沁水盆地南部高煤级煤构造变形及其对煤层气富集区渗透率的制约
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,沁水盆地南部成为煤层气开发的热点地区。但受中新生代区域构造.热演化的影响,沁水盆地南部煤储层在深成变质作用基础上,不同程度地叠加了构造动力变质作用和岩浆热变质作用,产生特征各异的变质作用;经历了挤压—伸展—挤压多期构造应力场作用,产生多期不同方向、不同性质和不同强度的构造变形,导致其在煤厚、埋深、变质程度、含气性及渗透性等方面各具不同的分布特征,这些均影响制约着煤层气的富集和高渗。因而,加强对沁水盆地南部高丰度煤层气富集区高煤级煤的变形特征及其对煤层气富集高渗的制约研究,既有明确的现实价值,更具有重要的理论意义。
     鉴于沁水盆地煤层气勘探开发进展及当前研究不足之处,本论文选取沁水盆地南部为研究区域,通过对区内高庙山断层和寺头断层两侧3个区域的7个代表性矿区进行系统的煤岩野外调查和样品采集,采用煤储层裂隙的宏观观察、荧光显微镜和扫描电镜微观观测、镜质组反射率测试、压汞孔隙测试、低温氮吸附测试、Micro-CT及煤岩渗透率测试等技术和手段进行综合分析测试,详细研究了沁水盆地南部煤储层各向异性特征、煤储层孔.以及裂隙系统特征与分形维数特征及研究区煤层气富集高渗构造分异等方面进行研究。研究获得以下主要成果与认识:
     1.沁水盆地南部煤层气富集区储层参数
     通过煤储层镜质体各向异性研究及孔.裂隙分形研究,采用自然形变系数(εs)及孔.裂隙分形维数(D)两个参数来定量表征煤储层构造变形强度,查明沁水盆地南部构造变形特征对煤层气富集高渗的制约,将研究区煤储层划分为3种类型,即:
     Ⅰ类储层:当0.2<εs<0.4、1.4     Ⅱ类储层:当εs>0.4、D>1.7时,煤储层含气量及渗透性中等,储层产能中等,采收率中等。
     Ⅲ类储层:当Es<0.2、D<1.4时,煤储层含气量及渗透性较差,储层产能低,采收率低。
     2.沁水盆地南部煤层气富集区富集参数
     (1)根据煤孔隙分形计算结果,结合煤孔隙孔容增量突变孔径的自然显现规律、煤层气扩散、渗流特征及煤层气中各分子的平均自由程的关系,以0.06gmm(即60nm)为界,将煤孔径划分为>60nm的渗流孔隙和<60nm的吸附.扩散孔隙。
     (2)同煤级的糜棱煤(SH-12)的液氮吸附量远大于其它脆性系列煤样品;揭示变质作用对构造煤纳米级孔隙的特征参数影响不明显,但是变形作用对孔隙特征参数的演化起决定性作用。
     3.沁水盆地南部煤层气富集区渗流参数
     (1)提出最小有效孔径(r0,min)及有效似孔喉比(λ0)的概念,并用其来表征煤储层孔隙结构的渗流性特征。
     最小有效孔径(r0,min)的大小对流体流动特征有重要影响;有效似孔喉比(λ0)可以表征有效连通空间内的最小有效孔径(r0,min)的相对均一程度,影响目标储层的渗透率大小及经济可采性;退汞效率(Wc)反映了非润湿相毛细管效应采收率,退汞效率越高,则目标储层中的流体采收率就越高。这三个参数之间具有一定的相关性,即,最小有效孔径与有效似孔喉比呈指数负相关,有效似孔喉比与退汞效率呈负相关。
     (2)孔.裂隙系统分形维数与煤岩样品的变形特征关系更密切。
     孔隙分形维数随着变形强度(即自然形变系数εs)的增强,出现明显波动式变化。
     随着分形维数的增大,煤岩样品裂隙变形强度(即自然形变系数)显著增大;同时,变形强度(即自然形变系数)与裂隙面密度呈明显正相关关系,即,变形强度越强,其煤岩裂隙面密度相应也越大。这说明,构造应力是使裂隙面密度增大的主要原因。
     (3)基于研究区主要矿区6块不同变质变形煤岩柱样的Micro-CT扫描实验,发现Micro-CT扫描技术在全方位表征煤的孔.裂隙系统信息方面具有优势。三维可视化结果显示,相同煤岩类型样品,孔.裂隙系统空间配置不同,渗透率差异较大。
     4.沁水盆地南部煤层气富集区存在明显构造分异特征
     受中生代以来的构造运动及燕山期岩浆侵入活动的影响,沁水盆地南部煤储层物性特征出现明显的构造分异,具有“东西展布、南北分带”的分布特征;并且,沿盆地复向斜主轴方向及燕山期岩浆侵入方向,形成三个煤层气富集高渗构造区块,即:枣园.潘庄区块(TREND1)、寺底.成庄区块(TREND2)和郑庄区块(TREND3),其富集高渗条件依次降低。在TREND1区块内部,又可以细分为潘庄区块(1A)、枣园区块和胡底.蒲池区块(1B)和樊庄区块(1C)。其中,潘庄区块由于位于两期褶皱轴部叠加的部位,其富集高渗性最好;1B区块的富集高渗性次之,1C区块最低。
By the affection of regional tectonic-thermal evolution, the coal reservoirs have undergone the plutonic metamorphism, tectonic-dynamic metamorphism and magmatic thermal metamorphism, and they were caused into different degrees of metamorphic and deformation in the south of Qinshui Basin, and where also went through three periods of tectonic stress field. The reservoirs possess different characteristics in many aspects of physical properties, such as metamorphic and deformation, gas bearing capacity and permeability. Those characteristics control the enrichment and the high permeability of coalbed methane. There are great significance in reality and theory by researching aboves.
