分布式微型航天器的时钟同步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本学位论文以国家安全重大基础研究973项目——“微型航天器新概念、新机理研究”为背景,对分布式微型航天器DMSS (Distribtute Micro Spacecraft System)的星间时钟同步问题进行深入研究。
     对分布式微型航天器系统而言,星间定时同步关系是非常关键的。分布式微型航天器要求多颗微小卫星编队或者组网共同完成协同观测和信息交换等空间任务,星间时钟同步是保障这些空间任务正常执行的基础。目前系统研究星间时钟同步问题的文献较少,本文针对分布式微型航天器的星间时钟同步问题提出了全面的解决方法,包括微小型星间相对定时同步工具、GPS (Global Positioning System)定时同步技术、星间链路通信协议和星间链路时钟同步四个研究部分,对影响同步的各种因素予以分析,指出改善同步精度的措施,为实现高精度的星间时钟同步提供实践和理论上的基础。
     在分析国外现有星间相对状态测量设备的基础上,提出微小型的星间相对定时同步设备——微型核同步系统。根据星间精确交换时间信息的原理,结合星间射频通信技术和星载电子系统微型化技术,本文提出星间相对定时同步设备的框架结构,包括信号处理、射频收发和GPS接收单元,并进行软、硬件的协同设计与验证工作。本文采用COTS (Commercial off-the-shelf)技术来实现同步系统的原理样机,采用紧凑灵活的电路结构取代原有星间通信工具的分系统、多单元的电路结构。通过搭建测试平台,本文对该同步系统样机的功能模块进行有效性和可行性的验证。
     在分析GPS授时技术的基础上,提出适用于分布式微型航天器的高精度星间定时同步方法。为改善星间定时同步精度,本文分析GPS伪距差分技术和星座几何因子优化方法,研究同步系统振荡源频率稳定度对定时同步精度的影响。通过分析振荡源的频率误差特性和测量方法,本文选择温度补偿晶体振荡器作为星间定时同步设备的振荡源,并提出为振荡源建立准确的星上时钟偏差模型的方法。在该时钟偏差模型的基础上,本文结合卡尔曼滤波器对GPS定时解算数据进行信号处理,仿真验证卫星间钟面差估计精度的改善情况。
     在分析现有星间通信协议、星间链路拓扑和多址接入方式的基础上,本文提出支持星间链路时钟同步服务的通信协议。本文分析了CCSDS Proximity-1协议的数据链路层和物理层规范,讨论该协议提供的定时服务方法。通过研究主从星结构的星间链路拓扑,本文提出自动主星选举方法。在多址接入的研究中,本文对IEEE 802.11的MAC层协议进行分析,重点分析支持时限服务的点协调功能PCF(Point Coordination Function),并结合星间链路时钟同步服务提出改善接入等待时间的方法。
     通过比较传统的双向时间比对法和分布式计算机系统的时钟同步法,本文提出引入概率时钟同步思想到星间时钟同步领域中,以解决缺乏GPS信号等外部时间基准信号的分布式微型航天器的定时同步问题。本文首先采用几何法分析概率时钟同步方法的内在涵义,提出改进的星间链路概率时钟同步法。该方法以星间链路的上、下行信号传输延迟时间差为出发点进行分析以改善同步精度,并用贝叶斯估计对在轨运行的DMSS星间钟面差进行计算并校时。结合微型核同步系统样机传输延迟分布的实验结果,本文推导了该方法的读时钟误差、同步成功概率以及同步精度的表达式。
Supported by the Major State Basic Research Development Program of China (973 Program)—“Study of new concept, new mechanism of micro-spacecraft”, inter-satellite onboard clock synchronization methods for Distributed Micro Spacecraft System (DMSS) are deeply studied in this paper.
     As for DMSS, inter-satellite onboard timing and clock synchronization are critical. DMSS requires many micro-satellites to constitute formation flying system or satellite network to perform a common space task, like coordinated observation or information exchange etc., there inter-satellite timing and synchronization information play an essential role for ensuring the correctness of these space tasks. Up to now, few papers are concerned with timing and synchronization for DMSS. This paper proposes a framework of solution for DMSS clock synchronization problem systematically, which includes research of micro inter-satellite relative timing and synchronization tool, Global Positioning System (GPS) timing method, inter-satellite communication protocol and inter-satellite clock synchronization method. This paper analyzes various factors which influence timing precision, and proposes solutions of improving the precision, thus it provides both practical and theoretical foundation for high precision of inter-satellite timing and clock synchronization. Based on the analysis of current abroad inter-satellite relative state measurement equipment, this paper proposes micro inter-satellite relative timing and clock synchronization equipment, General Cell Synchronization System.
