高超声速飞行器分数阶PID及自抗扰控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着高超声速技术的发展,对飞行器再入飞行控制系统提出了越来越高的要求。高超声速飞行器再入飞行过程中,动力学模型表现为具有大不确定性、强耦合的非线性系统,且飞行器在大气层内仅依靠气动力进行控制,控制能力有限,外界干扰对于弹体的影响也不能忽视,这使得高超声速飞行器再入飞行控制系统设计成为高超声速技术领域中的难题之一。本文主要针对高超声速飞行器再入飞行的高精度、强稳定控制问题开展研究。
     首先,选择空天飞行器(ASV)作为研究对象,建立和完善高超声速再入飞行条件下的飞行器的六自由度动力学及运动学方程。耦合特性分析表明了该模型能够反映高超声速再入飞行器是一类具有强耦合、快速时变的非线性系统,可以满足高超声速飞行器再入飞行控制系统等问题的理论研究和仿真验证需要。
     其次,针对具有大不确定性和复杂非线性等特性的高超声速飞行器姿态控制系统,并且考虑到再入飞行过程中飞行器所受的外界干扰等影响,本文结合自抗扰控制技术设计了再入自抗扰姿态控制器。通过构造qin函数实现了连续光滑扩张状态观测器的设计,减弱了传统扩张状态观测器应用过程中的高频颤振现象。将外干扰、模型不确定、通道间耦合及气动参数摄动影响作为“总和干扰”来获取干扰实时作用量,并通过改进的连续光滑扩张状态观测器进行实时动态反馈补偿,实现了系统的线性化。采用非线性反馈控制律来抑制补偿残差,提高了控制性能。进一步利用Lyapunov方法证明了该控制器的稳定性,为控制器参数选择提供了理论基础,通过仿真验证表明该控制器的有效性及鲁棒性。
     针对自抗扰控制器中采用非线性反馈控制律调参较困难的问题,采用分数阶PID控制律可以寻优整定参数,能获得更好的控制品质,较适用于单输入单输出系统。因此,针对单输入单输出系统,本文设计了自抗扰分数阶PID控制律。提出了最优Oustaloup数字算法实现分数阶微积分并建立分数阶PID控制器模型,结合连续光滑扩张状态观测器设计了自抗扰分数阶PID控制器。
     随后,利用自抗扰分数阶PID控制方法,研究了高超声速飞行条件下的飞行器再入滑翔段制导轨迹跟踪问题。结合再入飞行约束条件,建立了飞行器的阻力加速度—速度剖面再入走廊,选择适当的阻力加速度信号作为飞行器的参考轨迹,设计了飞行器再入制导轨迹跟踪控制系统。通过鲁棒性能量度分析表明分数阶PID具有更强的鲁棒性能,仿真结果表明了飞行器制导控制系统的有效性。
     针对分数阶系统建模采用阶次最大公因数法将导致模型阶次显著增加的问题,本文结合分数阶微积分算子的叠加原理,提出了变阶次状态空间建模方法。将分数阶系统推广到状态空间领域,实现了最小阶状态空间转换。对于各阶次均小于1的变阶次状态空间实现的分数阶系统,提出了变阶次分数阶系统的稳定性判定定理。分数阶系统变阶次状态空间建模及稳定理论有利于整数阶状态空间理论在分数阶系统中的推广应用。
     最后,结合分数阶系统变阶次状态空间建模理论,将分数阶微积分引入到高超声速飞行器下压段末导引律设计中,提出了再入下压段分数阶导引律,并结合最优控制理论得到导引律参数。仿真结果表明,相对于传统最优导引律,分数阶导引律提高了制导精度,对导引系数变化不敏感,同时由于分数阶微积分的引入,对下压初始点的参数偏差有良好的修正能力和较强的鲁棒性。
As the development of hypersonic speed technology, the flight control system of reentry vehicle is made more and more high demand. In the reentry process of hypersonic vehicle, its dynamic model appears to a big uncertainty and strong coupling nonlinear systems, and control ability of the aircraft flying within the earth's atmosphere is controlled only by aerodynamic con is limited. Furthermore, the external interference to the projectile also cannot be ignored. All these factors make the design of reentry control system of hypersonic vehicle becoming one of the challenges in the hypersonic technology field. This article mainly aims at the study of high precision and strong stable flight control of hypersonic vehicle.