     In this paper, Qinshui Basin is picked as the study area, which is a poupular area for coalbed methane esploration, because of the peogress and shortcomings of the current research in coalbed methane exploration. And the samples were collected from Gaomiaoshan Fault to Sitou Fault, where contain 3 regions and 7 representative coal mines. According to the micro-macro observation of structure, fracture occurrence statistics and vitrinite reflenctance ananlyse, fluorescence microscopic and field-emission scanning electorn microscropic obvervation, mercury injection experiment and low temperature nitrogen adsorption analyse, Micro-CT scanning and permeability testing, this paper mainly discusses the characterics of the vitrinite reflenctance anisotropy, the characterics of pore-fracture in coal and its fractal characterics and the tectonic differentiation of coalbed methane enrichment areas. The following conclusions can be achieved:
     1. Reservoir parameters of coalbed methane enrichment areas in Qinshui Basin
     According to the characterics of the vitrinite reflenctance anisotropy, the characterics of pore-fracture in coal and its fractal characterics, the degrees of structure deformations can be setted quantitatively by using natural deformation coefficient (εs) and the fractal dimension of pore-fracture (D). By the research of this thesis,3 different types of coal reservoirs in study area are summarized.
     Type I:when 0.2<εs<0.4 and 1.4     TypeⅡ:whenεs>0.4 and D>1.7, medium gas bearing capacity and permeability, medium productivity, medium economical recovery factor;
     TypeⅢ:whenεs<0.2 and D<1.4, low gas bearing capacity and permeability, low productivity, low economical recovery factor。
     2. Enrichment parameters of coalbed methane enrichment areas in Qinshui Basin
     (1) According the fractal dimension of pore, the pore natural behavior law of the mutation of incremental pore volume, the characterics of proliferation and flow and the mean free path of moleculars in coalbed methane, the coal pore can be bouned at 0.06μm (ie 60nm), dividing into seepage pores and adsorption-diffusion pores, which are up to 60nm, or blew 60nm.
     (2) The nitrogen adsorption in the coal mylonitic coal (SH-12) in the same coal rank is far more than other brittle deformation coals. It can be seen that the metamorphism has little effect on nano-pore of deformed coals, while the deformation grasps the handle.
     3. Seepaging parameters of coalbed methane enrichment areas in Qinshui Basin
     (1) It's the first time to create the minmum effective aperture (ro,min) and effective seemly pore throat ratio (λ0) to characterization of the flow of coal pore structure.
     The ro,min has great important influence on the flow, and theλ0 shows the relative homogeneity of the r0,min in effectively connected space. Those parameters control the permebility and the economical recovery factor of the coal reveior. The mercury withdrawal efficiency (We) reflects the recovery factor of capolary effect in non-wetting phase. The higher the We, the higher the fluid recovery in the coal reservoir. These three parameters have some correlations, ie, the ro,min andλ0 are in a negative exponential correlation, and theλ0 and We are in a negative correlation.
     (2) The relationships between the fractal dimensin of pore- fracture and the deformation in coal resvoir are more closely.
     The fractal dimensin of pore will be increases with theεs, and will take place significant changes in wave-type.
     With the increasing of fractal dimensin, theεs increases significantly, meanwhile, theεs and the fracture density are positively correlated, that is, the stronger the deformation, the greater the fracture density. That is to say that the tectonic stress is the main reason that makes the fracture increase.
     (3) According to the Micro-CT scanning to 6 coal samples of different degrees of metamorphic and deformation, it found that the Micro-CT scanning technology has the adventages of characterizing the pore-frature fully.3-D visualization results show that if the space configuration among pore-fructure the same type of deformed coal is different, the permeability is quite different too.
     4. The coalbed methane enrichment areas show obvious regional differentiation
     The coalbed methane enrichment areas show obvious regional differentiation and form three NE-NNE structural regions, which have the same spreading direction with the direction of synclinorium spindle and magma intrusion in Yanshan period. The structural regions are Zaoyuan-fanzhuang region (TREND 1), Sidi-chengzhuang region (TREND2) and Zhengzhuang region (TREND3). Their gas content and permeability possess obvious distribution in EW and SN. From east to west, the gas content and permeability in TREND 1, TREND2 and TREND3 reduce one by one. From south to north, the TREND1 can also be divided into three parts: Panzhuang block (1A), Zaoyuan block and Hudi-pichi block (1B) and Fanzhuang block (1C). The gas content and permeability is best in 1 A, medium in 1B, low in 1C.