     Based on principle of inter-satellite time information exchange, binding inter-satellite radio frequency (RF) communication technology and onboard micro electronic system technology, this paper proposes the architecture of inter-satellite synchronization system, which involves signal processing unit, RF transceiver and GPS receiver, and realizes software/hardware co-design and validation for this synchronization system. This paper develops a demonstration system with Commercial off-the-shelf (COTS) technology, which has compact circuit architecture instead of multiple modules architecture used by traditional RF communication tools. By building testbed, this paper confirms validity and feasibility of this demonstration system’s functional modules.
     Based on analysis of GPS time transfer technology, this paper proposes a set of reasonable high precision inter-satellite timing scheme for DMSS. To improve inter-satellite timing precision, this paper analyzes GPS pesudorange difference method and GPS satellites selection optimization method, and influence of receiver oscillator’s frequency stability on inter-satellite timing and synchronization precision. By analyzing error characteristics and measurement method of oscillator, this paper chooses temperature compensate crystal oscillator (TCXO) as clock source of inter-satellite relative clock synchronization system, and proposes to build accurate clock bias model for the clock source. Based on the clock bias model, this paper applies Kalman filter to process observed GPS timing data to validate the improvement of relative timing precision among satellites.
     Based on research of present inter-satellite communication protocols, inter-satellite link topologies and multiple access methods, this paper proposes appropriate inter-satellite link protocol to support timing and synchronization service among satellites. This paper analyzes criterions of data link layer and physical layer of CCSDS Proximity-1, and discusses its timing correlation method. By investigating master/slave topology, this paper proposes automatic master satellite seletion method. On investigation of multiple access technologies, this paper analyzes MAC protocol of IEEE 802.11, especially Point Coordination Function (PCF), and proposes methods to decrease average access waiting time, considering inter-satellite clock synchronization service.
     By comparing traditional two-way time comparison method with clock synchronization method in distributed computer system, this paper proposes to introduce probabilistic synchronization idea to inter-satellite synchronization field, so as to solve the inter-satellite onboard clock synchronization problem when DMSS is devoid of external time reference signal, like GPS signal. This paper analyzes inherent meaning of probabilistic clock synchronization with geometry method, and then it proposes an improved inter-satellite probabilistic onboard clock synchronization method. The method starts with difference between uplink and downlink signal delay to analyze how to increase timing precision, and applies Bayesian approach to compute satellite clock bias so as to calibrate it when DMSS is on orbit flying. Based on experimental results obtained from measuring signal transmission delay distribution with the demonstration system of General Cell Synchronization System, this paper systematically deduces arithmetical expression of clock reading error, probability of success synchronization and timing precision of the method.
