GPS载波相位时间频率传递研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文的主要目标是研究基于Ashtech Z12T的GPS载波相位时间频率传递(以下简称GPSCPTT)。论文通过研究GPSCPTT基本原理、Ashtech接收机的校准及其他误差改正、周跳检测与修复、整周模糊度解算方法等关键技术,初步实现了UTC(k)-UTC(j)之间的GPSCPTT,开发了GPSCPTT时间传递计算软件。论文主要内容包括:
     研究了GPSCPTT的基本原理;利用Matlab Simulink仿真了GPS接收机中载波相位测量的方法和原理,利用实测数据实现了载波相位测量。
     为了提高GPSCPTT的精度,对对流层等几种误差改正提出新的方法。主要包括:IGS观测数据应用于对流层改正;双频P码和双频载波测量电离层实测改正的精度比较,认为在τ< 5 ~ 6d时,双频载波实测改正精度更高;固体潮对天线坐标的影响改正;IGS精密星历和钟产品数据在GPSCPTT中的应用;Ashtech Z12T接收机的校准。
     研究了多项式拟合和双频电离层残差组合法的周跳解算方法在GPSCPTT中的应用,该方法能够检测到0.5周的周跳;同时讨论了一种基于小波变换的周跳检测与修复方法。
     对经典的LAMBDA(the Least-Squares Ambiguity Decorrelation Adjustment)方法方作了改进,经典的LAMBDA方法能同时解算接收机坐标和整周模糊度,改进后的方法只解算整周模糊度,因此提高了解算的速度;另外研究了利用双频P码伪距约束条件来解算GPSCPTT中的整周模糊度。
     分别利用数据交迭方法和连续滤波方法消除了GPS时间传递中的不连续现象。NTSC-NICT之间的GPSCPTT实验表明,比对结果在取τ< 5d时,其TDEV和MDEV较GPSCV和GPS P3都有明显的提高。
     开发了GPSCPTT数据处理软件,利用该软件对NTSC、USNO、PTB等实验室的观测数据进行了处理,结果和参考文献中的处理结果接近,证实了该软件设计正确。和IGS的处理结果相比,GPSCPTT时间稳定度优于0.1ns/d。
     最后,研究了GPSCP平滑码伪距测量,平滑方法缩短了码测量的数据采样率,提高了时间传递的短期稳定度。
The objective of this dissertation is to cover the time and frequency transfer using GPS carrier phase based on Ashtech Z12T receiver. The research provide an introduction to the GPSCPTT principle with an emphasis on, Ashtech receiver calibration and other error sources correction, cycle slip detecting and repairing and ambiguity resolution algorithm, et al. Based on these researches, the GPSCPTT between UTC(k) and UTC(j) is primarily realized, and the time transfer software package of GPSCPTT is developed. The major contents include:
     A detailed principle of GPSCPTT is developed. The principle of the GPS carrier phase measurement is simulated using the Matlab Simulink and the carrier phase measurement is achieved by real observation data.
     In order to improve the GPSCPTT precise, several new mitigation techniques for several errors correction are proposed, mainly include: the application of the IGS observation data to the troposphere correction, the comparison of correctional precise between dual frequency P code and dual carrier measurement, the results indicate that the later has higher precise than the former whenτ< 5 ~ 6d, the correction of the solid tide effect on the antenna coordinate perturbation, the application of the IGS precise ephemeredes and clock products to the GPSCPTT, the Ashtech Z12T receiver calibration.
     The cycle slip detection by combining polynomial fit and dual frequency ionosphere residual which can detect the small cycle slips equals to 0.5 cycles is also investigated, meanwhile, a method based on wavelet transform to detect and repair cycle slip is discussed.
     The classical LAMBDA method which can resolve both the coordinate of the receiver and the ambiguity resolution is improved. And the improved method only can reckon the ambiguity resolution, so the reckon speed is slow down. In addition, the algorithm for the ambiguity resolution by dual frequency P code pseudo-range constraint is presented.
