2H4-nFn-ClF (n=0, 1, 2) are proper model as investigating of π-halogen bond kind in the paper. Using the counterpoise-correlated potential energy surface method (interaction energy optimization), the C2V, C2, C1, Cs and Cs stationary structures of the
引文
[1]. G. C. Pimentel, A. L. Mcclellan, The Hydrogen bond, Freeman and Compary Press: London, 1960.
    [2]. R. Clausius, Ann. Phys., 1857, 100, 353.
    [3]. J. C. Maxwell, Philos. Trans. R. Soc., 1867,157, 49.
    [4]. L. Boltzmann, Sitz. Akad. Wiss., Wien, 1872, 66, 275.
    [5]. Van der waals, J. D. Ph. D Dissertation, Leiden, 1873.
    [6]. G. A. Jeffrey, An Introduction to Hydrogen bonding, Oxford University Press: New York, 1997.
    [7]. G. R. Desiraju; T. Steiner, The Weak Hydrogen Bond; Oxford University Press: Oxford, 1999
    [8]. S. Scheiner,. Hydrogen bonding Oxford University Press: New York, 1997.
    [9]. D. A. Dougherty, Cation-Interactions in Chemistry and Biology: A New View of Benzene, Phe, Tyr, and Trp, Science 1996, 271, 163. D. A. Dougherty and D. A. Stauffer, Science 1990, 250, 1558. J. B. O. Mitchell, C. L. Nandi, S. Ali, J. K. McDonald, J. M. Thornton, S. L. Price, and J. Singh, Nature1993, 366, 413. T. M. Fong, M. A. Cascieri, H. Yu, A. Bansal, C. Swain, and C. D. Strader, Nature 1993, 362, 350. B. Honig and A. Nicholls, Science 1995, 268, 1144.
    [10]. K. S. Kim, M. Dupuis, G. C. Lie and E. Clementi, Chem. Phys. Lett. 1986, 131,451. K. S. Kim, I. Park, S. Lee, K. Cho, J. Y. Lee, J. Kim and J. D. Joannopoulos, Phys. Rev. Lett. 1996, 76, 956. K. S. Kim, S. Lee, J. Kim, and J. Y. Lee, Molecular Cluster Bowl To Enclose a Single Electron, J. Am. Chem. Soc. 1997, 119, 9329. S. Lee, J. Kim, S. J. Lee, and K. S. Kim, Phys. Rev. Lett. 1997, 79, 2038. J. S. Cho, H. Hwang, J. Park, K. S. Oh, and K. S. Kim, Starands vs Ketonands: Ab Initio Study, J. Am. Chem. Soc. 1996, 118, 485. K. S. Kim, C. Cui, and S. J. J. Cho, Phys. Chem. 1998, 102, 461.
    [11]. J.-M. Lehn, Science 1993, 260, 1762. J.-M. Lehn, Supramolecular Chemistry -Scope and Perspectives Molecules, Supermolecules, and Molecular Devices (Nobel Lecture), Angew. Chem. Int. Ed. Engl. 1998, 27, 89. D. J. Cram, Science 1998, 27, 1009.
    [12]. D. Philip, and J. F. Stoddart, Self-Assembly in Natural and Unnatural Systems, Angew. Chem. Int. Ed. Engl. 1996, 35, 1154.
    [13]. W. Klemperer, Science 1992, 257, 887. M. J. Elrod, and R. J. Saykally, Many-Body Effects in Intermolecular Forces, Chem. Rev. 1994, 94, 1975. T. S. Zwier, Annu. Rev. Phys. Chem. 1996, 47, 205.
    [14]. S. J. Grabowski, W. A. Sokalski, J. Leszczynski, Nature of X-H+ ···-H-Y Dihydrogen Bonds and X-H···Interactions, J. Phys. Chem. A. 2004, 108, 5823.
    [15]. S. J. Grabowski, High-Level Ab Initio Calculations of Dihydrogen-Bonded Complexes, J. Phys. Chem. A 2000, 104, 5551.