引文
1. C. A. Raymond, J. O. Bristow and M. R. Schoeberl. Needs for an Intelligent Distributed Spacecraft Infrastructure. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2002, 1: 371-374
    2. W. D. Deininger, J. Bladt, B. Carpenter, etc. Formation Flying Activities and Capabilities at Ball Aerospace. IEEE Aerospace Conference Proceedings, 2003, 6: 2599-2614
    3. J. Leitner. Formation Flying-The Future of Remote Sensing from Space. International Symposium on Space Flight Dynamics, Munich. 2004
    4. W. D. Ivancic. Architecture Study of Space-Based Satellite Networks for Nasa Missions. IEEE Aerospace Conference Proceedings, 2003, 3:1179-1186
    5. B. J. Clement. A. C. Barrett. Coordination Challenges for Autonomous Spacecraft. AAMAS-02 Workshop Notes on Towards an Application Science: MAS Problem Space and Their Implications to Achieving Globally Coherent Behavior, Bologna, Italy, 2002
    6. 梁甸农, 朱炬波, 董臻. 小卫星分布式雷达. 中国基础科学. 2004, 6(6): 7-10
    7. G. Krieger, A. Moreira. Multistatic SAR Satellite Formations: Potentials and Chanllenges. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2005, 4:2680-2684
    8. 周萌清, 徐华平, 陈杰. 分布式小卫星合成孔径雷达研究进展. 电子学报. 2003, 31 (12A): 1939-944
    9. G. Timothy, G. Terry and C. Wendell. Enabling Technologies for Microspacecraft. IEEE Aerospace Conference Proceedings, 2000,4:15-21
    10. P. A. Stadter, M. S. Asher, T. L. Kusterer, G. T. Moore, D. P. Watson, M. E. Pekala and A. J. Harris. Half-Duplex Relative Navigation and Flight Autonomy for Distributed Spacecraft Systems. IEEE Aerospace Conference Proceedings, 2004, 1: 565-573
    11. P. A. Stadter, R. J. Heins, A. A. Chacos, G. T. Moore and T. L. Kusterer. Enabling Distributed Spacecraft Systems with the Crosslink Transceiver.IEEE Aerospace Conference Proceedings, 2002, 2: 743-754
    12. M. Mauric, K. Pete, K. Steve and W. James. Techsat 21 and Revolutionizing Space Missions using Microsatellites. American Institute of Aeronautics and Astronautics, 2001: SSC01-1-3
    13. R. Zenick, K. Kohlhepp. GPS Micro Navigation and Communication System for Clusters of Micro and Nano Satellites. IEEE Aerospace Conference Proceedings, BigSky, MT, USA, 2001, 5:2515-2522
    14. H. Marc. The Low Power Transceiver (LPT) for Space Applications. AIAA Space 2001-Conference and Exposition, Albuquerque, NM, 2001
    15. J. Leitner, F. Bauer, D. Folta, et al. Formation Flying in Space-Distributed Spacecraft Systems Develop New GPS Capabilities. GPS World. 2002, (2): 22-31
    16. 王世练, 路军, 李海川, 张尔扬. 小卫星群星间通信低层协议的初步研究. 飞行器测控学报. 2002, 21(4): 53-57
    17. R. David, L. Philip, S. Victor and J. George. Timekeeping for the Space Technology 5 (ST-5) Mission. IEEE Aerospace Conference Proceedings, 2003, 1: 457-466
    18. C. C. Carlisle, E. J. Finnegan. Space Technology 5 Pathfinder for Future Micro-Sat Constellations. IEEE Aerospace Conference Proceedings, 2004, 1: 239
    19. G. Purcell, D. Kuang, S. Lichten, et al., Autonomous Formation Flyer (AFF) Sensor Technology Development. TMO Progress Report 42-134. 1998
    20. S. W. Bertiger et al., GRACE: Millimeters and Microns in Orbit. Proceedings of ION CPS, Portland, 2002
    21. P. Schwintzer. The Contribution of GPS Flight Receivers to Global Gravity Field Recovery. Journal of Global Positioning System. 2003, 1(1): 61-63
    22. 罗续成. 编队飞行航天器的测量通信一体化系统——射频收发器. 飞行器测控学报. 2006, 25(2): 1-8
    23. 刘洋, 易东云, 王正明. 编队卫星星间相对状态测量的国外研究现状. 飞行器测控学报. 2006, (2): 9-16
    24. 潘科炎. 航天器编队飞行及其关键技术的开发. 遥控遥测. 2003, 24(5): 9-15
    25. D. Vincent, C. Jean-Louis, D. Pascal and G. Georges. An InnovativeOnboard Computer for CNES Microsatellites. Digital Avionics Systems Conference, 2002, 2: 9B2-1-9B2-11
    26. H. Tiggeler, T. Vladimirova and D. Zheng. A System-on-a-Chip for Small Satellite Data Processing and Control. Proceedings of Military and Aerospace Applications of Programmable Devices and Technologies International Conference, Laurel, Maryland US, NASA, 2000:20
    27. T. Vladimirova, MN. Sweeting. System-on-a-Chip Development for Small Satellite Onboard Data Handling. Journal of Aerospace Computing, Information and Communication, AIAA. 2004: 36-43
    28. A. M. Scott, J. Aaron and Y. Hiroyuki. Automotive Electronics in Space: Combining the Advantages of High Reliability Components with High Production Volume. IEEE Aerospace Conference Proceedings, 2002, 4: 1857-1869
    29. 黄影, 张春元, 李毅, 刘东, 李瑞. 基于 COTS 的空间信息处理平台抗辐射关键技术研究. 装备指挥技术学院学报. 2007, 18(1):71-74
    30. A. Barnard, P. J. Bakkes. Feasibility of Using SA1100 Processor in Micro Satellite Environment. IEEE Aerospace Conference Proceedings, 2002, 4:1871-1879
    31. Xiong Jianping, Chen Zhenyu, You Zheng, Gong Ke and Jia Huibo. Onboard Computer Subsystem Design for the Tsinghua Nanosatellite. 20th AIAA International Communication Satellite Systems Conference and Exhibit, Montreal, Quebec, Canada, 2002.