     The methods of continuous filtering and the data overlapping are used respectively to achieve the continuous time and frequency transfer. Time transfer experiments are conducted, for the link of NTSC-NICT, the TDEV and MDEV is obviously hither than that of GPSCV and GPS P3 respectively whenτ<5d.
     The software has been developed for GPSCPTT processing, using the software package, through processing the comparison data from the laboratories of NTSC, USNO, PTB, et al, the results indicate that our results are at the same level as several references which based on GIPSY software. These results show that this software design is correct,the difference of our results between IGS’s shows that the time stability is less than 0.1ns/d.
     Finally, the result of GPSCP smoothing pseudo-range observation is investigated. The smoothing method reduces the data sampling rate of the pseudo-range measurement and improves the short term stability of the time transfer.
引文
[1] 张首钢, 新型量子频标研究进展(科技报告). 2007: 西安.
    [2] Packard, H., GPS and precision timing applications. 1999.
    [3] 胡永辉,漆贯荣, 时间测量原理. 第一版 ed. 2000, 香港: 香港亚太科学出版社.
    [4] 漆贯荣,郭际,王双侠, 时间科学. 2003, 西安: 陕西科学技术出版社.
    [5] S.A.Diddams, J.C.B., S.R.Jefferys,C.W.Oates, standards of time and frequency at the outset of the 21st century. science, 2004. Vol.306(19): p. 1318-1324.
    [6] 王正明,高俊法, 高精度国际时间比对的进展. 天文学进展, 2000. Vol.18(No.3): p. 181-190.
    [7] 周渭,于建国,刘海霞, 测试计量基础. 2004, 西安: 西安电子科技大学出版社.
    [8] 周渭,偶晓娟,周晖, 时频测控技术. 2006, 西安: 西安电子科技大学出版社.
    [9] G. Petit , Z.J. RECENT COMPARISONS OF TIME TRANSFER TECHNIQUES FOR TAI LINKS. 2006.
    [10] Rolf Dach, T.S., Urs Hugentobler, Continuous Geodetic Time-Transfer Analysis Methods. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2006. vol. 53(7): p. 1250-1259.
    [11] Z. Jiang, R.D., G. Petit,T. Schildknecht, U. Hugentobler, COMPARISON AND COMBINATION OF TAI TIME LINKS WITH CONTINUOUS GPS CARRIER PHASE RESULTS. IEEE international frequency control symposium, 2006: p. 77-85.
    [12] JIM RAY, K.S., Geodetic techniques for time and frequency comparisons using GPS phase and code measurements. METROLIGIA, 2005. 42(4): p. 215~232.
    [13] F. Arias, Z.J., W. Lewandowski and G. Petit, BIPM Comparison of Time Transfer Techniques. IEEE hternational Frequency Control Symposium and PDA Exhibition and PTTI, 2005: p. 312-315.
    [14] R. Dach, G.B., U. Hugentobler. et al, Time transfer using GPS carrier phase: error propagation and results. Jounal of Geodesy, 2003. Vol.70(1): p. 1-14.
    [15] Jim RAY , K.s., IGS/BIPM piolt project: GPS carrier phase for time and frequency transfer and timescale formation. Metrologia, 2003. Vol.40(3): p. 270-288.
    [16] John F.Plumb , D., 2003., Carrier phase time transfer using the global positioning system. Ph.D dissertation, 2003. University of Colorado.
    [17] Hsin-Min Peng, C.-S.L., Michito Imae,. Time Transfer Using GPSCP and TWSTT between CRL and TL in ION GPS 2002. 2002.
    [18] W.Lewandowski, J.A. Time transfer and TAI. in IEEE/EIA international frequency control symposium and exhibition. 2000.
    [19] 王正明, 守时工作进展. 天文学进展, 2004. 22(2): p. 104-114.
