农药悬浮剂流变学特性及贮存物理稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为探索不同因素对农药悬浮剂(SC)贮存物理稳定性的影响,指导农药悬浮剂配方组份的选择,构建优良的农药悬浮体系,本文以40%噻嗪酮和50%多菌灵悬浮体系为研究对象,通过国内外几种主要的SC专用、新型润湿分散剂的性能、农药悬浮剂的加工工艺、悬浮体系的流变特性等方面,研究了农药悬浮体系的贮存物理稳定性。
     润湿分散剂的选择是影响农药悬浮剂贮存物理稳定性的主要因素,本文采用流点法和尝试法相结合的方式,结合增粘剂的筛选,通过测定悬浮剂的主要技术指标,对几种润湿分散剂进行性能评价。结果表明,羧酸盐类表面活性剂在40%噻嗪酮悬浮剂的研究中各项性能优越,尤其是与烷基磺酸盐类的WLNO UK分散剂配合使用,能有效提高制剂的各项指标性能。烷基酚聚氧乙烯醚磷酸酯类表面活性剂、烷基磺酸盐类等表面活性剂在50%多菌灵悬浮剂中应用时均对温度表现出较为敏感的现象,相关制剂在热贮条件下粘度上升。特别是不同厂家生产的同种原药,对表面活性剂的使用影响也不同,使得悬浮体系的稳定性也存在很大差异。
     通过比较立式、卧式两类砂磨机和不同粒径、材质的研磨介质对悬浮剂研磨效率及贮存物理稳定性的影响。结果表明,立式砂磨机AO6314比其它两种立式砂磨机的研磨效率显著提高;卧式砂磨机比立式砂磨机研磨能力提高2倍以上。研磨介质对研磨效率也具有显著影响,粒径小的玻璃珠比粒径大的玻璃珠研磨效率更高,粒径相同的玻璃珠与氧化镐珠之间的研磨效率没有显著差异。不同的加工工艺主要影响了悬浮制剂的颗粒粒径,并且最终影响了制剂的贮存物理稳定性。利用流变仪,研究了不同增粘剂、不同分散剂对50%多菌灵悬浮体系流变特性的影响。结果发现,影响流变特性的主要原因是分散剂的结构性质不同,以及分散剂与黄原胶等增粘剂的协同作用不同。TERSPERSE? 4896分散剂对悬浮体系的流变体为假塑性流体,与黄原胶协同作用不会改变该流体特性;TERSPERSE? 2210分散剂对悬浮体系流变随贮存时间的延长变化较大,特别是与黄原胶协同作用使得悬浮体系由假塑性流体向膨胀性流体转变;SOPROPHOR SC分散剂也使得悬浮体系随贮存时间由假塑性流体向膨胀性流体转变,但是,加入适当的黄原胶或膨润土能减缓甚至抑制这种转变,这在悬浮体系流变机理中具有重要研究意义。目前,国内关于农药悬浮剂流变学研究,均为假塑性流体,还没有关于膨胀性流体的相关研究报道。
     假塑性流体在农药中的研究主要是各种流变参数与制剂贮存物理稳定性的相关性,本文在研究了这几项参数与制剂的贮存物理稳定性关系发现,稳定度St与同一悬浮体系的稳定性显示了一定的相关性,St值越大,悬浮体的贮存物理稳定性越好。而表观粘度、卡森屈服值、相对屈服值则无明显规律性。在此研究基础上首次提出了τx值(假塑性流体向宾汉流体转变的临界值),实验结果表明τx值大小与制剂的贮存物理稳定性成正相关。
     农药悬浮剂是一个相当复杂的体系,不同农药原药的性能差异很大,在具体农药悬浮剂产品的研制中,仍要通过实验对有关助剂配方、工艺进行筛选。不过,能从机理上对农药悬浮剂的贮存物理稳定性有所认识,并结合开展分散助剂在农药原药上吸附的研究,农药悬浮剂的流变学研究,定会有助于我国对农药悬浮剂这一新剂型的研制、开发。
To explore different factors on the physical storage stability of the pesticide suspension concentrate, guide the choice of pesticide component, construct excellent pesticide suspension system, the physical storage stability of 40% buprofezin SC and 50% carbendazim SC were studied by the performance evaluation of several major novel dedicated wetting-dispersant with the research of processing technic and rheology property.