    32. P. H. Woerlee, M. J. Knitel, R. van Langevelde, D. B. M. Klaassen, L. F. Tiemeijer, A. J. Scholten and A. T. A. Zegers-van Duijnhoven. RF-CMOS Performance Trends. IEEE Trans. Electron Devices. 2001, 48(8):1776-1782
    33. H. Hassan, M. Anis and M. Elmasry. Impact of Technology Scaling on RF CMOS. Proceedings of the IEEE International SOC Conference, 2004: 97-101
    34. 朱守红, 翟会生. GPS 定位定时接收机定时误差与定位误差的关系. 陕西天文台台刊. 1996, 19(1):65-69
    35. D. W. Allan, D. D. Davis, M. Weiss, A. Clements and B. Guinot, et al. Accuracy of International Time and Frequency Comparisons via GlobalPositioning System Satellites in Common-View. IEEE Transactions on Instrumentation and Measurement. 1985, IM-34(2):118-125
    36. J. R. Semler. Common-View GPS Time Transfer Accuracy and Stability Results. Position Location and Navigation Symposium, Las Vegas, NV, USA, 1990: 382-391
    37. W. Lewandowski, G. Petit and C. Thomas. Precision and Accuracy of GPS Time Transfer. IEEE Transactions on Instrumentation and Measurement. 1993, 42(2): 474-479
    38. 胡锦伦. 共视法和综合法的 GPS 时间同步精度比较. 中国科学院上海天文台年刊. 2002, (21):140-143
    39. S. Yoon, J. B. Lundberg. Euler Angle Dilution of Precision in GPS Attitude Determination. IEEE Trans. on Aerospace and Electronic System. 2001, 37(3): 1077-1083
    40. Y. Yang, M. Ling-juan. GDOP Results in All-In-View Positioning and in Four Optimum Satellites Positioning with GPS PRN Codes Ranging. Position Location and Navigation Symposium. 2004:723-727
    41. H. Sairo, D. A. kopian and J. Takala. Weighted Dilution of Precision as Quality Measure in Satellite Positioning, IEEE Radar, Sonar and Navigation. 2003, 150(6):430-436.
    42. 丛丽, A. I. Abidat, 谈展中. 卫星导航几何因子的分析和仿真. 电子学报. 2006, 34(12): 2204-2208
    43. J. J. Spilker. GPS Signal Structure and Performance Characteristics. Navigation. 1980, 1: 29-54
    44. G. Petit, C. Thomas. GPS Frequency Transfer Using Carrier-Phase and Measurement. Proceedings of the 50th IEEE International Frequency Control Symposium. Honolulu, HI, USA, 1996:1151-1158
    45. R. S. Radovanovic. Adjustment of Satellite-based Ranging Observations for Precise Positioning and Deformation Monitoring. Doctor Thesis, UCGE Report 20166, Geomatics Engineering. The University of Calgary. 2002:1-195
    46. 左淑红, 左凤鸣, 郑丽娜. 相对差分 GPS 精度分析. 测绘与空间地理信息. 2007, 30(2):42-45
    47. M. L. Mitchell. CDGPS-Based Relative Navigation for Multiple Spacecraft,Master Thesis. Massachusetts Institute of Technology. 2004:1-132
    48. 张立新, 杨文强, 王岗. 卫星系统的定位定时技术. 空间电子技术. 2003, (3): 39-42
    49. 陈洪卿. 导航型 GPS 接收机定时精度的分析. 陕西天文台台刊. 1996, 19(1):70-74
    50. 喻国荣. 基于移动参考站的 GPS 动态相对定位算法研究,武汉大学博士学位论文. 2003:32-36
    51. 葛茂荣, 过静王君. GPS 相对导航在航天器交会对接中的应用. 测绘通报. 1998, (5):6-7
    52. P. W. Bining. Absolute and Relative Satellite to Satellite Navigation Using GPS. Ph.D. Dissertation, Colorado Center for Astrodynamics Research, University of Colorado. 1997:1-162
    53. N. Luo. Precise Relative Positioning of Multiple Moving Platforms Using GPS Carrier Phase Observables. Doctor Thesis. University of Calgary. 2001:1-217
    54. P. Misra. The Role of the Clock in a GPS Receiver. GPS World. 1996, 5: 60-66