    [16]. S. Trudel, and D. F. R. Gilson, High-Pressure Raman Spectroscopic Study of the Ammonia-Borane Complex. Evidence for the Dihydrogen Bond, Inorg. Chem. 2003, 42, 2814.
    [17]. R. Custelcean, J. E. Jackson, Dihydrogen Bonding: Structures, Energetics, and Dynamics, Chem. Rev. 2001, 101, 1963.
    [18]. E. Cubero, M. Orozco, P. Hobza, F. J. Luque, Hydrogen Bond versus Anti-Hydrogen Bond: A Comparative Analysis Based on the Electron Density Topology, J. Phys. Chem. A. 1999, 103, 6394.
    [19]. I. Rozas, I. Alkorta, J. Elguero, Inverse Hydrogen-Bonded Complexes, J. Phys. Chem. A. 1997, 101, 4236.
    [20]. P. Hobza, ?. V. H. Zdenek, B. Konstantin, R. Bernd, et. al. Anti-hydrogen bond between chloroform and fluorobenzene Chem. Phys. Lett. 1999, 299,180.
    [21]. I. Rozas, I. Alkorta, J. Elguero, Bifurcated Hydrogen Bonds: Three-Centered Interactions, J. Phys. Chem. A. 1998, 102, 9925.
    [22]. C. A. Deakyne, M. Meot-Ner (Mautner), Ionic Hydrogen Bonds in Bioenergetics. 4. Interaction Energies of Acetylcholine with Aromatic and Polar Molecules, J. Am. Chem. Soc. 1999, 121, 1546.
    [23]. M. Meot-Ner (Mautner), The Ionic Hydrogen Bond, Chem. Rev. 2005, 105, 213.
    [24]. K. Hermansson, Blue-Shifting Hydrogen Bonds, J. Phys. Chem. A. 2002, 106, 4695.
    [25]. W. Wang, N.-B. Wong, W. Zheng, A. Tian, Theoretical Study on the Blueshifting Halogen Bond, J. Phys. Chem. A. 2004, 108, 1799.
    [26]. A. Kovacs, A. Szabo, D. Nemcsok, I. Hargittai, Blue-Shifting C-H···X (X = O, Halogen) Hydrogen Bonds in the Dimers of Formaldehyde Derivatives, J. Phys. Chem. A. 2002, 106, 5671.
    [27]. B. Reimann, K. Buchhold, S. Vaupel, B. Brutschy, Z. Havlas, V. Spirko, P. Hobza, Improper, Blue-Shifting Hydrogen Bond between Fluorobenzene and Fluoroform J. Phys. Chem. A. 2001, 105, 5560.
    [28]. P. Hobza and Z. Havlas, Blue-Shifting Hydrogen Bonds Chem. Rev. 2000, 100, 4253.
    [29]. W. Zierkiewicz, D. Michalska, Z. Havlas, P. Hobza, Study of the Nature of Improper Blue-Shifting Hydrogen Bonding and Standard Hydrogen Bonding in the X3CH OH2 and XH OH2 Complexes (X=F, Cl, Br, I): A Correlated Ab Initio Study, Chem.Phys.Chem 2002, 3, 511.
    [30]. S. A. C. McDowell, Blue-shifting hydrogen bonding in N2···HKrF, J. Chem. Phys. 2003, 118, 7283.
    [31]. Wang, Bing-Qiang; Li, Zhi-Ru; Wu, Di; Hao, Xi-Yun; Li, Ru-Jiao; Sun, Chia-Chung. Single-electron hydrogen bonds in the methyl radical complexes H3C HF and H3C HCCH: an ab initio study, Chem. Phys. Lett. 2003, 375, 91.
    [32]. P. Franchi, M. Lucarini, P. Pedrielli, G. F. Pedulli, Nitroxide Radicals as Hydrogen Bonding Acceptors. An Infrared and EPR Study. Chem.Phys.Chem. 2002, 3, 789.