     The choice of wetting-dispersant was the major factor in affecting the suspension physical storage stability. Several wetting-dispersants were estimated by mensurating the major technical parameters of SC, Integrating flow point method and trial method with the choice of thicken agents. The results showed that, the performances of carboxylate surfactant were excellent in 40% buprofezin SC, especially used with alkane sulfonate WLNO UK. The surfactants of alkylphenol ethoxylates, alkane sulfonate and so on were sensitive to temperature in 50% carbendazim SC. Viscosity of the relative suspension increased in hot storage. In particular,the impact of surfactant was different in the same type of TC produced by different manufacturers.
     Comparing the effects of different vertical, horizontal sand mills and different particle size, material grinding mediums to suspension grinding efficiency and physical storage stability, the result showed that,the vertical sand mill AO6314 was more efficient than other two vertical sand mills. And the horizontal sand mill was more efficient than vertical sand mills. The grinding medium also had significant impact on grinding efficiency. The smaller beadings were more efficient than the larger, and there was no significant difference between beading and pickax bead, a heavy metal. The difference of processing technic affected the physical storage stability of SC, due to the different particle size created in suspension.
     The influence of different thicken agents and dispersants to 50% carbendazim SC was tested by rheometer. The results showed that, The molecular structure of different dispersants and the different synergistic reactions between dispersant and xanthan gum (XG) were the main reasons of the influence of the flows. The rheological models of SC with dispersant TERSPERSE? 4896 were pseudoplastic fluids, which didn’t changed with XG. The rheological models of suspension with dispersant TERSPERSE? 2210 had great changes along with the storage, pseudoplastic fluid change into dilatant fluid especially with the synergistic reaction of XG. The suspension with dispersant SOPROPHOR SC had the same change, but this transform can be slow up or even restrained through adding appropriate quantity of XG or bentonite. The research had significance in rheological mechanism. By now, there isn’t any report about dilatant fluid in pesticide suspension system, except pseudoplastic fluid.
     The pseudoplastic fluid studied in pesticide SC was about the pertinences between rheological parameters and the physical storage stability of formulation. We tested the pertinences and found that, in the same SC system, stability index St had a certain pertinence to physical storage stability. The St larger, the stability better. And the relative viscosity, casson yield value, relative yield value had no pertinence with physical storage stability. Base on the research, we put forwardτx(the critical value of pseudoplastic fluid changing into bingham fluid), and the result of the test showed that there was a positive correction betweenτx and physical storage stability of formulation.
     The pesticide suspension concentrate is a very complex system. there is considerable variability in the performance of different TC. In the research of pesticide SC, we should still filtrate correlative adjuvants and processing technic by lots of experiments. But the knowledge of physical storage stability of pesticide SC got in mechanism must be helpful to the development of pesticide SC in our country, combing with the adsorption research of dispersant in pesticide TC and the rheology.
引文
[1] 陈荣圻. gemini 型表面活性剂及其合成与应用. 印染助剂,2006, 23 (2): 1~9.
    [2] 陈宗道,李洪军. 海藻酸钠溶液的流变学特性研究. 西南农业大学学报,1992, 14(1): 90~93.
    [3] 成家壮. 助剂在农药悬浮剂中的作用. 广州化工,2002,30(3): 1~3.
    [4] 董元彦等. 物理化学. 科学出版社,1998.
    [5] 冯猛,杜中杰,张晨等. 洁净浓乳液聚合物粒子的制备. 北京化工大学学报, 2002, 29(1): 56~58.
    [6] 付冀峰,徐宝财,朱承根. 二聚表面活性剂的性质及其应用. 日用化学工业, 2001,5: 41~42.
    [8] 高德霖.农药悬浮剂的物理稳定性问题.江苏化工,1997,25 (10): 1~5.
    [8] 郭武棣. 液体制剂[M]. 北京: 化学工业出版社,2004.
    [9] 韩熹莱. 农药概论[M]. 北京:北京农业大学出版社,1994.
    [10] 何林,慕立义,王金信. 40%氰·莠悬浮剂的物理稳定性研究. 农药,2002,141: 22~24.
    [11] 何林,慕立义. 农药悬浮剂物理稳定性的预测和评价. 农药科学与管理, 2001,22 (5): 10~12.
    [12] 韩家骏,张俊明. β-萘磺酸盐甲醛缩合物阴离子表面活性剂. 太原工业大学学报,1995, 26(4): 34~39.
    [13] 胡国华. 功能性食品胶[M]. 北京:化学工业出版社,2003, 11~12.
    [14] 华乃震. 农药悬浮剂的进展、前景和加工技术. 现代农药,2007, 1(6): 1~7.
    [15] 黄啟良,李风敏,袁会珠等. 颗粒粒径和粒谱对悬浮剂贮存物理稳定性影响研究. 农药学学报,2001, (3): 77~80.