    55. S. Bednarz, P. Misra. Receiver Clock-Based Integrity Monitoring for GPS Precision Approachs. IEEE Transactions on Aerospace and Electronic Systems. 2006,42(2): 636-642
    56. D. W. Allan. Time and Frequency (Time-Domain) Characterization, Estimation, and Prediction of Precision Clocks and Oscillators. IEEE Transactions on Ultrasonics, FerroElectrics and Frequency Control. 1987, UFFC-34(6): 647-654
    57. 寇艳红, 张其善. GPS 接收机中晶振误差的模拟方法. 电子与信息学报. 2004, 26(8): 1319-1324
    58. F. Bauer, J. Bristow, D. Folta, K. Hartman, D. Quinn and J. P. How. Satellite Formation Flying Using an Innovative Autonomous Control System (AUTOCON) Environment. AIAA/AAS Astrodynamics Specialists Conf, 1997
    59. A. Long et al., Autonomous Relative Navigation for Formation-Flying Satellites Using GPS. Paper MS00/18, Proceedings of the International Symposium on Space Dynamics. CNES, Biarritz, France, 2000
    60. A. Long et al., Relative Navigation of Formation-Flying Satellites. International Symposium on Formation Flying Missions & Technologies. Toulouse, France, 2002
    61. J. P. How, R. Twiggs, D. Weidow, K. Hartman and F Bauer. ORION: A Low-Cost Demonstration of Formation Flying in Space Using GPS. AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Boston, MA, 1998: 276-286
    62. C. Kitts, R. Twiggs, F. Pranajaya, B. Palmintier, et al. Emerald: A Low-Cost Spacecraft Mission for Validating Formation Flying Technologies. IEEE Aerospace Conference Proceedings. Snowmass at Aspen, CO, USA, 1999, 2: 217-226
    63. S. Leung. High Precision Real-Time Navigation for Spacecraft Formation Flying. Institute of Navigation. ION GPS 2003. Portland: ION Publication Department. 2003, 2:182-193
    64. P. F. Lee, J. Kenneth. The Radarsat-2/3 Topographic Mission. IEEE International Geoscience and Remote Sensing Symposium, Sydney, NSW, Australia, 2001, 1: 499-501
    65. D. W. Hanson. Fundamentals of Two-Way Time Transfers by Satellite. Proceedings of the 43rd Annual Symposium on Frequency Control. Denver, CO, USA, 1989: 174-178
    66. H. Christine, S. R. Jefferts and E. P. Thomas. Common-Clock Two-Way Satellite Time Transfer Experiments. Frequency Control Symposium, 1995, 49th. San Francisco, CA, USA, 1995: 275-281
    67. S. R. Jefferts, M. A. Weiss, J. Levine, et al. Two-Way Time and Frequency Transfer Using Optical Fibers. IEEE Transaction on Instrumentation and Measurement. 1997, 46(2): 209-211
    68. F. G. Ascarrunz, S. R. Jefferts and T. E. Parker. A Delay Calibration System for Two-Way Satellite Time and Frequency Transfer. IEEE International Frequency Control Symposium, 1998: 250-253
    69. 刘利, 韩春好. 卫星双向时间比对及其误差分析. 天文学进展. 2004, 22:219-226
    70. 孙宏伟,李志刚,李焕信等. 卫星双向时间比对原理及比对误差估算. 宇航计测技术. 2001, (2): 55-58
    71. F. G. Ascarrunz, S. R. Jefferts and T. E. Parker. Environmental Effects on Errors in Two-Way Time Transfer. IEEE Conference on Precision Electromagnetic Measurements Digest, 1996: 518-519
    72. G. de Jong, R. van Bemmelen. Evaluation and Improvements of the Calibration of a TWSTFT Station Using SATSIM. 34th Annual Precision Time and Time Interval (PTTI) Meeting. USA: Reston VA, 2002: 391-404