    [20] Meekhof, D., Jefferts, S., Stepanovic, M., and Parker, T., Accuracy evaluation of a cesium fountain primary frequency standart at NIST. IEE Transactions on Instrumentation and Measurement,, 2001. Vol 50(2): p. 507-509.
    [21] T.P.Heavner, S.R.J., E.A.Donley, et al. IEEE/EIA international frequency control symposium and exhibition. 2004.
    [22] No.90-No.227, B.C.-T., http://www.bipm.org. 1998-2006.
    [23] Prescott, W.H., Davis, J. L., Svarc, J. L., Savage, J. C., and Lisowski, M., Global positioning system measurements for crustal deformation: Precision and accuracy. Science,, 1989. Vol 244: p. 1337-1340.
    [24] Larson, K.a.A., D., Application of the global positioning system to crustal deformation measurements: Part 1, precision and accuracy. J. Geophy. Res.,, 1991. Vol 96: p. 16,547-16,566.
    [25] Schildknecht, T., Beutler, G., Gurtner, W., and Rothacher, M. Towards subnanosecond GPS time transfer using geodetic processing technique. in Proceedings 4th EFTF, pages 335-346. 1990.
    [26] Baeriswyl, P., Springer, T.s..T., and Beutler, G. Frenquency and time-transfer with geodetic GPS receivers:first results. in Proc. 9th Eur. Freq. Time Forum, pages 46-51. 1995: Besanlon, France.
    [27] Baeriswyl, P., Springer,T.S..T., and Beutler,G. Time-transfer with geodetic GPS receivers using code and phase observations. in Proc.10th Eur. Freq. time forum, pages 430-435. 1996. Neuchatel Switzerland.
    [28] Hurst, K., Blewitt, G., Lockhart, T., Bar-Sever, Y., and Bertiger, W., NINJA-the GIPSY II data-input module Interoffice Memorandum: Originally IOM 335.4-92-001, modified May 19, 1993.
    [29] Jefferson, D., Lichten, S., and Young, L. A test of precision GPS clock synchronization. in Proc. 1996 IEEE Freq. Contr. Symp., pages 1206-1210. 1996. Honolulu, HI.
    [30] Dudle, G., Schildknecht, T., Springer, T., and Prost, L. Transatlantic time and frequency transfer by GPS carrier phase. in Proceedings of the 1999 Joint Meeting EFTF-IEEE IFCS, pages 243-246. . 1999.
    [31] Larson, K.M.L., J. Time transfer using the phase of the GPS carrier. in Proceedings of the 1998 IEEE international Frequency control symposium. 1998.
    [32] Dach, R., Schildknecht, T., Springer, T., Dudle, G., and Prost, L. Recent results with transatlantic GeTT campaign. in Proc. 31st Annual Precise Time and Time Interval (PTTI) System and Applications Meeting. 1999. pages 461-468, Dana Point, California.
    [33] Pat Fenton, W.J.E.P., Robert Douglas,, THE USE OF THE WIDE AREA AUGMENTATION SYSTEM (WAAS) AS A TIME TRANSFER SYSTEM. ION NTM 2000, 2000: p. 375-380.
    [34] Petit, G. stability and accuracy of geodetic GPS time links compared to two way time transfer. in Asia pacific workshop on time and frequency. 2004.
    [35] Petit, G., Jiang, Z., Uhrich, P., and Taris., F., Differential calibration of ashtech Z12-T recervers for accurate time comparisons. Proceedings 14th EFTF, 2000.
    [36] Petit, G., C. Thomas, Z. Jiang, P. Uhrich, and F. Taris. Use of GPS Ashtech Z12T receivers for accurate time and frequency comparisons. in Proc. 1998 IEEE International Frequency Control Symposium. 1998.
    [37] Petit, G., and C. Thomas. GPS frequency transfer using carrier phase measurements. in Proceedings of IEEE international frequency control symposium. 1996.
    [38] Gerard Petit, P.M.a.C.T., GPS time transfer using carrier phase and P code measurements. European Frequency Time Forum, 1996: p. 279-285.