引文
[1]赵庆波,李贵中等.煤层气地质选区评价理论与勘探技术[M].石油工业出版社,2009,1-4.
    [2]王红岩,李景明等.中国新能源资源基础及发展前景展望[J].石油学报.2009,30(3):469-474.
    [3]赵庆波,李伍忠,李红林等.煤层气地质与勘探开发技术[M].北京:石油工业出版社,1999.
    [4]王红岩,刘洪林,赵庆波等.煤层气富集成藏规律[M].北京:石油工业出版社,2005.
    [5]叶建平,史保生,张春才.中国煤储层渗透性及其主要影响因素[J].煤炭学报,1999(24):2,118-122.
    [6]薄冬梅,赵永军,姜林.煤储层渗透性研究方法及主要影响因素[J].油气地质与采收率,2008,15(1):18-21.
    [7]Close JC.煤中的天然裂隙.秦勇,曾勇,编译.煤层甲烷储层评价及生产技术[M].徐州:中国矿业大学出版社,1996,49-57.
    [8]Gamson P, Beamish B, Johnson D. Coal microstructure and mineralization:their effect on methane recovery[C].//Gayer R., Harrie I. Coalbed Methane and Coal Geology. London:Geological Special Publication,1996,165-179.
    [9]Mckee C R, Bumb A C, Way S C, et al.. Use of the correlation of permeability to depth to evaluate the production potentional of the nature gas in coal seam [J]. Quarterly Review of Methane from Coal Seams Technology,1986,4(1):35-62
    [10]Gash B W, Volz R F, Potler, et al.. The effect of cleat orientation and confining pressure on cleat porosity, permeability and relative permeability in coal[C]//Proceeding of the 1993 International Coalbed Methane Symposium. Birmingham:The University of Ala-bama,1993,247-256.
    [11]Somerton W H, Soylemezoglu I M, Dudley R C. Effect of stress on permeability of coal[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1975,12(5):129-145.
    [12]傅雪海,秦勇,姜波,等.山西沁水盆地中—南部煤储层渗透率物理模拟与数值模拟[J].地质科学,2003,38(2):221-229.
    [13]薛永超,程林松.微裂缝低渗透岩石渗透率随围压变化实验研究[J].石油实验地质,2007,29(1):108-110.
    [14]Ammosov II, Eremin IV. Fracturing in Coal[M]. Moscow:IIZ-DAT Publishers, Office of Technical Services, Washington D C.1963,109.
    [15]毕建军,苏现波,韩德馨,等.煤层割理与煤级的关系[J].煤炭学报,2001,26(4):346-349.
    [16]胡忠贵,朱忠德,李相明,等.沉积微相对储层物性控制作用的定量评价——以英台地区青山口组、泉头组四段砂组为例[J].油气地质与采收率,2004,11(4):4-6.
    [17]Smyth M, Buckley M J. Statistical analysis of them icrolithotype se-quence in the Bulli seam, Australia, and relevance to permeability or coal[J]. International Joural of Coal Geology,1993,22(2):167-187.
    [18]梁冰,赵明鹏,高战武.煤层气储集层渗透性的分形理论和实验室研究[J].岩石力学与工程学报,2000,19(增刊):882-884.
    [19]张有生,秦勇,陈家良.煤层显微序列数学模拟及其在煤储层物性评价中初步应用[J].沉积学报,1998,16(4):118-123.
    [20]薄冬梅,赵永军,姜林.煤储层渗透性研究方法及主要影响因素[J].油气地质与采收率,2008,15(1): 18-21.
    [21]张建博,王红岩,赵庆波主编.中国煤层气地质[M].北京:地质出版社.2000,85-114.
    [22]秦勇.中国高煤级煤的显微岩石学特征及结构演化[M].徐州:中国矿业大学出版社.1994,1-5.
    [23]钱凯,赵庆波,汪泽成,等.煤层甲烷气勘探开发理论与实验测试技术[J].北京:石油工业出版社.1996,114-135.
    [24]胡超,姜波,琚宜文.宿南地区构造控气作用[J].连云港化工高等专科学校学报,2001.14(3):41-44.
    [25]侯泉林,李培军,李继亮.闽西南前陆褶皱冲断带[M].北京:地质出版社,1995,37-63.
    [26]张群,杨锡禄.平衡水条件下煤对甲烷的等温吸附特性研究[J].煤炭学报,1999,24(6):565.570
    [27]Wei Chongtao, Qin Yong, Man Lei et al., Wei C T, Qin Y, Man L, et al..2004. Numerical Simulation of Geologic History Evolution and Quantitative Prediction of CBM Reservoir Pressure. In:Mining Science and Technology, Wang Yuehan, Ge Shirong, Guo Guangli. Rotterdam:Balkema Publisher,2004,325-329.
    [28]琚宜文,姜波,侯泉林,王桂梁,方爱民.华北南部构造煤纳米级孔隙结构演化特征及作用机理[J].地质学报,2005,79(2):69-285.
    [29]琚宜文,姜波,侯泉林,王桂梁.构造煤结构应力效应的傅里叶变换红外光谱研究[J].光谱学与光谱分析,2005,25(8):1216-1220.