    73. 张立新. 双向比对远距离时间同步技术. 空间电子技术. 2002, 2: 7-9
    74. 周钰, 熊耀恒. 利用卫星进行双向时间传递. 天文研究与技术:国家天文台台刊. 2006, 3(1):28-34
    75. M. Wei. Synchronisation of Bistatic Radar Systems. IEEE Geoscience and Remote Sensing Symposium, IGARSS '04. Proceedings, 2004, 3: 1750-1753
    76. M. Eineder. Oscillator Clock Drift Compensation in Bistatic Interferometric SAR. International Geoscience and Remote Sensing Symposium, 2003, 3:1449-1451
    77. 马宏, 王元钦, 陈谷仓. 编队小卫星间相对测距和时间同步方法研究. 装备指挥技术学院学报. 2006, 17(2): 67-71
    78. 帅平, 曲广吉. 导航星座自主导航的时间同步技术. 宇航学报. 2005, 26(6):768-772
    79. L. Lamport, P. M. Melliar-Smith. Synchronization Clocks in the Presence of Faults. J. ACM. 1985, 32(1): 52-78
    80. L. Lamport, etc. The Byzantine General Problem. ACM Transaction on Programming Languages and Systems. 1982, 4(3): 382-401
    81. J. Lundelius, N. Lynch. A New Fault-Tolerant Algorithm for Clock Synchronization. Information and Computation, 1988, 77(1):1-36
    82. J. Lundelius, N. Lynch. An Upper and Lower Bound for Clock Synchronization. Information and Control. 1984, 62:190-204
    83. T. K. Srikanth, S. Toueg. Optimal Clock Synchronization. Journal of the ACM, 1987, 34(3): 626-645
    84. P. Ramanathan, K. G. Shin and R. W. Butler. Fault-Tolerant Clock Synchronization in Distributed Systems. Computer, 1990,23(10): 33-42
    85. B. Simons, L. Lundelius-Welch and N. Lynch. An Overview of Clock Synchronization. B. Simons, A. Spector (eds.): Fault-Tolerant DistributedComputing, Springer Lecture Notes on Computer Science 448, 1990:84–96
    86. F. Cristian. A Probabilistic Approach to Distributed Clock Synchronization. In Proc. 9th Int’l Conf. on Distributed Computing Systems. 1989: 288-295
    87. F. Cristian, C. Fetzer. Fault-Tolerant External Clock Synchronization. Proceedings of the 15th International Conference on Distributed Computing Systems. Vancouver, BC, Canada, 1995: 70-77
    88. F. Cristian, C. Fetzer. Probabilistic Internal Clock Synchronization. Proceedings of the 13th Symposium on Reliable Distributed Systems. Dana Point, CA, USA, 1994: 22-31
    89. K. Arvind. A New Probabilistic Algorithm for Clock Synchronization. Real-Time Systems Symposium, Santa Monica, CA, 1989: 330-339
    90. K. Arvind. Probabilistic Clock Synchronization in Distributed Systems. IEEE Transaction on Parallel and Distributed Systems. 1994, 5(5): 474-487
    91. T. Yamashita, S. Ono. A Statistical Time Synchronization Method for Frequency-Synchronized Network Clocks in Distributed Systems. IEICE Transactions on Information and Systems. 2004, E87-D(7): 1878-1886
    92. A. Hagit, H. Amir and R. Sergio. Optimal Clock Synchronization under Different Delay Assumptions. SIAM Journal on Computing. 1996, 25(2):109-120
    93. D. L. Mills. Internet Time Synchronization: The Network Time Protocol. IEEE Transactions on Communications. 1991, 39(10):1482-1493
    94. D. L. Mills. Improved Algorithms for Synchronizing Computer Network Clocks. IEEE Transactions on Networks. 1995, 3: 245-254
