几类随机微分方程的渐近行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
动力系统是研究系统演化规律的数学学科.现实中许多系统会不可避免地受到随机因素的影响,把随机因素引入到动力系统中就产生了随机动力系统.随机动力系统出现在许多重要的实际应用领域中,如物理学、力学、海洋学、气象学、生物学、通讯工程及其它的科学与工程技术.
     动力系统理论中最基本的、最重要的研究课题之一就是研究动力系统的渐近行为.随机吸引子是描述随机动力系统的渐近行为的有效工具.本文主要研究由带有Brown运动的几类随机微分方程生成的随机动力系统以及随机时滞格点动力系统的渐近行为,考虑系统的随机吸引子的存在性问题.这不仅具有重要的理论意义,而且具有重要的应用意义.
     全文分为三个部分:
     第一部分是本文的前两章,首先,第一章阐述本文的研究背景和现状以及本文的研究内容和意义.然后,第二章介绍与本文相关的一些基础知识.
     第二部分,是本论文的核心内容,包括第三、四、五、六章.首先,第三章研究具有齐次Neumann边界条件的随机强阻尼波动方程的渐近行为,研究由此方程生成的随机动力系统的随机吸引子的存在性.其次,第四、五章分别研究定义在无界区域上的带有可乘噪声的随机阻尼波动方程和随机反应扩散方程的渐近行为,考虑由方程生成的随机动力系统的随机吸引子的存在性.最后,第六章研究随机时滞格点动力系统的渐近行为,首先给出在可分Banach空间C ([ν,0], lρp)上随机动力系统存在随机吸引子的充分条件,然后把所得的抽象结果应用到带有随机耦合系数和可加噪声的一阶随机时滞格点系统,证明此系统存在随机吸引子.
     第三部分,即本文的第七章,本章对全文进行总结,并提出今后有待进一步研究的一些问题.
Dynamical system is the mathematical science which study on theevolution of systems. Inreality, many systems will inevitably be affectedby random factors. Considering the random factors in the dynamicalsystem will produce random dynamical system. Random dynamicalsystems appear in many important practical applications, such asphysics, mechanics, oceanography, meteorology, biology,communications engineering, other science and engineeringtechnology.
     One of the most basic and important research topics of dynamicalsystems is to study the asymptotic behavior of dynamical systems.Random attractor is an effective tool to describe the asymptoticbehavior of random dynamical systems. This paper is devoted to studythe asymptotic behavior of random dynamical systems generated byseveral classes of stochastic differential equations driven by Brownmovement, as well as the asymptotic behavior of stochastic retardedlattice dynamical systems, consider the existence of random attractorsof these systems. This is important not only in theory, but also inapplication.
     This paper is divided into three parts:
     The first part is the first two chapters. First of all, chapter1introducesthe background and status of this study, as well as the content andsignificance of this study. Then, chapter2describes some basicknowledge related to this paper. The second part is the core content ofthis paper, including the chapters3,4,5and6. Firstly, chapter3isdevoted to study the asymptotic behavior of the stochastic stronglydamped wave equation with homogeneous Neumann boundarycondition. We investigate the existence of a random attractor for therandom dynamical system associated with the equation. Secondly, chapter4and chapter5study the asymptotic behavior of stochasticdamped wave equation and the stochastic reaction–diffusionequation with multiplicative noise on unbounded domain, and considerthe existence of random attractors for the random dynamical systemsgenerated by the two equations, respectively. Finally, chapter6considers the asymptotic behavior of stochastic retarded latticedynamical systems. We first present some sufficient conditions for theexistence of a global random attractor for random dynamical systemsdefined on the separable Banach space C ([ν,0],lpρ). Then we applythe obtained abstract results to the first-order stochastic retarded latticesystem with random coupled coefficients and additive white noises,and prove that this system possesses a random attractor.
     The third part is chapter7, this chapter is to summarize the mainresults obtained in this paper, and propose some problems for futureresearch.
引文
[1] L. Arnold, Random Dynamical Systems, Springer-Verlag, New York and Berlin,1998.
    [2] R. Adams, J. Fournier, Sobolev Spaces, second ed., Elsevier Ltd.,2003.
    [3] A. Babin, B. Nicolaenko, Exponential attractors of reaction-diffusion systems in an un-bounded domain, J. Dyn. Diff. Eq.7(1995)567-590.
    [4] J.M. Ball, Global attractors for damped semilinear wave equations, Disc. Contin. Dyn. Syst.10(2004)31-52.
    [5] P.W. Bates, K. Lu, B. Wang, Random attractors for stochastic reaction-diffusion equationson unbounded domains, J. Diff. Eq.246(2009)845-869.