    [30]王永,冯富城,毛耀保等.沁水盆地南端煤层气赋存的构造条件分析[J].西北地质,1998,19(3):28-13.
    [31]琚宜文,姜波,侯泉林,王桂梁,倪善芹.构造煤13C NMR谱及其结构成分的应力效应[J].中国科学(D辑),2005.35(9):847-861.
    [32]琚宜文,姜波,侯泉林,王桂梁.煤岩结构纳米级变形与变质变形环境的关系[J].科学通报,2005.50(17):1884.1892.
    [33]琚宜文.华北典型地区盆—山过程与煤层气成藏的构造—热动力学研究[J].中国科学院研究生院博士后研究工作报告,2006.
    [34]姜波,秦勇,琚宜文,王继尧.煤层气成藏的构造应力场研究[J].中国矿业大学学报,2005.34(05):564-569.
    [35]苏现波,冯艳丽,陈江峰.煤中裂隙的分类[J].煤田地质与勘探,2002,30(4):21-24.
    [36]Levine JR. Model study of the influence of matrix shrinkage on absolute permeability of coalbed reservoirs [J]. Geological Society Publication,1996 (199):197-212.
    [37]傅雪海,秦勇,张万红.高煤级煤基质力学效应与煤储层渗透率藕合关系分析[J].高校地质学报,2003,9(3):373-377.
    [38]孙立东,赵永军.沁水盆地煤储层渗透性影响因素研究[J].煤炭科学技术,2006,34(10):74-78.
    [39]金振奎,王春生,王濮,张彦.华北地区石炭系—二叠系煤岩储集性能的控制因素[J].石油勘探与开发,2007,34(5):534-540.
    [40]周家尧,关德师.煤储集层特征[J].天然气工业,1995,15(5):6-10.
    [41]程克明,熊英,马立元,等.华北地台早二叠世太原组和山西组煤沉积模式与生烃关系研究[J].石油勘探与开发,2005,32(4):142.146.
    [42]Shi JQ, Durucan S. A model for changes in coalbed permeability during primary and enhanced methane recovery [J]. SPE Reservoir Evaluation & Engineering,2005,8:291-299.
    [43]SawyerW K, PaulGW, Schraufhagle R A. Development and application of 3D coalbed simulator [J]. CIM /SPE,1990,90-119.
    [44]Palmer I, Mansoori J. How permeability depends upon stress and pore pressure in coal bed:a new model [J].SPE REE,1998,539-544.
    [45]邓泽,康永尚,刘洪林,李贵中,王勃.开发过程中煤储层渗透率动态变化特征[J].煤炭学报,2009,34(7):947-951.
    [46]Dickinson W R, Yarboruqh H. Plate tectonics and hydrocarbon accumulation[M]. American Association of Petroleum Geologists, Midland, TX,1979,11-56.
    [47]Ingersoll R V, Busby C J. Tectonic of sedimentary basins[M].Cambridge:Blackwell Science,1995,1-51.
    [48]琚宜文,卫明明,侯泉林,等.华北含煤盆地构造分异与深部煤炭资源就位模式[J].煤炭学报,2010,35(9):1501-1509.
    [49]琚宜文,卫明明,薛传东.华北盆-山演化对深部煤与煤层气赋存的制约[J].中国矿业大学学报,2011,40(3):390-398.
    [50]熊保贤,刘和甫.南华北盆地与东秦岭—大别造山带的耦合关系[J].地学前缘,2000,7(3):152.
    [51]潘结南,侯泉林,琚宜文.华北东部中生代构造体制转折及其深部控煤作用.深部煤炭资源及开发地质条件研究现状与发展趋势[C].虎维岳,何满潮主编,煤炭工业出版社,2008,58-66.
    [52]王桂梁,琚宜文,郑孟林,等.中国北部能源盆地构造[M].徐州:中国矿业大学出版社.2007.
    [53]葛肖红.华北板内造山带的形成史[J].地质论评,1989,35(3):254-261.
    [54]王瑜.晚古生代末-中生代内蒙古-燕山地区造山过程中的岩浆热事件与构造演化[J].现代地质,1996,10(1):66-75.
    [55]张国伟,孟庆任,赖绍聪.秦岭造山带的结构构造[J]中国科学(B辑),1995,25(9):994.1003.
    [56]刘和甫.中国沉积盆地演化与旋回动力学环境[J].地球科学—中国地质大学学报,1996,21(4):345-356.
    [57]曹代勇,高文泰,王昌贤.华北聚煤区南缘(豫皖)逆冲推覆构造带[J].中国矿业大学学报,1991,20(1):28-35.
    [58]马寅生.燕山东段—下辽河地区中新生代断裂演化与构造期次[J].地质力学学报,1999,5(3):33-39.
    [59]曹代勇,景玉龙,邱广忠,等.中国含煤岩系变形分区[J].煤炭学报,1998,23(5):449-454.
    [60]邹绍伟.渤海湾盆地石炭—二叠系构造变形及演化特征[D].北京:中国矿业大学(北京),2000.