    [33]. W. Baoshan; H. Hua; G. Yueshu Existence of hydrogen bonding between the hydroxyl radical and hydrogen peroxide: OH·H2O2, Chem. Phys. Lett. 1999, 309, 274.
    [34]. G. P. F. Wood; D. J. Henry; L. Radom, Performance of the RB3-LYP, RMP2, and UCCSD(T) Procedures in Calculating Radical Stabilization Energies for NHX Radicals, J. Phys. Chem. A. 2003, 107, 7985.
    [35]. I. W. M. Smith; A. R. Ravishankara; Role of Hydrogen-Bonded Intermediates in the Bimolecular Reactions of the Hydroxyl Radical, J. Phys. Chem. A. 2002, 106, 4798.
    [36]. Z.R. Li; D. Wu; Z. S. Li; X. R. Hao; F. M. Tao; C.C. Sun Long Range -Type Hydrogen Bond in the Dimers (HF)2, (H2O)2, and H2O-HF, J. Phys. Chem. A. 2001, 105, 1163.
    [37]. H.D. Lutz, Structure and strength of hydrogen bonds in inorganic solids, J. Mol. Stru. 2003, 646, 227.
    [38]. Li, R.Y. Li, Z. R. Wu, D. Hao, X.Y. Li, R. J. Sun, C. C. Long-range -type hydrogen bond in dimers CH2 HF, CH2O H2O, and CH2O NH3, Inter. J. Quan. Chem. 2005, 103, 157.
    [39]. P. Tarakeshwar; H. S. Choi; K. S. Kim; Olefinic vs Aromatic -H Interaction: A Theoretical Investigation of the Nature of Interaction of First-row Hydrides with Ethene and Benzene, J. Am. Chem. Soc. 2001, 123, 3323.
    [40]. P. Tarakeshwar, Hyuk Soon Choi, Sang Joo Lee, Jin Yong Lee, and K. S. Kim A theoretical investigation of the nature of the -H interaction in ethene–H2O, benzene–H2O, and benzene–(H2O)2, J. Chem. Phys. 1999, 111, 5838.
    [41]. Rui-Yan Li, Zhi-Ru Li, Di Wu, Ying Li, Wei Chen, and Chia-Chung Sun Characteristic of structures and -hydrogen bond of dimers C2H4–nFn-HF (n = 0,1,2), J. Chem. Phys. 2004, 121, 8775.
    [42]. H. Umeyama, K. Morokuma, S. Yamabe, Molecular orbital studies of electron donor-acceptor complexes. 4. Energy decomposition analysis of halo-complexes: ammonia-fluorine, -chlorine, -chlorine fluoride, methanamine-chlorine fluoride, formaldehyde-fluorine, hydrogen fluoride-chlorine fluoride, and fluorine-fluorine, J. Am. Chem. Soc. 1977, 99(2), 330.
    [43]. Kollman, P.; Dearling, A.; Kochanski, E. Ab initio self-consistent field calculations on molecular iodine-ammonia and hydrogen iodide-ammonia. The classic "charge-transfer" interaction, an example of gas-phase proton transfer, and the duality of Lewis acid sites on hydrogen iodide, J. Phys. Chem. 1982, 86, 1607.
    [44]. I. Roeggen, T. Dahl, Analysis of electron donor-acceptor complexes: H3N.cntdot.F2, H3N.cntdot.Cl2, and H3N.cntdot.ClF, J. Am. Chem. Soc. 1992, 114, 511.
    [45]. S. L. Price, A. J. Stone, J. Lucas, R. S. Rowland, A. E. Thornley; The Nature of -Cl.cntdot..cntdot..cntdot.Cl-Intermolecular Interactions, J. Am. Chem. Soc. 1994, 116, 4910.