    [39] Gerard .Petit, C.T., Zhiheng Jiang,et al, Use of GPS Ashtech Z12T receivers for accurate time and frequency comparisons. IEEE Trans. on Ultrasonics, Ferroelectrics, & Freq. Control,, 1999. Vol.46(4): p. 941-949.
    [40] G. Petit, Z.J., PROCESSING STRATEGIES FOR ACCURATE FREQUENCY COMPARISON USING GPS CARRIER PHASE. 1999 Joint Meeting European frequency and time forum and IEEE international frequency control symposimu, 1999: p. 235-238.
    [41] Weiss, M., Ascarrunz, F., Parker, T., Zhang, V., and Gao, X. Effects of antenna cables on GPS timing receivers. in Proceeding of the 1999 Joint Meeting EFTF-IEEE IFCS, pages 259-262. 1999.
    [42] http://gge.unb.ca/Resources/GPSConstellationStatus.txt. 2006.
    [43] Misra, P.a.E., P., Global Positioning System Signals, measurements, and performance. Ganga-Jamuna Press, 2001.
    [44] BIPM, Annual report of the BIPM time section,. 2005. Vol.18: p. 38.
    [45] 黄秉英,周渭, 计量测试技术手册第 11 卷,时间频率. Vol. Vol.11. 1996, 北京: 中国计量出版社.
    [46] Gerard Petit , P.W., Relativistic theory for time comparisons: a review. METROLIGIA, 2005. Vol.42(1): p. 138~144.
    [47] BIPM, Bureau International des Poids et Mesures,Director’s Report on the Activity and Management ofthe International Bureau of Weights and Measures. 2006: p. 1-140.
    [48] Hanson, D.W. Fundamentals of two-way time transfer by satellite. in 43rd Annual Frequency Control Symposium. 1989. pages 174-178.
    [49] Kirchner, D., Two-way time transfer via communication satellites. Proc. IEEE,, 1991. Vol 79(7): p. 983-989.
    [50] 李志刚,李焕信,张虹, 卫星双向法时间比对的归算. 天文学报, 2002. 43(3): p. 422-431.
    [51] 李焕信,张虹,李志刚, 双通道终端进行卫星双向法时间比对的归算方法. 陕西天文台台刊, 2002. 25(2): p. 81-89.
    [52] 张虹, 卫星双向时间比对系统稳定性的研究. 中国科学院研究生院硕士论文, 2006.
    [53] BlairFonville, D.M., Alxeander Pawlitzki,et al Development of carrier phase based two-way satellite time and frequency transfer(TWSTFT). in 36th annual Pricise time and time interval (PTTI) metting. 2004.
    [54] David Allan, M.W. Accurate time and frequency transfer during common-view of a GPS satellite. . in Proc. 34 Frequency Control Symposium. 1980.
    [55] Z.Jiang , G.P. Time transfer with GPS satellites all in view. in Asia-pacific workshop on time and frequency 2004. Beijing.
    [56] 李欣等, 国外激光时间比对进展. 大地测量与地球动力学, 2005. Vol.25(4): p. 119-123,127.
    [57] 李鑫,杨福民, 激光时间传递技术的进展. 天文学进展, 2004. Vol.22(1): p. 10-22.
    [58] Masaki Amemiya, M.I., Yasuhisa Fujii,Tomonari Suzuyama,, Time and Frequency Transfer and Dissemination Methods Using Optical Fiber Network. IEEE hternational Frequency Control Symposium and Joint meeting of Precise time and time interval, 2005: p. 914-918.
    [59] T.P.Celano, sub-picosecond active timing control over filber optic cable. IEEE hternational Frequency Control Symposium and PDA Exhibition, 2002: p. 510.
    [60] 梁双有,任燕, 利用光纤进行高精度时间传递. 宇航计测技术, 2004. Vol.24(3): p. 24-26.