    [61]邓启东,程绍平,闵伟,等.鄂尔多斯块体新生代构造活动和动力学的讨论[J].地质力学学报,1999,5(30):13-20.
    [62]任纪舜,牛宝贵,刘志刚.软碰撞、叠覆造山和多旋回缝合作用[J].地学前缘,1999,6(3):85-93.
    [63]陈刚.沁水盆地向斜型水封气藏形成条件探讨[J].石油与天然气地质,1998,19(4):302-306.
    [64]秦峰,张金功,吴汉宁,等.华北地台石炭—二叠系煤成(层)气成藏地质单元划分[J].天然气工业,2009,29(3):117-120.
    [65]杨银宝,李金庄.山西板内构造区划体系及控煤构造[J].西山科技,2002,(3):1-4.
    [66]秦勇,姜波,王继尧,吴财芳,傅雪海,韦重韬,侯泉林,琚宜文.沁水盆地煤层气构造动力条件耦合控藏效应[J].地质学报,2008,82(10):1355.1362.
    [67]段秋梁,谭未一,杨长春,张延玲,闫臻.华北东部晚中生代伸展构造作用[J].地球物理学进展,2007,22(2):403-410.
    [68]翟明国,孟庆任,刘建明,侯泉林,胡圣标,李忠,张宏福,刘伟,邵济安,朱日祥.华北东部中生代构造体制 转折峰期的主要地质效应和形成动力学探讨[J].地学前缘,2004,1](3):286-297.
    [69]叶建平,武强,叶贵钧,陈春琳,岳巍,李红柱,翟振荣.沁水盆地南部煤层气成藏动力学机制研究[J].地质论评,2002.48(3):319-323.
    [70]Zhai Mingguo, Zhu Zhixiang, Liu Jianming, et al.. Time range of Mesozoic tectonic regime inversion in eastern North China Block[J].Science in China, Ser. D,2004,47(2):151-159.
    [71]宋岩,张新民,柳少波.中国煤层气基础研究和勘探开发技术新进展[J].地质与勘探,2005,25(1):1.8.
    [72]任战利,赵重远,陈刚,王世成.沁水盆地中生代晚期构造热事件[J].石油与天然气地质,1999,20(01):73.75.
    [73]任战利,肖晖,刘丽,张盛,雷利庆,秦勇,韦重韬.沁水盆地中生代构造热事件发生时间的确定[J].石油勘探与开发,2005,32(1):43-47.
    [74]曹代勇,关英斌.晋-获断裂带分段模式研究[J].大地构造与成矿学,1997,21(4):323-329.
    [75]关英斌,李海梅.晋获断裂带中、新生代构造应力场研究[J].中国煤田地质,1999,11(4):1-4.
    [76]贾建称.沁水盆地晚古生代含煤盆地沉积体系及其控气作用[J].地球科学与环境学报,2007,4(29):374-382.
    [77]李增学,余继峰,王明镇,等.沁水盆地煤地质与煤层气聚集单元特征研究[J].山东科技大学学报,2005,24(1):8-20.
    [78]邵龙义,肖正辉,何志平.晋东南沁水盆地石炭二叠纪含煤岩系古地理与聚煤作用研究[J].古地理学报,2006,8(1):43-52.
    [79]李霞.沁水煤田东部15号煤在沉积环境影响下的煤质特征[J].西部探矿工程,2009,2:113.114.
    [80]贾炳文,王平泽.山西省沁水煤田平昔矿区上石炭统太原组沉积环境探讨[J].沉积学报,1989,7(2):71-76.
    [81]石书灿,林晓英,李玉魁.沁水盆地南部煤层气藏特征[J].西南石油大学学报,2007,29(2):54-56.
    [82]Kaiser W. R., et al.. Hydrologic framework of the fruitland formation, San J uan Basin; In:Bulletin 146 New Mexico Bureau of Mines& Mineral Resources.1994,133-163.
    [83]池卫国.沁水盆地煤层气的水文地质控制作用[J].石油勘探与开发,1998,25(3):15-18.
    [84]孙粉锦,赵庆波,邓攀.影响中国无烟煤区煤层气勘探的主要因素[J].石油勘探与开发,1998,25(1):32-34.
    [85]杨起,汤达祯.华北煤变质作用对煤含气量和渗透率的影响[J].地球科学—中国地质大学学报,2000,25(3):273-277.
    [86]Laubach, S, Marrett, R, Olson, J, et al.. Characteristics and origins of coal cleat:A review [J]. International Journal of Coal Geology,1998,35(1-4):175-207.
    [87]C.o. Kanracan, E. Okandan. Fracture/cleat analysis of coals from Zonguldak Basin (northwestern Turkey) relative to the potential of coalbed methane production [J].International Journal of Coal Geology,2000,44:109-125.
    [88]Close J C. Natural fracture in coal [A]. Studies in geology 38:Hydrocarbons from coal [C]. Tulsa: AAPG,1993.119-132.
    [89]胡国艺,刘顺生,李景明,李剑,张建博,李志生.沁水盆地晋城地区煤层气成因[J].石油与天然气地质,2001,2(4):319-321.