    [6] P.W. Bates, K. Lu, B. Wang, Attractors for lattice dynamical systems, Internat. J. Bifur.Chaos11(2001)143-153.
    [7] P.W. Bates, H. Lisei, K. Lu, Attractors for stochastic lattice dynamical systems, Stoch. Dyn.6(2006)1-21.
    [8] Z. Brzezniak, Y. Li, Asymptotic compactness and absorbing sets for2D Stochastic Navier-Stokes equations on some unbounded domains, Trans. Amer. Math. Soc.358(2006)5587-5629.
    [9] T. Canaballo, J.A.Langa, Stability and random attractors for a reaction-diffusion equationwith multiplieative noise, Disc. Contin. Dyn. Syst.6(2000),875-892.
    [10] T. Caraballo, J.A. Langa, J.C. Robinson, A stochastic pitchfork bifurcation in a reaction-diffusion equation, Proc. R. Soc. Lond. Ser. A457(2001)2041-2061.
    [11] T. Caraballo, K. Lu, Attractors for stochastic lattice dynamical systems with a multiplicativenoise, Front. Math. China3(2008)317-335.
    [12] T. Caraballo, J. Real, Navier-Stokes equations with delays, Roy. Soc. London Proc. Ser. A.Math. Phys. Eng. Sci.457(2001)2441-2453.
    [13] T. Caraballo, J. Real, Asymptotic behavior of Navier-Stokes equations with delays, Roy.Soc. London Proc. Ser. A. Math. Phys. Eng. Sci.459(2003)3181-3194.
    [14] T. Caraballo, J. Real, Attractors for2D-Navier-Stokes models with delays, J. Diff. Eq.205(2004)271-297.
    [15] T. Caraballo, P. Mar′n-Rubio, J. Valero, Autonomous and non-autonomous attractors fordifferential equations with delays, J. Diff. Eq.208(2005)9-41.
    [16] V. Chepyzhov, M. Vishik, Trajectory attractors for reaction–diffusion systems, Topol. Meth-ods Nonlinear Anal.7(1996)49-76.
    [17] F. Chen, B. Guo, P. Wang, Long time behavior of strongly damped nonlinear wave equations,J. Diff. Eq.147(1998)339-352.
    [18] P. Chow, Stochastic wave equation with polynomial nonlinearity, Ann. Appl. Probab.12(2002)361-381.
    [19] S. Chow, J. Paret, Pattern formation and spatial chaos in lattice dynamical systems, IEEETrans. Circuits Syst.42(1995)746-751.
    [20] S. Chow, J. Paret, W. Shen, Traveling waves in lattice dynamical systems, J. Diff. Eq.149(1998)248-291.
    [21] I. Chueshov, Monotone Random Systems Theory and Applications, Springer-Verlag, NewYork,2002.
    [22] H. Crauel, Random Probability Measure on Polish Spaces, Taylor&Francis, London,2002.
    [23] H. Crauel, A. Debussche, F. Flandoli, Random attractors, J. Dyn. Diff. Eq.9(1997)307-341.
    [24] H. Crauel, F. Flandoli, Attractors for random dynamical systems, Probab. Th. Re. Fields,100(1994)365-393.
    [25] A. Debussche, On the finite dimensionality of random attractors, Stochastic Anal. Appl.15(1997)473-491.
    [26]丁孝全,随机/非自治泛函微分方程的渐近形态,同济大学博士学位论文,2009.
    [27] J. Duan, K. Lu, B. Schmalfuss, Invariant manifolds for stochastic partial differential equa-tions, Ann. Probab.31(2003)2109-2135.
    [28] X. Fan, Random attractor for a damped sine-Gordon equation with white noise, Pacific J.Math.216(2004)63-76.
    [29] X. Fan, Y. Wang, Fractal dimensional of attractors for a stochastic wave equation with non-linear damping and white noise, Stoch. Anal. Appl.25(2007)381-396.
    [30] X. Fan, Random attractors for damped stochastic wave equations with multiplicative noise,Int. J. Math.19(2008)421-437.
    [31] X. Fan, Attractors for a Damped Stochastic Wave Equation of Sine-Gordon Type with Sub-linear Multiplicative Noise, Stoch. Anal. Appl.24(2006)767-793.
    [32] E. Feireisl, Global attractors for damped wave equations with supercritical exponent, J. Diff.Eq.116(1995)431-447.
    [33] E. Feireisl, Ph. Laurencot, F. Simondon, H. Toure, Compact attractors for reaction-diffusionequations in Rn, C. R. Acad. Sci. Paris Ser. I319(1994)147-151.
    [34] F. Flandoli, B. Schmalfuss, Random attractors for the3D stochastic Navier-Stokes equationwith multiplicative noise, Stoch. Stoch. Rep.59(1996)21-45.