     First, The paper choose aerospace vehicle (ASV) as the research object, and then establish and perfect the six-degree of freedom dynamics and kinematics equations at the condition of the hypersonic reentry. The analysis of the coupling character shows that this model can reflect hypersonic reentry vehicle is a kind of strong coupling, rapid time-varying nonlinear system, and also satisfy the demands of theoretical study and simulation validation of the flight control system of hypersonic vehicle.
     Secondly, for the hypersonic vehicle attitude control system of a large uncertainties and complex nonlinear characteristics of, also considering the external disturbance influence to the aircraft during the reentry process. Combining with the technology of auto-disturbance-rejection control, this paper designs an auto-disturbances-rejection gesture controller. We design the extended and smooth state observer by constructing Qin function, The high frequency vibration phenomenon in the process of its traditional application is also weakened. We make the outside interference, uncertain model, coupling channel and pneumatic parameter perturbation influence as a "total interference" to get the value of the real-time interference. Through the improvement of extended and smooth state observer, it realize the real-time dynamic feedback compensation and the linearization of the system. By using nonlinear feedback control law to curb compensation residual, the control performance is improved. Moreover, we show the controller's stability using Lyapunov function, and provide basic theory to the selection of controller parameter. Through the simulation results, show the controller is of validity and robustness.
     Auto-disturbances-rejection controller using nonlinear feedback control law is difficult to get parameters , by using nonlinear PID control law can seek virtues and operate values, also obtain better control quality , thus it is more suitable for single input and single output system. Therefore, this paper puts forward Oustaloup digital algorithm to realize the optimal fractional calculus and establish fractional PID controller model, and design auto-disturbances-rejection fractional order PID controller basing on the extended state observer.
     Then, using auto-disturbances-rejection fractional PID control method, we study trajectory tracking matters in the reentry gliding process of the aircraft at the hypersonic flight conditions. Basing on the flight constraints, the aircraft resistance acceleration - velocity profile reentry corridor is made. By selecting the appropriate resistance acceleration signal as aircraft reference trajectory, we design the reentry guidance trajectory tracking control system of the aircraft. Through the analysis of the performance measure of the robust energy indicates that fractional order PID has stronger robustness. Simulation results show the validity of the vehicle guidance control system.
     To solve the fractional order system modeling will lead to obvious increase of the model order. So, in this paper, we put forward a changing order times state space modeling method, make the fractional systems extend to the state space area, realize the minimum order state space conversion basing on the superposition principle of fractional order operator. For whose order times are less than 1 variable order state space achieving fractional order systems, A changing order fractional order system’s stability criterion theorem is put forward. Fractional order system’s changing order state space modeling and stability theory is beneficial for the extended application of integer order state space theory in the fractional order systems.
     Finally, the fractional calculus will be introduced to the guidance law design of the hypersonic vehicle press section and puts forward a fractional guidance law of the reentry press section basing on the fractional order system’s changing order state space model,select parameters of fractional guidance law with optimal control. Through the analysis results, compared with the traditional proportional guidance law, fractional guidance law raised the guidance accuracy, is not sensitive to guide coefficient change. At the same time, because of the introduction of fractional calculus, it has strong robustness and a good correction ability to the deviation parameters of the reentry points.
引文
[1]魏毅寅,刘鹏,张冬青,等.国外高超声速技术发展及飞行试验情况分析[J].飞航导弹,2010(5):2-9.
    [2] Richie G, Springs C. The Common Aero Vehicle-Space delivery system of the future[R]. AIAA-1999-4435.
    [3] Catherine Bahm, Ethan Baumann. The X-43A Hyper-X Mach 7 Flight 2 Guidance, Navigation, and Control Overview and Flight Test Results[R]. AIAA 2005-3275.