    [46]. (a) Legon, A. C.; Lister, D. G.; Thorn, J. C. J. Chem. Soc. Chem. Commun. 1994, 757. (b) Legon, A. C.; Lister, D. G.; Thorn, J. C. J. Chem. Soc., Faraday Trans. 1994, 90, 3205. (c) Bloemink, H. I.; Legon, A. C.; Thorn, J. C., J. Chem. Soc., Faraday Trans. 1994, 90, 781. (d) Legon, A. C., J. Chem. Soc., Faraday Trans. 1995, 91, 781. (e) Legon, A. C., Chem.-Eur. J. 1998, 4, 1890.
    [47]. Desiraju, G. R. Supramolecular Synthons in Crystal Engineering -A New Organic Synthesis, Angew. Chem., Int. Ed. Engl. 1995, 34, 2311.
    [48]. Latajka, Z.; Berski, S. THEOCHEM 1996, 371, 11.
    [49]. E. Ruiz, D. R. Salahub, A. Vela, Charge-Transfer Complexes: Stringent Tests for Widely Used Density Functionals, J. Phys. Chem. 1996, 100, 12265.
    [50]. J. P. M. Lommerse, A. J. Stone, R. Taylor, F. H. Allen, The Nature and Geometry of Intermolecular Interactions between Halogens and Oxygen or Nitrogen, J. Am. Chem. Soc. 1996, 118, 3108.
    [51]. Bürger, H. Gas-Phase Complexes: Possible Prereactive Gateways for Reactions of Halogens with NH3, H2O, and H2S, Angew. Chem., Int. Ed. Engl. 1997, 36, 718.
    [52]. Y. Zhang, C.-Y. Zhao, X.-Z. You, Systematic Theoretical Study of Structures and Bondings of the Charge-Transfer Complexes of Ammonia with HX, XY, and X2 (X and Y are Halogens), J. Phys. Chem. A. 1997, 101, 2879.
    [53]. I. Alkorta, I. Rozas, J. Elguero, Charge-Transfer Complexes between Dihalogen Compounds and Electron Donors, J. Phys. Chem. A. 1998, 102, 9278.
    [54]. V. Amico, S. V. Meille, E. Corradi, M. T. Messina, G. Resnati, erfluorocarbon-Hydrocarbon Self-Assembling. 1D Infinite Chain Formation Driven by Nitrogen···Iodine Interactions, J. Am. Chem. Soc. 1998, 120, 8261.
    [55]. Farina, A.; Meille, S. V.; Messina, M. T.; Metrangolo, P.; Resnati, G.; Vecchio, G. Resolution of Racemic 1,2-Dibromohexafluoropropane through Halogen-Bonded Supramolecular Helices, Angew. Chem., Int. Ed. Engl. 1999, 38, 2433.
    [56]. Corradi, E.; Meille, S. V.; Messina, M. T.; Metrangolo, P.; Resnati, G. Halogen Bonding versus Hydrogen Bonding in Driving Self-Assembly Processes, Angew. Chem., Int. Ed. 2000, 39, 1782.
    [57]. G. Valerio, G. Raos, S. V. Meille, P. Metrangolo, G. Resnati, Halogen Bonding in Fluoroalkylhalides: A Quantum Chemical Study of Increasing Fluorine Substitution, J. Phys. Chem. A. 2000, 104, 1617.
    [58]. A. Karpfen, Charge-Transfer Complexes between NH3 and the Halogens F2, ClF, and Cl2: An ab Initio Study on the Intermolecular Interaction, J. Phys. Chem. A. 2000, 104, 6871.
    [59]. Walsh, R. B.; Clifford, W.; Padgett, C. W.; Metrangolo, P.; Resnati, G.; Hanks, T. W.; Pennington, W. T. Crystal Engineering through Halogen Bonding: Complexes of Nitrogen Heterocycles with Organic Iodides, Cryst. Growth Des. 2001, 1, 165.
    [60]. Metrangolo, P.; Resnati, G. Halogen Bonding: A Paradigm in Supramolecular Chemistry, Chem.-Eur. J. 2001, 7, 2511.