    [61] George F. Lutes, R.T.L., status of frequency and timing reference signal transmission. 45rd annual sympoisum on frequency control, 1991: p. p679.
    [62] G. Santarelli, F.N., C. Daussy, O. Lopez,M.E. Tobar, High performance frequency dissemination for metrology applications with optical fibers. IEEE hternational Frequency Control Symposium and Joint meeting of Precise time and time interval, 2005: p. 925-927.
    [63] 刘大杰, 全球定位系统的原理与数据处理. 第一版 ed. 1997, 上海: 同济大学出版社.
    [64] Gurtner, W., Mader, G., and MacArthur, D. A common exchange format for GPS data. in Proceedings of the Fifth International Geodetic Symposium on Satellite Systems. 1980. page 917ff, Las Cruces, New Mexico.
    [65] ftp://igscb.jpl.nasa.gov/igscb/data/format/sp3c.txt.
    [66] ftp://igscb.jpl.nasa.gov/igscb/data/format/sinex_tropo.txt.
    [67] ftp://igscb.jpl.nasa.gov/igscb/data/format/sinex.txt.
    [68] ftp://igscb.jpl.nasa.gov/igscb/data/format/rinex_clock.txt.
    [69] ftp://igscb.jpl.nasa.gov/igscb/data/format/rinex210.txt.
    [70] ftp://igscb.jpl.nasa.gov/igscb/data/format/ionex1.ps.
    [71] ftp://igscb.jpl.nasa.gov/igscb/data/format/erp.txt.
    [72] 魏子卿, 葛., GPS 相对定位的数学模型. 1998, 测绘出版社: 北京.
    [73] GP2015 Data Sheet. Zalink Semiconductor INc. 2002.
    [74] GP2010 Data Sheet. Zalink Semiconductor INc. 2002.
    [75] GP2021 Data Sheet. Zalink Semiconductor INc. 2001.
    [76] Fredrik Johansson, R.M., Joans Thor,et al, GPS satellite signal acquisition and tracking. 1998.
    [77] 武国胜, GPS 相关接收机集成化研究. 2001, 西安交通大学硕士学位论文: 西安.
    [78] 张会锁, GPS 接收机软件处理方法. 2000, 西安电子科技大学硕士学位论文: 西安.
    [79] Kaplan, E., Understanding GPS principles and applications,. 1996, Norwood: Artech house.
    [80] 武建锋, 基于 DSP 技术的 GPS 接收机设计. 2006, 中国科学院研究生院硕士论文: 西安.
    [81] 莫简豪, CAPS 精码接收机基带处理研究与实现. 2007, 西安电子科技大学硕士学位论文: 西安.
    [82] Thomas E. Parker, D.M., Time and frequency dissemination advances in GPS transfer techniques. GPS World, 2004( No.11): p. p.32-37.
    [83] Kouba, J., A GUIDE TO USING INTERNATIONAL GPS SERVICE (IGS) PRODUCTS. http://igscb.jpl.nasa.gov/components/prods.html, 2003: p. 1-31.
    [84] 李滚, 应用样条函数处理 GPS 共视数据. 测绘信息与工程, 2004. Vol 29(3): p. 42-44.
    [85] P Defraigne, G.p., Time transfer to TAI using geodetic receivers. Metrologia, 2003. vol. 40(2): p. 184~188.
    [86] www.bipm.org.
    [87] P. Defraigne, G.P., Time transfer to TAI using geodetic receivers. Metrologia, 2003. vol. 40(2): p. 184~188.
    [88] Hugentobler, U., Schaer, S., Springer, T.et al. CODE IGS analysis center technical report 2000. in IGS 2000 Technical Reports. 2001.
    [89] 高玉平, IGS 产品在 GPS 时间比对中的应用. 天文学报, 2004. Vol.45(4): p. 428-436.
    [90] Ligun,Libian, D., A Comparative Study of GPS L3 and P3. Joint International frequency control symposium and precise time and time interval proceedings, 2005: p. p672-676.