    [35] J. M. Ghidaglia, A. Marzocchi, Longtime behavior of strongly damped nonlinear wave equa-tions, global attractors and their dimension, SIAM. J. Math. Anal.22(1991)879-895.
    [36] X. Han, W. Shen, S. Zhou, Random attractors for stochastic lattice dynamical systems inweighted spaces, J. Diff. Eq.250(2011)1235-1266.
    [37] X. Han, Random attractors for stochastic sine-Gordon lattice systems with multiplicativewhite noise, J. Math. Anal. Appl.376(2011)481-493.
    [38] J. Huang, The random attractor of stochastic FitzHugh-Nagumo equations in an infinite lat-tice with white noises, Physica D233(2007)83-94.
    [39] P. Imkeller, B. Schmalfuss, The conjugacy of stochastic and random differential equationsand the existence of global attractors, J. Dynam. Diff. Eq.13(2001)215-249.
    [40] R. Jones, B. Wang, Asymptotic behavior of a class of stochastic nonlinear wave equationswith dispersive and dissipative terms, to appear in Stochastic Analysis and Application.
    [41] V. Kalantarov, S. Zelik, Finite-dimensional attractors for the quasi-linear strongly-dampedwave equation, J. Diff. Eq.48(2009)1120-1155.
    [42] Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Aca-demic Press, Boston,1993.
    [43] J. Langa, J. Robinson, Fractal dimension of a random invariant set, J. Math. Pures Appl.85(2006)269-294.
    [44] J. Langa, Finite-dimensional limiting dynamics of random dynamical systems, Dyn. Syst.18(2003)57-68.
    [45] H. Li, S. Zhou, One-dimensional global attractor for strongly damped wave equations, Com-mun. Nonlinear Sci. Numer. Simul.12(2007)784-793.
    [46] H. Li, S. Zhou, On non-autonomous strongly damped wave equations with a uniform attrac-tor and some averaging, J. Math. Anal. Appl.341(2008)791-802.
    [47] J. Li, J. Huang, Uniform attractors for non-autonomous parabolic equations with delays,Nonlinear Anal.71(2009)2194-2209.
    [48] Y. Li, B. Guo, Random attractors for quasi-continuous random dynamical systems and ap-plications to stochastic reaction-diffusion equations, J. Diff. Eq.245(2008),1775-1800.
    [49] K. Lu, B. Schmalfu, Invariant manifolds for stochastic wave equations, J. Diff. Eq.236(2007)460-492.
    [50] Y. Lv, W. Wang, Limiting dynamics for stochastic wave equations, J. Diff. Eq.244(2008)1-23.
    [51] Y. Lv, J. Sun, Dynamical behavior for stochastic lattice systems, Chaos Solitons Fractals27(2006)1080-1090.
    [52] Y. Lv, J. Sun, Asymptotic behavior of stochastic discrete complex Ginzburg-Landau equa-tions, Physica D221(2006)157-169.
    [53] P. Massatt, Limiting behavior for strongly damped nonlinear wave equations, J. Diff. Eq.48(1983)334-349.
    [54] S. Merino, On the existence of the compact global attractor for semilinear reaction-diffusionsystems on Rn, J. Diff. Eq.132(1996)87-106.
    [55] I. Moise, R. Rosa, X. Wang, Attractors for non-compact semigroups via energy equations,Nonlinearity,11(1998)1369-1393.
    [56] V. Pata, S. Zelik, Smooth attractors for strongly damped wave equations, Nonlinearity19(2006)1495-1506.
    [57] A. Pazy, Semigroup of Linear Operators and Applications to Partial Differential Equations,Springer-Verlag, New York,1983.
    [58] G. Da Prato, J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge Univ.Press, New York,1992.
    [59] J. Robinson, Stability of random attractors under perturbation and approximation, J. Diff.Eq.186(2002)652-669.
    [60] W. Shen, Lifted lattices, hyperbolic structures, and topological disorders in coupled maplattices, SIAM J. Appl. Math.56(1996)1379-1399.
    [61] Z. Shen, S. Zhou, W. Shen, One-dimensional random attractor and rotation number of thestochastic damped sine-Gordon equation, J. Diff. Eq.248(2010)1432-1457.
    [62] C. Sun, C. Zhong, Attractors for the semilinear reaction-diffusion equation with distributionderivatives in unbounded domains. Nonlinear Anal.63(2005)49-65.
    [63] R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York,1998.
    [64] E. Vleck, B. Wang, Attractors for lattice FitzHugh-Nagumo systems, Phys. D212(2005)317-336.
    [65] B. Wang, Dynamics of systems on ifinite lattices, J. Diff. Eq.221(2006)224-245.
    [66] B. Wang, Asymptotic behavior of non-autonomous lattice systems, J. Math. Anal. Appl.331(2007)121-136.