    [61]. P. Romaniello, F. Lelj, Halogen Bond in (CH3)nX (X = N, P, n = 3; X = S, n = 2) and (CH3)nXO (X = N, P, n = 3; X = S, n = 2) Adducts with CF3I. Structural and Energy Analysis Including Relativistic Zero-Order Regular Approximation Approach in a Density Functional Theory Framework, J. Phys. Chem. A. 2002, 106, 9114.
    [62]. Nangia, A. Cryst. Eng. Comm. 2002, 17, 1
    [63]. Burton, D. D.; Fontana, F.; Metrangolo, P.; Pilatid, T.; Resnatic, G. Tetrahedron Lett. 2003, 44, 645.
    [64]. W. Wang, N.-B. Wong, W. Zheng, A. Tian, Theoretical Study on the Blueshifting Halogen Bond, J. Phys. Chem. A. 2004, 108, 1799.
    [65]. Forni, A.; Metrangolo, P.; Pilati, T. and Resnati, G. Halogen Bond Distance as a Function of Temperature, Crystal Growth & Design, 2004, 4, 291.
    [66]. J. P. M. Lommerse, A. J. Stone, R. Taylor, F. H. Allen, The Nature and Geometry of Intermolecular Interactions between Halogens and Oxygen or Nitrogen, J. Am. Chem. Soc. 1996, 118, 3108.
    [67]. S. F. Boyns, F. Bermardi, Mol. Phy. 1970, 19, 553.
    [68]. D. E. Woon, Benchmark calculations with correlated molecullar wave functions. V. The determination of ticcurate ab hifio intermolecular potentlals for He2, Ne2, and Ar2, J. Chem. Phys. 1994, 100, 2838.
    [69]. Fu-Ming, Tao; Zhiru, Li; Yuh-Kang, Pan An accurate ab initio potential energy surface of He-H2O, Chem. Phys. Lett. 1996, 255,179.
    [70]. G. Chalasinski, M. M. Szczesniak, Origins of Structure and Energetics of van der Waals Clusters from ab Initio Calculations, Chem. Rev. 1994, 94, 1723.
    [70]. Umeyama, H.; Morokuma, K.; Yamabe, S. Molecular orbital studies of electron donor-acceptor complexes. 4. Energy decomposition analysis of halo-complexes: ammonia-fluorine, -chlorine, -chlorine fluoride, methanamine-chlorine fluoride, formaldehyde-fluorine, hydrogen fluoride-chlorine fluoride, and fluorine-fluorine, J. Am. Chem. Soc. 1977, 99, 330.
    [71]. Kollman, P.; Dearling, A.; Kochanski, E. Ab initio self-consistent field calculations on molecular iodine-ammonia and hydrogen iodide-ammonia. The classic "charge-transfer" interaction, an example of gas-phase proton transfer, and the duality of Lewis acid sites on hydrogen iodide, J. Phys. Chem. 1982, 86, 1607.
    [72]. Molecular Interactions: From Van der Waals to Strong Bound Complexes; Scheiner, S., Ed.; Wiley: Chichester, 1997
    [73]. Jeffrey, J. A.; Saenger, W. Hydrogen Bonding in Biological Structures; Springer-Verlag: Berlin, 1991.
    [74]. W. Z. Wang, N. B. Wong, W. X. Zheng, A. M. Tian, Theoretical Study on the Blueshifting Halogen Bond, J. phys. Chem. A. 2004, 108, 1799.
    [75]. Forni, A.; Metrangolo, P.; Pilati, T. and Resnati, G. Halogen Bond Distance as a Function of Temperature, Crystal Growth & Design, 2004, 4, 291.
    [76]. Lommerse, J. P. M.; Stone, A. J.; Taylor, R. and Allen, F. H. The Nature and Geometry of Intermolecular Interactions between Halogens and Oxygen or Nitrogen, J. Am. Chem. Soc. 1996, 118, 3108.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700