    95. P. Ramanathan, D. D. Kandlur and K. G. Shin. Hardware Assisted Software Clock Synchronization for Homogeneous Distributed Systems. IEEE Trans. Computers. 1990, C-39(4): 514-524
    96. K. G. Shin, P. Ramanathan. Transmission Delays in Hardware Clock Synchronization. IEEE Trans. Computers. 1988, C-37(11): 1465-1467
    97. L. Rodrigues, M. Guimaraes and J. Rufino. Fault-Tolerant Clock Synchronization in CAN. Proceedings of the 19th IEEE Real-Time Systems Symposium. Madrid, Spain, 1998: 420-429
    98. R. Gusella, S. Zatti. The Accuracy of Clock Synchronization Achieved by TEMPO in Berkeley UNIX 4.3BSD. IEEE Transactions on SoftwareEngineering. 1989, 15: 847-853
    99. S. Chakravarthi, A. Pillai, J. P. Neelamegam, M. Apte and A. Skjellum. A Fine-Grain Clock Synchronization Mechanism for Myrinet Clusters. Proceedings of the 27th Annual IEEE Conference on Local Computer Networks, 2002: 708-715
    100. H. Kopetz, A. Kruger, D. Millinger, and A. Schedl. A Synchronization Strategy for a Time-Triggered Multicluster Real-Time System. In: Proc. Reliable Distributed Systems (RDS’95). Bad Neuenahr, Germany, 1995
    101. U. Schmid, K. Schossmaier. Interval-Based Clock Synchronization. J. Real-Time Systems, 1997, 12(2): 173-228
    102. U. Schmid. Synchronized Universal Time Coordinated for Distributed Real-Time Systems. Control Engineering Practice. 1995, 3(6): 877-884
    103. K. Schossmaier, U. Schmid, Martin Horauer and D. Loy. Specification and Implementation of the Universal Time Coordinated Synchronization Unit (UTCSU). J. Real-Time Systems. 1997, 12(3): 295-327
    104. M. Horauer, U. Schmid and K. Schossmaier. NTI: A Network Time Interface M-Module for High-Accuracy Clock Synchronization. Proceedings of the 6th International Workshop on Parallel and Distributed Real-Time Systems, Orlando, Florida, USA, 1998
    105. Clock Synchronization (NTP) Tests. Http://ipinspace.gsfc.nasa.gov/UoSat-12/ntptest/
    106. U. Pakorn, K. Stefan and L. Otmar. Clock Synchronization Protocol for Distributed Satellite Networks. IEEE Geoscience and Remote Sensing Symposium, IGARSS '05 Proceedings, 2005: 681-684
    107. K. Kusza, M. Paluszek. Low Layer Protocols for Autonoumous Constellations. First Joint Space Internet Workshop, NASA Goddard Space Flight Center, 2000.
    108. Proximity-1 Space Link Protocol—Data Link Layer. Recommendation for Space Data System Standards, CCSDS 211.0-B-4. Blue Book. 2006.
    109. Proximity-1 Space Link Protocol—Coding and Synchronization Sublayer. Recommendation for Space Data System Standards, CCSDS 211.2-B-1. Blue Book. 2003.
    110. Proximity-1 Space Link Protocol—Physical Layer. Recommendation forSpace Data System Standards, CCSDS 211.1-B-3. Blue Book. 2006
    111. E. C. Megla, V. K. Konangi, T. M. Wallett and K. B. Bhasin. Comparison of IEEE 802.11 and Wireless 1394 for Intersatellite Links in Formation Flying. IEEE Aerospace Conference Proceedings, 2002, 3:1077-1083
    112. E. C. Megla, V. K. Konangi and M. A. Seibert. Protocols for Inter-Satellite Communication in a Formation Flying System. 20th AIAA International Communication Satellite Systems Conference and Exhibit. Montreal, Quebec, Canada, 2002