    [16] 吉武科译. 黄原胶在食品及其它工业品上的应用. 山西食品工业,1994, 4: 11~15.
    [17] 季文美,朱照宣. 力学名词[M]. 北京:科学出版社. 1993.
    [18] 姜文勇,王珩,崔德生. 新型聚羧酸盐助洗效率的评价. 应用化工,2006, 35(1): 38~40.
    [19] 孔宪滨,徐妍,郭嘉等. 热熔凝聚法加工农药悬浮剂研究. 农药,2004, 12(43): 539~541.
    [20] 蓝仁华,欧阳新平,杨卓如等. 平均聚合度对十二烷基多苷性能的影响. 高校化学工程学报,2000, 14(5): 458~460.
    [21] 凌世海. 农药剂型加工工业现状和发展建议. 安徽化工,2001 ,118 (4) : 2~5.
    [22] 利乐公司新版.乳品加工手册--流变学[M]. 瑞典利乐公司出版. 2002.
    [23] 廖福龙. 血液流变学的规范化与新进展. 中国微循环,2002, 3(6): 133~135.
    [24] 刘梅堂,韦园红,史济斌等,高分子 PVP 吸附对胶体 Zeta 电位的影响. 中国粉体技术,2001,7 (2): 1~4.
    [25] 吕会田,陈存社. 磷酸酯盐型表面活性剂概述. 日用化学工业,2005, 35(3): 174~178.
    [26] 路福绥,刘军,薛刚,盛锋. 50 %复方多菌灵悬浮剂的流变特性研究. 农药,1999, 12(38): 11~12.
    [27] 路福绥,刘军,薛刚. 铜高尚悬浮剂的流变特性研究. 农药,2000, 39 (6) : 19~20.
    [28] 路福绥. 农药悬浮剂的物理稳定性. 农药,2000, 10(39): 8~10.
    [29] 罗太安,刘晓东,陈泉水. 有机膨润土的制备及其在涂料中的应用. 化工矿物与加工,2005, 11: 15~17.
    [30] 麻建国,E. Dickinson, M. J. W. Povey. 黄原胶体系的流变学及糖和盐对体系的影响. 无锡轻工业大学学报,1998, 1(17): 1~7.
    [31] 毛宏志,宋淑娥,周爱秋等. 粘度及流变性在实验教学中的应用. 实验技术与管理,2007, 5(24): 20~22.
    [32] 潘立刚,陶岭梅,张兴. 农药悬浮剂研究进展. 植物保护,2005, 2(31): 17~20.
    [33] 潘立刚,刘惕若,陶岭梅,张兴. 种衣剂及其关键技术评述. 农药,2005,10(44): 437~440.
    [34] 彭志乾,李星. β-萘磺酸甲醛缩合物钠盐各核体数对水泥浆的分散作用. 平顶山工学院学报,2003, 12(2): 34~45.
    [35] 邱俊,宋吉勇,吕宪俊. 蒙脱石矿物凝胶流变性能变化规律研究. 非金属矿,2007, 3(30):1~4.
    [36] 任俊,卢寿慈. 固体颗粒的分散. 粉体技术,1998, 4(1): 25~33.
    [37] 单枢正,韦国顺. 聚羧酸盐类高分子洗涤助剂的结构与性能. 丙烯酸化工与应用,2001, 14(4): 1~10.
    [38] 邵维忠. 农药助剂[M] . 北京:化学工业出版社. 2003.
    [39] 沈德隆,周瑛,唐蔼淑等. 农药多组分悬浮体系的流变学行为研究. 农药,1995, 5(34): 6~9.
    [40] 沈德隆,谭成侠. 粉·福(粉锈宁+福美双)悬浮剂物理稳定性的研究. 农药,1998, 11(37): 11~13.
    [41] 沈娟,黄啟良,夏建波等. 40%噻嗪酮悬浮剂的流变学行为研究[C] .第七届新农药创制会议论文集. 杭州:中化化工研究总院. 2007, 518~521
    [42] 孙成功,谢亚雄,李保庆等. 分散剂分子结构特征对煤浆流变特性的影响. 燃料化学学报,1997, 3(25): 213~217.
    [43] 谭成侠,沈德隆. 粉福悬浮体系流变学行为的研究. 浙江工业大学学报,1998, 26(2): 98~103.
    [44] 唐学原. SiC 陶瓷浆料流变性能的研究. 厦门大学学报,2004, 43(4): 528 ~ 531.
    [45] 田可. 国内脂肪酸甲酯磺酸盐的动态. 日用化学品科学,2005, 28(2): 13.