    [67] B. Wang, Attractors for reaction-diffusion equations in unbounded domains, Phys. D128(1999)41-52.
    [68] B. Wang, Random attractors for the stochastic Benjamin-Bona-Mahony equation on un-bounded domains, J. Diff. Eq.246(6)(2009)2506-2537.
    [69] B. Wang, Random attractors for the stochastic FitzHugh-Nagumo system on unboundeddomains, Nonlinear Anal.71(2009)2811-2828.
    [70] B. Wang, X. Gao, Random attractors for wave equations on unbounded domains, DiscreteContin. Dyn. Syst.(2009)800-809.
    [71] B. Wang, Asymptotic behavior of stochastic wave equations with critical exponents on R3,Trans. Amer. Math. Soc.363(2011)3639-3663.
    [72] L. Wang, D. Xu Asymptotic behavior of a class of reaction-diffusion equations with delays,J. Math. Anal. Appl.281(2003)439-453.
    [73] X. Wang, S. Li, D. Xu, Random attractors for second-order stochastic lattice dynamicalsystems, Nonlinear Anal.72(2010)483-494.
    [74] Y. Wang, Y. Liu, Z. Wang, Random attractors for partly dissipative stochastic lattice dynam-ical systems, J. Difference Equ. Appl.14(2008)799-817.
    [75] Y. Wang, L. Wang, W. Zhao, Pullback attractors for nonautonomous reaction-diffusion equa-tions in unbounded domains. J. Math. Anal. Appl.336(2007)330-347.
    [76]许露,闫卫平,随机时滞FitzHugh-Nagumo格点系统随机吸引子的存在性,吉林大学学报(理学版),49(2011)235-236.
    [77] W. Yan, Y. Li, S. Ji, Random attractors for first order stochastic retarded lattice dynamicalsystems. J. Math. Phys.51,032702(2010).
    [78] M. Yang, C. Sun, Attractors for strongly damped wave equations, Nonlinear Anal. RWA10(2009)1097-1100.
    [79] M. Yang, C. Sun, Dynamics of strongly damped wave equations in locally uniform spaces:Attractors and asymptotic regularity, Tran. Amer. Math. Soc.361(2009)1069-1101.
    [80] M. Yang, C. Sun, Exponential attractors for the strongly damped wave equations, NonlinearAnal. RWA11(2010)913-919.
    [81] M. Yang, J. Duan, P. Kloeden, Asymptotic behavior of solutions for random wave equationswith nonlinear damping and white noise, Nonlinear Anal. RWA12(2011)464-478.
    [82] C. Zhao, S. Zhou, Compact uniform attractors for dissipative lattice dynamical systems withdelays, Discrete Contin. Dyn. Syst.21(2008)643-663.
    [83] C. Zhao, S. Zhou, Sufficient conditions for the existence of global random attractors forstochastic lattice dynamical systems and applications, J. Math. Anal. Appl.354(2009)78-95.
    [84] C. Zhao, S. Zhou, W. Wang, Compact kernel sections for lattice systems with delays, Non-linear Anal.70(2009)1330-1348.
    [85] C. Zhao, S. Zhou, Attractors of retarded first order lattice systems. Nonlinearity20(2007)1987-2006.
    [86] S. Zhou, Global attractor for strongly damped nonlinear wave equation, Funct. Diff. Eq.6(1999)451-470.
    [87] S. Zhou, Dimension of the global attractor for strongly damped nonlinear wave equation, J.Math. Anal. Appl.233(1999)102-115.
    [88] S. Zhou, X. Fan, Kernel sections for non-autonomous strongly damped wave equations, J.Math. Anal. Appl.275(2002)850-869.
    [89] S. Zhou, Attractors for strongly damped wave equations with critical exponent, Appl. Math.Lett.16(2003)1307-1314.
    [90] S. Zhou, F. Yin, Z. OuYang, Random attractor for damped nonlinear wave equations withwhite noise, SIAM J. Appl. Dyn. Syst.4(2005)883-903.
    [91] S. Zhou, Attractors for second order lattice dynamical systems, J. Diff. Eq.179(2002)605-624.
    [92] S. Zhou, Attractors for first order dissipative lattice dynamical systems, Phys. D178(2003)51-61.
    [93] S. Zhou, W. Shi, Attractors and dimension of dissipative lattice systems, J. Diff. Eq.224(2006)172-204.
    [94] S. Zhou, Attractors and approximations for lattice dynamical systems. J. Diff. Eq.200(2004)342-368.
    [95] X. Zhao, S. Zhou, Kernel sections for processes and nonautonomous lattice systems, DiscreteContin. Dyn. Syst. Ser. B9(2008)763-785.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700