    [90]张群,冯三利,杨锡禄.试论我国煤层气的基本储层特点及开发策略[J].煤炭学报,2001(3):230-235.
    [91]赵孟军,宋岩,苏现波,柳少波,秦胜飞,洪峰.煤层气与常规天然气地球化学控制因素比较[J].石油勘探与开发,2005,32(6):21.24
    [92]张建博,陶明信.煤层甲烷碳同位素在煤层气勘探中的地质意义—以沁水盆地为例[J],沉积学报,2000,18(4):611-614.
    [93]傅雪海,秦勇,王文峰,焦思红等.沁水盆地中—南部水文地质控气特征[J].中国煤田地质,2001,13(1):31-34.
    [94]刘洪林,王红岩,张建博.中国煤层气资源潜力及其勘探方向[J],石油勘探与开发,2001,28(1):9.11.
    [95]赵庆波,田文广.中国煤层气勘探开发成果与认识[J].天然气工业,2008,28(3):16.18.
    [96]陈振宏,王一兵,杨焦生,王宪花,陈艳鹏,赵庆波.影响煤层气井产量的关键因素分析—以沁水盆地南部樊庄区块为例[J].石油学报,2009,30(3):409-416.
    [97]琚宜文,姜波,王桂梁,等.构造煤结构及储层物性[M].徐州:中国矿业大学出版社.2005
    [98]张培河.影响我国煤层气可采性主要储层参数特征[J].天然气地球科学,2007,18(6):880-884
    [99]朱春笙.煤的孔隙度与煤质的关系[J].煤田地质与勘探,1986(5):29-33
    [100]Bustin RM, Clarkson CR. Geological controls on coalbed methane reservoir capacity and gas content [J]. International Journal of Coal Geology,1998,38(1-2):3-26
    [101]Clarkson C, Bustin R. The effect of pore structure and gas pressure upon the transport properties of coal: a laboratory and modeling study, Isotherms and pore volume distributions [J]. Fuel,1999,78(11): 1333-1344
    [102]Radovic LR, Menon VC, Leon C, et al. On the porous structure of coals:Evidence for an interconnected but constricted micropore system and implications for coalbed methane recovery [J]. Adsorption-Journal of the International Adsorption Society,1997,3(3):221-232
    [103]琚宜文,姜波,侯泉林,等.构造煤结构-成因新分类及其地质意义[J].煤炭学报,2004,29(5):513-517.
    [104]姜波,秦勇,金法礼.高温高压下煤超微结构的变形特征[J].地质科学,1998,33(1):17-23.
    [105]姜波,秦勇.实验变形煤结构的13CNMR特征及其地理意义[J].地质科学,1998,23(6):579-582.
    [106]姜波,秦勇.变形煤镜质组反射率演化的地化机理及其地质意义[J].煤田地质与勘探,1999,27(2):30-34.
    [107]朱峰.山西沁水煤田煤层气分布特征与开发前景分析[J].中国煤田地质,1999,11(2):32-34
    [108]Davis A. The reflectance of coal in Clarence Karr Jr, edited "Application Methods for Coal and Coal products. American Press Inc,1978,1:27-81.
    [109]Stach E, Mackowsky M-TH, Techmuller M E A. Stach's Textbook of Coal Petrology(3rd ed). Berlin:Gebruder Borntraeger.1982.
    [110]曹代勇,王文侠.镜质组反射率各向异性分析技术及其在构造研究中的应用[J].中国煤田地质,1990,2:1.8.
    [111]Cook A C, Murchison D G, Scott E. Optically biaxial anthracitic vitrinites [J]. Fuel,1972,51:180-184.
    [112]Ting F. Uniaxial and biaxial vitrinite reflectance models and their relationship to paleotectonics [J]. Organic maturation studies and fossil fuel exploration. Academic Press,London.1981:379-392.
    [113]Kilby W E. Recognition of vitrinite with non-uniaxial negative feflectance characteristics[J]. International Journal of Coal Geology,1988,9:267-285.
    [114]Levine J R, Davis A. Reflectance anisotropy of Upper Carboniferous coals in the Appalachian foreland,Pennsylvania,U.S.A.[J]. International Journal of Coal Geology,1989,13:314-373.
    [115]Langerberg W, Kalkreuth W. Reflectance anisotropy and syn-deformational coalification of the jewel seam in the cadomin area, Alberta,Canada[J]. International Journal of Coal Geology,1991,19:303-317.
    [116]Levine J R, Davis A. Optical anisotropy of coals as indicator of tectonic deformation,Broad Top coal field, Pennsylvania. Geol Soc Amer Bull [J],1984,95:100-108.
    [117]Bustin R M, Ross J V, Moffat I. Vitrinite anisotropy under differential stress and high confining pressure and temperature:preliminary observations[J]. International Journal of Coal Geology,1986,6:343-351.
    [118]Ross J V, Bustin R M. Vitrinite anisotropy resulting from simple shear experiments at high temperature and high confining pressure[J]. International Journal of Coal Geology,1997,33:153-168.
    [119]姜波,金法礼.煤镜质组反射率光性组构变形实验研究[J].煤田地质与勘探,1997,25:11-15.