    [46] 王宝忠. 黄原胶调查报告. 化工科技市场,2003, 11: 23~24.
    [47] 王春伟. 膨润土增粘剂流变剂的特性与应用. 涂料工业,1999, 12: 18~20.
    [48] 王燕民,李新衡. 湿法超细研磨中无机材料浆体的流变性研究. 硅酸盐学报,2006, 5(34): 585~592.
    [49] 韦园红,虞大红,叶汝强. 聚乙烯醇在α-A1203、SiO2 颗粒上的吸附及对 Zeta 电位的影响. 华东理工大学学报,2001, 27 (1): 99~102.
    [50] 魏玉娟,师伟力. 磷酸酯类表面活性剂的现状及发展. 河北化工,2004, 1: 1~5.
    [51] 吴其晔编. 高分子材料流变学[M]. 北京:高等教育出版社. 2002.
    [52] 伍秋美,阮建明,黄伯云等. 二氧化硅分散体系在应力剪切过程中粘弹性及能耗研究 .物理化学学报,2006, 22(9): 1075~1078.
    [53] 夏良树,陈仲清,聂长明等. 脂肪醇聚氧乙烯醚羧酸盐的泡沫性能研究. 化学世界,2004, 1: 17~18.
    [54] 谢红璐,王家骅. 聚萘磺酸盐体系对种衣剂悬浮性研究. 农药,2003, 42(3): 21~23.
    [55] 邢书荣,庞宝才. EO-PO嵌断共聚物的结构剖析. 精细化工,1990, 7: 84~85.
    [56] 徐雪峰,蔡跃波,孙红尧等. 聚羚酸减水剂分子结构表征及其与性能的关系研究. 新型建筑材料,2006, 1: 55~57.
    [57] 徐义宽. 农药胶悬剂的流变学行为、配方和制造工艺. 农药加工技术研究讨会论文集. 1991,1~61.
    [58] 杨代斌,黄啟良,袁会珠等. 农药悬乳体系流变学特性研究. 农药学学报,2002, 4(4): 75~78.
    [59] 杨秀全,韩建英,李佩秀等. 醇醚羧酸盐的工业应用性能研究. 日用化学工业,2001, 1(31): 5~8.
    [60] 袁龙蔚. 流变力学[M]. 北京:科学出版社. 1986
    [61] 张红梅,王丽珠. 新型表面活性剂及其应用. 洗净技术,2003, 10: 66~70
    [62] 张文吉,李学锋,王成菊. 农药加工及使用技术[M]. 北京:中国农业大学出版社. 1998, 9:52~62
    [63] 张兴,李广泽,马志卿. 试论农药无公害化. 西北农林科技大学报,2002, 30(3): 130~136.
    [64] 赵向阳,张洁,尤源. 钻井液荒原胶胶液的流变特性研究. 天然气工业,2007, 3(27): 72~75.
    [65] 郑铁军. 农药新剂型的研究. 黑龙江农业科学,2003, 1: 35~37.
    [66] 仲苏林. 农药新剂型的加工和推广思路. 农药科学与管理,2003, 24(5): 28~29.
    [67] 周本新等. 农药新剂型[M]. 北京:化学工业出版社. 1997.
    [68] 朱书全,邹立壮,黄波等. 研究水煤浆添加剂和煤之间相互作用规律研究Ⅰ . 复合煤颗粒间的相互作用对水煤浆流变性的影响. 燃料化学学报,2003, 6(31): 519~524.
    [69] Nielsen L E. 聚合物流变学[M](范庆容译). 北京:科学出版社. 1983.
    [70] И.С.拉甫罗夫. 胶体化学实验[M](赵振国译). 北京:高等教育出版社. 1992.
    [71] Tadros T F. 农药胶悬剂物理稳定性的控制和评定(周奎南摘译). 农药工业译丛,1980, 6: 7~12.
    [72] Charles Q. Chen, Ph. D. 纸张涂料流变学及其测量技术. 中国造纸学会学术报告会论文集. 2003.
    [73] Alam E, Holmberg K. Heterogemini Surfactants. Advances in Colloid and Interface Science, 2002, 7:13~46
    [74] Barnes H A. Thixotropy—a review. Journal of Non-Newtonian Fluid Mechanics, 1997, 70(1-2): 1~33.
    [75] Bernhard T C, Reinsch E, Husmann K. The influence of suspension properties on ultra-fine grinding in stirred ball mills. Powder Technol, 1999, 105(1): 357~361.
    [76] Chern C S, Lee C K, Chang C J. Synthesis and Characterization of Amphoteric Latex Particles. Colloid & Polymer Science, 2003, 281(11): 1092~1098.