    [91] 刘琪,张学军,朱衍波, GPS 三频信息改正电离层折射误差高阶项的方法. 导航, 2006. Vol.12(3): p. 41-46.
    [92] Xu, G., Physical Influences of GPS Surveying. 2003: Springer Press.
    [93] B.Hofman-Wellenhof, H.L., J.Collins, GPS theory and practice. fifth ed. 2002: Springer Press.
    [94] Altamimi, Z., Sillard, P., and Boucher, C. , ITRF2000: A new release of international terrestial frame reference for earth science applications. J. Geophy. Res.,107(B10), 2002. Article no. 2214.
    [95] Niell, A., Global mapping functions for the atmosphere delay at radio wavelengths. J. Geophy. Res.,, 1996. Vol 101(B2): p. 3227-3246. Equations 4 and 5 corrected.
    [96] D.D.McCarthy, IERS Conventions 1996. IERS Technical Note 21, 1996.
    [97] Plumb, J., Larson, K., and Bilich, A. Pseudorange systematic errors: Adverse effects on carrier phase time transfer. in proc. 33rd Annual Precise Time and Time Interval (PTTI) System and Applications Meeting. 2001. Long Beach, California.
    [98] 聂桂根, 高精度 GPS 测时与时间传递误差分析及应用研究, in 武汉大学博士学位论文. 2002: 武汉.
    [99] ICD-GPS-200C.
    [100] Carine Bruyninx, P.D., Veronique Dehant,et al. Frequency transfer using GPS carrier phase:influence of temperature variations near the receiver. in 1999 Joint Meeting EFTF-IEEE IFCS. 1999.
    [101] P.Defraigne, C.B., On the link between GPS pseudorange noise and day-boundary discontinuities in geodetic time transfer solutions. GPS solution, 2007. Vol.11(3): p. 23-33.
    [102] Bruyninx, C., Kefraigne, P., and Sleewaegen, J.-M, Time and frequency transfer using GPS codes and carrier phases: Onsite experiments. GPS Solutions,, 1999. 3(2): p. 1-10.
    [103] Schildknecht, T.a.D., G., High precision using GPS phase measurements. GPS World,, 2000. Vol 11(2): p. 48-52.
    [104] G. Petit , Z.J., J.White,et al, Absolute calibrartion of an Ashtech Z12-T GPS receiver. GPS solution, 2001. Vol.4(4): p. 41-46.
    [105] White, J., Beard, R., Landis, G., Petit, G., and Powers, E., Dual frequency absolute calibration of a geodetic GPS receiver for time transfer. proceedings of the 15th European frequency and Time Forum(EFTF), pages 167-172, 2001.
    [106]Dwyer, R.E., SNR values in ashtech receivers. Ashtech RF Group. Memorandum dated 16 December 1997, 1997.
    [107] 屈俐俐, GPS 定时接收机的校准. 时间频率学报, 2005. vol.28(2): p. 131-135.
    [108] Bisnath, S.B., D. Kim and R.B. Langley, A new approach to an old problem: carrier-phase cycle slips. GPS world, 2001. 12(5): p. 46-51.
    [109] LI Gun, H.Y.-h., Zhou Wei, A new algorithm of detecting and estimating cycle slips in dual frequency GPS. ,Proceedings of IEEE International Frequency Control Symposium 2006: p. 621-627.
    [110] 陈树新, GPS 整周模糊度动态确定的算法及性能研究, in 西北工业大学博士学位论文. 2002: 西安.
    [111] 袁洪,万卫星,宁百齐等, 基于三差解检测与修复 GPS 载波相位周跳新方法. 测绘学报, 1998. Vol.27(3): p. 189-194,273.
    [112] 贾沛璋,吴连大, 关于 GPS 载波相位中的野值周跳与模糊度. 紫金山天文台台刊, 2000. 19(2): p. 106-110.