    [120]Khorasani G K, Murchison D G, Raymond A C. Molecular disordering in natural coals approaching dyke and sill contacts [J]. Fuel,1990,69:1037-1046.
    [121]Jones J, Creaney S. Optical character of thermally metamorphosed coals of northern England [J]. J. Microsc,1977,109:105-118.
    [122]Hower J C, Davis A. Vitrinite reflectance anisotropy as a tectonic fabric element[J]. Geology,1981,9: 165-168.
    [123]Flinn D. On folding during three-dimensional progressive deformation[J]. Quarterly Journal of the Geological Society,1962,118:385-428.
    [124]Ramsay J G. Folding and fracturing of rocks [M], Mc Graw-Hill, New York,1967.
    [125]Duber S, Pusz S, Kwiecinska B K, et al.. On the optically biaxial character and heterogeneity of anthracites [J]. International Journal of Coal Geology,2000,44:227-250.
    [126]Kilby W E, Vitrinite reflectance measurement-Some technique enhancements and relationships[J]. International Journal of Coal Geology,1991,19:201-218.
    [127]Rodrigues C F, Lenos M J. The measurement of coal porosity with different gases[J]. International Jornal of Coal Geology,2002,48(3-4):245-281.
    [128]Hossack J R. Pebble deformation and thrusting in the Bygdin area (southern Norway) [J]. Tectonophysics,1968,1(5):315-334.
    [129]钟玲文.煤的吸附性能及影响因素[J].中国地质大学学报,2004,29(3):327-333.
    [130]姚艳斌,刘大锰,黄文辉,等.两淮煤田煤储层孔—裂隙系统与煤层气产出性能研究[J].煤炭学报.2006,21(2):163-168.
    [131]谢晓永,唐洪明,王春华,等.氮气吸附法和压汞法在测试泥页岩孔径分布中的对比[J].天然气工业,2006,26(12):100-102.
    [132]田英姿,陈克复.用压汞法和氮吸附法测定孔径分布及比表面积[J].中国造纸,2004,23(4):21-23.
    [133]鲁洪江,邢正岩.压汞和退汞资料在储层评价中的综合应用探讨[J].油气采收率技术,1997,4(2):48-53.
    [134]Xu H, Zhang SH, Leng X, et al. Analysis of pore system model and physical property of coal reservoir in the Qinshui Basin [J]. Chinese Science Bulletin,2005,50:52-58.
    [135]Spitzer Z. Mercury porosimetry and its application to the analysis of coal pore structure [J]. Powder Technology,1981,29(1):177-186.
    [136]Islam MR, Hayashi D. Geology and coal bed methane resource potential of the Gondwana Barapukuria Coal Basin, Dinajpur, Bangladesh [J]. International Journal of Coal Geology,2008,75(3):127-143.
    [137]Good RJ, Mikhail RS. The contact angle in mercury intrusion porosimetry [J]. Powder technology,1981, 29(1):53-62.
    [138]Winslow D. Advances in experimental techniques for mercury intrusion porosimetry [J]. Surface and Colloid Science,1984,13:259-281
    [139]傅雪海,秦勇,张万红,等.基于煤层气运移的煤孔隙分形分类及自然分类研究[J].科学通报,2005,50(增Ⅰ):51-55.
    [140]Thomeer J H M. Introduction of a pore geometrical factor defined by the capillary pressure curve[J]. Trans AIME,1960,52(3):354-358.
    [141]Guo Boyun, Ali Ghalambor, Duan Shengkai. Correlation between sandstone permeability and capillary pressure curves[J]. Journal of Petroleum Science and Engineering,2004,43(2):239-246.
    [142]Swanson S F. A simple correlation between permeabilities and mercury capillary pressure[J]. Jo Urnal of Petroleum Technology,1981,40(2):2498-2503.
    [143]童茂松,李莉,王伟男,等.岩石激发极化弛豫时间与孔隙结构、渗透率的关系[J].地球物理学报,2005,48(3):710-716.
    [144]廖明光,巫祥阳.毛管压力曲线分析新方法及其在油藏描述中的应用[J].天然气工业,2001,21(4):45-48.
    [145]肖忠祥,肖亮,张伟.利用毛管压力曲线计算砂岩渗透率的新方法[J].石油物探,2008,47(2):204-208.
    [146]鲁洪江,刑正言,王永诗.压汞和退汞资料在储层评价中的综合应用探讨[J].油气采收率技术,1997,4(2):48-53.
    [147]钟玲文,张慧,员争荣,等.煤的比表面积孔体积及其对煤吸附能力的影响[J].煤田地质与勘探,2002,30(3):26-29.
    [148]谢金川,王旭辉.吸附理论在AFC中的应用和探讨[M].(第二册BJH法和αs法对ACF中孔的表征)2003:1-10.
    [149]Zhang Y, Weidenkaff A, Reller A. Mesoporous structure and phase transition of nanocrystalline TiO2 [J]. Materials Letters,2002,54(5-6):375-381.