    113. IEEE 802.11 Standard, Wireless LAN (1997).
    114. W. K. Kuo, C. Y. Chan and K. C. Chen. Time Bounded Services and Mobility Management in IEEE 802.11 Wireless LANs. In Proc. 1997 IEEE Int. Conf. Personal Wireless Commun, 1997: 157-161
    115. L. Zhao, C. Fan. M-PCF: Modified IEEE 802.11 PCF Protocol Implementing QoS. Electronic Letters. 2002, 38(24):1611-1613
    116. A. Ganz, A. Phonphoem and Z. Ganz. Robust Superpoll with Chaining Protocol for IEEE 802.11 Wireless LANs in Support of Multimedia Applications. Wireless Networks. 2001, 7(1):65-73
    117. 王世练, 张尔扬. CCSDS Proximity-1 及其在编队飞行小卫星群中的应用. 遥测遥控. 2003, (3):10-14
    118. J. K. Eric. Network Configuration Analysis for Formation Flying Satellites. IEEE Aerospace Conference Proceedings. Big Sky, MT, United States, 2001, 5: 991-1000
    119. 熊群力,姜康林等,航天编队飞行星座的星间通信,无线电通信技术. 2004, 30(1):1-5
    120. 马凯学, 陈明章, 管仲成. 星间通信技术发展及共性问题研究. 空间电子技术. 2002, (3): 18-23
    121. 惠卫华, 吴海, 边玉敬. 卫星星座时间同步中星间链路的设计和性能分析. 时间频率学报. 2006, 29(1):19-26
    122. George Thomas. A Capture-Assisted Random Access Scheme for Multi-Beam LEO Satellite Packet Data Networks. International Journal of Satellite Communications and Networking. 2004, 22: 629-642
    123. B. Mark, F. Joseph and L. Stuart, etc. Fast-Packet vs Circuit Switch and Bent Pipe Satellite Network Architectures. International Journal of SatelliteCommunications and Networking. 1999, 17: 85-105
    124. E. Shunichiro. A Flexible Bandwidth Multiple Beam System Using Onboard DSP. 20th AIAA International Communication Satellite Systems Conference and Exhibit. Montreal, Quebec, Canada, 2002
    125. J. J. Labrosse 著, 嵌入式实时操作系统 μC/OS-II (第二版), 邵贝贝等译. 北京航空航天大学出版社. 2003: 283-330
    126. B. Boehm, C. Abts. COTS Integration: Plug and Pray? IEEE Computer. 1999, 32(1): 135–138
    127. J. R. Carpenter, J. L. Speyer, D. F. Chichka, S. Ananyev and G. Belanger. Assessment of Decentralized Satellite Formation Control with Distributed Hardware-in-the-Loop Testbeds. IEEE Aerospace Conference Proceedings, 2002, 2:757-765
    128. P. Zetocha, M. Brito. Development of a Testbed for Distributed Satellite Command and Control. IEEE Aerospace Conference Proceedings, 2001, 2:609-614
    129. S. Bsssiri, G. Hajj. Higher Order Ionospheric Effects on the GPS Observables and Means of Modelling Them. Manuscrpta Geodetica. 1993, 18(5): 280-289.
    130. D. W. Allan, M. A. Weiss and J. L. Jespersen. A Frequency-Domain View of Time-Domain Characterization of Clocks and Time and Frequency Distribution Systems. Forty-Fifth Annual Symposium on Frequency Control, 1992: 667-678
    131. 李德昌. 晶体振荡器. 国外电子测量技术. 2004, 23(1):19-22
    132. B. Brown, H. Wang. Introduction to Random Signals and Applied Kalman Filtering. New York: John Wiley & Sons. 1992: 120-152
    133. B. Eissfeller, T. Zink, R. Wolf, J. Hammesfahr, A. Hornbostel, JH. Hahn and P. Tavella. Autonoumus Satellite State Determination by Use of Two-Directionnal Links. International Journal of Satellite Communication. 1999, 18: 325-346
    134. E. G. Chang, R. Roberts. An Improved Algorithm for Decentralized Extrema–Findings in Circular Configurations of Processors. Comms. ACM, 1979, 22(5): 281-283
    135. H. Garcia-Molina. Elections in a Distributed Computing System. IEEETrans. Computers. 1982, 31(1): 47-59
    136. F. Schmuck, F. Cristian. Continuous Clock Amortization Need Not Affect the Precision of a Clock Synchronization Algorithm. 9th ACM Symposium on Principles of Distributed Computing, 1990: 133–143
    137. C. Fetzer, F. Cristian. Building Fault-Tolerant Hardware Clocks from COTS Components. Dependable Computing for Critical Applications. 1999, 7: 67-86
    138. I. Martini, G. W. Hein. An Integrity Monitoring Technique for Multiple Failures Detection. IEEE/Ion Position, Location and Navigation Symposium, 2006, 1-3: 450-467

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700