    [113] Blewitt, G., Carrier phase ambiguity resolution for the global positioning system applied to geodetic baselines up to 2000 km. J. Geophy. Res.,, 1989. 94(B8): p. 10,187-10,203.
    [114] 贾沛璋,吴连大, 单频 GPS 周跳检测与估计算法. 天文学报, 2001. 42(2): p. 192-197.
    [115] W.Parkinson, B., a history of satellite navigation. Navigation:journal of the institute of navigation, 1995. Vol.42(1): p. 109-165.
    [116] Weiss, M.a.G., C. A simple algorithm for approximating confidence on the modified allan variance and the time variance. in Proc. 28th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting. 1996. Reston, Virginia.
    [117] Greenhall, C., Howe, D., and Percival, D., Total variance, an estimator of long-term frequency stability. IEEE Trans. Ultrasonics, Ferroelectronics, and Frequency Control,, 1999. Vol 46(5): p. 1183-1191.
    [118] Howe, D.A.a.V., F. Generalization of the total variance approach to the modified allan variance. in Proc. 31st Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting, pages 267-276. 1999. Dana Point, California.
    [119] Kun-Yuan Tu, F.-R.C., Chia-Shu Liao,et al, Frequency syntonization using GPS carrier phase measurements. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2001. Vol.50(3): p. 833-838.
    [120] Christine Hackman, J.L., New frequency comparisons using GPS carrier phase time transfer. IEEE international frequency control symposium and PDA exhibition jointly with the 17th European frequency time forum, 2003: p. 258-265.
    [121] Dudle. C., O.F.S., T,et al. Transatlantic time and frequency transfer by GPS carrier phase. in Frequency and time forum,1999 and the IEEE international Frequency control symposium,1999, proceedings of the 1999 joint meeting of the European. 1999.
    [122] Lisa M. Nelson and Judah Levine, UNDERSTANDING LIMITATIONS OF GPS CARRIER PHASE FREQUENCY TRANSFER ON A TRANSATLANTIC BASELINE. IEEE hternational Frequency Control Symposium and PDA Exhibition, 2001: p. 205-210.
    [123] Larson, K., Levine, J., Nelson, L., and Parker, T., Assessment of GPS carrier-phase stability for time-transfer application. IEEE Trans. Ultrasonics, Ferroelectronics, and Frequency Contol,, 2000. Vol 47: p. 484-494.
    [124] Francois Taris, P.U., G′erard Petit, Zhiheng Jiang, Roland Barillet, and Fr′ed′eric Hamouda, The BNM-LPTF Software for the Frequency Comparison of Atomic Clocks by the Carrier Phase of the GPS Signal. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2000. vol. 47(5): p.1140-1146.
    [125] Dach, R., Schildknecht, T., Springer, T., Dudle, G., and Prost, L., Continuous time transfer using GPS carrier phase. IEEE Trans. Ultrasonics, Ferroelectronics, and Frequency Contol,, 2002. Vol 49(11): p. 1480-1490.
    [126] Larson, K., and J. Levine, , , 46.1999., Carrier phase time transfer. IEEE Trans. on Ultrasonics, Ferroelectrics, & Freq. Control,, 1999. 46(4): p. 1001-1002.
    [127] Hsin-Min Peng, C.-S.L., Jeng-Kuang Hwang, Performance testing of time comparison using GPS smoothed P3 code and IGS ephemerides. IEEE Transactions on instrumentation and measurement, 2005. Vol.54(2): p. 825-828.
    [128] Z. Jiang, R.D., G. Petit et al, COMPARISON AND COMBINATION OF TAI TIME LINKS WITH CONTINUOUS GPS CARRIER PHASE RESULTS. European Frequency Time Forum 2006, 2006(in press).
    [129] Cepek, J.V.a.a.A., Combined smoothing method and its use in combining Earth orientation parameters measured by space techniques. ASTRONOMY & ASTROPHYSICS, 2000: p. 347-359.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700