    [77] Crane J, Schiffer D. Technion-Israel Institule of Technology. J. Polymer Sci, 1957, 23: 93~97.
    [78] Duro R, Gómez-Amoza J L, Martínez-Pacheco R, et al. Adsorption of polysorbate 80 on pyrantel pamoate: effects on suspension stability. International Journal of Pharamaceutics, 1998, 165(2): 211~ 216.
    [79] Edgar W S. Stabilizing agents for agricultural suspensions and emulsions . Ind Chem Prod Res Dev, 1982, 21: 285~290.
    [80] Gao M, Forssberg E. The influence of slurry rheology on ultra-fine grinding in a stirred ball mill[A]. 18th Intemational Mineral Processing Congress[C], Sydney, Australian, 1993, 237~244.
    [81] Holmberg K. Nature Surfactants. Colloid & Interface Science, 2001, 6: 148~159.
    [82] Knowles D A. Trends in Pesticide Formulations [M]. London:Agrow Reports,2001:45~68.
    [83] Knowles D A. Chemistry and Technology of Formulations [M]. Netherland: Kluwer Academic Publishers, 1998: 80~85, 187~189.
    [84] Koopal L K,Hlady V and Lyklema J .Electrophylene oxide and polyvinyl alcohol on silver iodide. J .Colloid & Interface Sci, 1988, 121(I): 49~62.
    [85] Luckham P F. The physical stability of suspension concentrates with particular reference to pharmaceutical and pesticide formulations. Pesticide Science, 1989, 25(1): 25~34
    [86] Malcolm A F, Graham R Kneebone. Application of rheological measurements for probing the sedimentation of suspension concentrate formulations. Pesticide Science,1999, 55(3): 312~325
    [87] Maranzano B J, Wagner N. J. The Effects of Particle Size on Reversible Shear Thickening of Concentrated Colloidal Dispersions. J. Chemical Phys., 2001, 114: 10514
    [88] Maranzano B J, Wagner N. J. Flow-small Angle Neutron Scattering Measurements of Colloidal Dispersion Microstructure Evolution through the Shear Thickening Transition. J. Chemical Phys., 2002, 117: 10291
    [89] Mikulasek P, Wakeman R J, Marchant J Q. The influence of pH and temperature on the rheology and stability of aqueous titanium dioxide dispersions . Chem Eng J, 1997, 67: 97~102
    [90] Prestidge C A. Rheological investigations of galena particle interactions. Colloids & Surface A: Physico-chem Eng Aspects, 1997, 126: 75~83.
    [91] Prestidge C A. Rheological investigations of ultrafine galena particle slurries under flotation-related conditions . Int J Miner Process, 1997, 51: 241~254.
    [92] Quadrat O. Negative Thixotropy in Polymer Solutions. Adv. Colloid and Interface Sci, 1985, 24: 45~75.
    [93] Tadros T F. Solid/Liquid Dispersions [M]. London: Academic Press, 1987: 137~242.
    [94] Siffert B, Jada A, Lestango J E. Location of the shear plane in the electric double layer in an organic medium. J. Colloid & Interface Sci, 1994, 163: 32~333
    [95] Tangsathitkulchai C. Acceleration of particle breakage rates in wet batch ball milling . Powder Technol, 2002, 124(1–2): 67~75.
    [96] Tadros T F. Correlation of Viscoelastic properties of stable and flocculated suspensions with their interparticle interactions. Adv. Colloid and interface Sci., 1996, 68: 97~200.
    [97] Velamakanni B V, Fuerstenau D W. The influence of polymeric additives on the theology of dense slurries[A]. In: Elsevier Y A ed. Flocculation in Bio-Technology and Separation Systems[M]. Amsterdam, 1987, 211~223.
    [98] William J, Bailey L S. Investigation of methods for direct theological model parameter estimation . J Pet Sci Eng, 1998, 21(1–2): 1~13.
    [99] Winzeler H B, Vogel R, Dudler A. Rheological Measurements in Development and Quality of Suspension Concentrates[C]. Zurich. Advances in Pesticide Science (part3). New York: Pergamon Press, 1979, 798~809
    [100] Wu Q M., Ruan J M, Zhou Z C, et al. Study on the Rheological Properties of Silica /Polyethylene Glycol Non-Newtonian Flow. Acta Phys –Chim Sin. 2006, 22(1): 48~52
     [101] Zheng J, Harris C C, Somasundaran P. The effect of additives on stirred media milling of limestone. Powder Technol, 1997, 91(3): 173~179.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700