    [150]Delley B. An all-electron numerical method for solving the local density functional for polyatomic molecules [J]. The Journal of Chemical Physics,1990,92:508-517
    [151]王少军,凌凤香.DFT理论及在催化剂表征中的应用[C].第九届全国青年催化学术会议,2003
    [152]严继民,张启元.吸附与凝聚:固体的表面与孔[M].北京:科学出版社.1979
    [153]马光弟,赵阳升,段康廉,等.煤体渗透性及其应用的研究[J].山西矿业学院学报,1998,8(3):5-11.
    [154]Enever R E, Henng A. The relationship between pemeabilty and effective stress for Australian coals and its implications with respect to coalbed methance exploration and reservoir modeling[A]. Proceedings of the 1997 International Coalbed Methane Symposim[C]. Alabama, The University of Alabama Tuscaloosa,1997,13-22.
    [155]Suuberg E M, Deevi S C, Yun Y. Elastic behaviour of coals studied by mercury porosimetry. Fuel, 1995,74:1522-1530.
    [156]Gane P A C, Ridgway C J, Lehtinen E, et al.. Comparison of NMR cryoporometry, mercury intrusion porosimetry, and DSC thermoporosimetry in characterizing pore size distributions of compressed finely ground calcium carbonate structures. Ind Eng Chem Res,2004,43:7920-7927
    [157]姚艳斌,刘大锰,蔡益栋,等.基于NMR和X-CT的煤的孔裂隙精细定量表征[J].中国科学:地球科学,2010,40(11):1598.1607.
    [158]傅雪海,秦勇.现代构造应力场煤储层孔裂隙应力分析与渗透率研究[J].地球学报,1999,20(增刊):623-627.
    [159]傅雪海,秦勇,薛秀谦,等.煤储层孔、裂隙系统分形研究[J].中国矿业大学学报(自然科学版),2001,30(3):225-229.
    [160]Friesen W I, Mikule R J. Fractal dimensions of coal particles[J]. Journal of Colloid and Interface Science,1987,20(1):263-271.
    [161]谢和平,张永平,宋晓秋,等.分形几何—数学基础与应用[M].重庆:重庆大学出版社,1996.
    [162]Zucrow M J, Hoffman J.气体分子动力学.王汝涌译.北京:国防工业出版社,1984,9.11.
    [163]赵爱红,廖毅,唐修义.煤的孔隙结构分形定量研究[J].煤炭学报,1998,23(4):339-442.
    [164]谢焱石,谈凯旋.断裂构造的分形研究及其地质应用[J].地质地球化学,2002,30(1):71-77.
    [165]Berry M V, Lewis Z V. On the Weierstrass-Mandellbrot fractal function[J]. Proc. R. Soc. London, 1980,70:459-484.
    [166]Scholz C H, Aviles C A. Fractal dimension of the 1906 San Andreas fault and 1915 Pleasant Valley faults(abstract)[J]. Earthquakes Notes,1985,55:20.
    [167]陈振宏,贾承造,宋岩,王红岩.构造抬升对高.低煤阶煤层气藏储集层物性的影响[J].石油勘探与开发,2007,34(4):461-464.
    [168]Law B E. The relationship between coal rank and cleat spacing:Implication for t he predication of permeability in coal [A].Coalbed Met hane Symposium Proc. [C]. Tuscaloosa:Universityof Alabama,1993.435-441.
    [169]姚艳斌,刘大锰,汤达祯,唐书恒,黄文辉.华北地区煤层气储集与产出性能[J].石油勘探与开发,2007,34(6):664-668.
    [170]王生维,章泽军,乌效鸣,唐江林,张典坤,杨青雄,韩兵,刘旺博,徐娅玲.晋城煤层气藏成藏机制[J].地球科学—中国地质大学学报,2008,33(6):807-812.
    [171]王生维,段连秀,陈钟惠.煤层气藏的封闭及其研究意义—华北石炭—二叠系煤层气藏封闭特征浅析[J]地球科学—中国地质大学学报,1999,24(1):49-53.
    [172]王生维,段连秀,张明.煤层气藏分析的参数与流程[J].地球科学—中国地质大学学报,2000,25(6):613-616.
    [173]赵庆波,张公明.煤层气评价重要参数及选区原则[J].石油勘探与开发,1999,26(2):23.26.
    [174]Walter B. Ayers Jr. Coalbed gas systems, resources,and production and a review of contrasting cases from the San Juan and Power River basin[J]. AAPG Bulletion,2002,86(11):1853-1890.
    [175]闫宝珍,王延斌,丰庆泰,杨秀春.基于地质主控因素的沁水盆地煤层气富集划分[J].煤炭学报,2008,33(10):1102-1106.
    [176]Yan Baozhen, Wang Yanbin, Feng Qingtai, Yang Xiuchun. Coalbed methane enrichment classifications of Qinshui basin based on geological key controlling factors [J]. Journal of China Coal Society,2008,33(10):1102-1106.
    [177]Zhao Jingzhou, Shi Baohong. Division of coalbed methane enriched units in the Qinshui basin [J]. Chinese Science Bulletin,2005,50(suppl.):140-145.
    [178]卫明明,琚宜文,薛传东.沁水盆地南部变质变形煤储层特征及煤层气富集区划分.地质科学,2011,46. (IN PRESS)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700