    [4] Bandu N. Pamadi, Michael J. Ruth, Gregory J.Brauckmann, etc. Aerodynamic Characteristics, Database Development and Flight Simulation of the X-34 Vehicle[R]. AIAA-2000-0900.
    [5]李瑜,崔乃刚,郭继锋.助推-滑翔导弹发展概况及关键技术分析[J].战术导弹技术,2008,(5):13-19.
    [6]黄伟,罗世彬,王振国.临近空间高超声速飞行器关键技术及展望[J].宇航学报,2010,31(5):1259-1265.
    [7]徐大军,蔡国飙.高超声速飞行器关键技术量化评估方法[J].北京航空航天大学学报,2010,36(1):110-113.
    [8]李菁菁,任章,黎科峰,等.高超声速飞行器再入段的动力学建模与仿真[J].系统仿真学报,2009,21(2):534-537.
    [9]江志国,唐硕,车竞.高超声速飞行器操稳性能分析[J].飞行力学,2010, 28(2):55-58.
    [10]陈琛,王鑫,闫杰.升力体构型高超声速飞行器模态稳定性分析[J].西北工业大学学报,2010,28(3):327-330.
    [11]高为炳.变结构控制理论基础[M].北京:中国科学技术出版社,1996:199-204.
    [12] Haojian Xu, Maj D.Mirmirani, Petros A.Ioannou. Adaptive Sliding Mode Control Design for a Hypersonic Flight Vehicle[J]. Journal of Guidance, Control, and Dynamics. 2004,27(5):829-838.
    [13] Slotine,J.-J.E.,Li.W.. Applied Nonlinear Control[M]. Prentice Hall, Englewood Cliff, 1991:126-153.
    [14] Fernandez, R.B., Hedrick, J.K. Control of Multivariable Non-Linear Systems by the Sliding Mode Method[J]. International Journal of Control. 1987,46(3):1019-1040.
    [15] Shtessel Y, McDuffie J. Sliding Mode Control of the X-33 Vehicle in Launch and Re-entry Modes[C]. AIAA Guidance,Navigation, and Control Conference and Exhibit, Boston,MA, 1998:1-5.
    [16] Shtessel Y, Hall C E. Multiple Time Scale Sliding Mode Control of Reusable Launch Vehicles in Ascent and Descent Modes[C]. Proc. of the American Control Conference, Arlington, VA, 2001:4357-4362.
    [17] Yuri Shtessel,Don Krupp. Sliding Mode Control of Reusable Launch Vehicle in Launch and Re-entry Modes[J]. IEEE 0-8186-7873-9/97 1997.
    [18]钱承山,王岩青,吴庆宪,等.空天飞行器跨大气层再入建模及姿态控制[J].解放军理工大学学报(自然科学版),2010,11(2):190-195.
    [19] Junchun Yang, Jun Hu, Xiaole Lv. Design of Sliding Mode Tracking Control for Hypersonic Reentry Vehicles [C]. Proceedings of the 26th Chinese Control Conference,Zhangjiajie, Hunan, China, 2007:1-4.
    [20] Yanxia Zhou, Yuxiang Wu, Yueming HU. Robust Backstepping Sliding Mode Control of a Class of Uncertain MIMO Nonlinear Systems[C].2007 IEEE International Conference on Control and Automation, Guangzhou, China, 2007:1-5.
    [21] D.H.Xu, X.H.Liao,Y.D.Song. Neuro-Variable Structure Flight Control of Reusable Launch Vehicles[J]. IEEE 0-7803-8808-9/05 2005.
    [22]黄国勇,姜长生,王玉惠.基于自适应Terminal滑模的空天飞行器再入控制[J].系统工程与电子技术,2008,30(2):304-307.
    [23]黄国勇,姜长生,王玉惠.基于快速模糊干扰观测器的UASV再入Terminal滑模控制[J].宇航学报,2007,28(2):292-297.
    [24]黄国勇,姜长生,薛雅丽.新型自适应Terminal滑模控制及其应用[J].航空动力学报,2008,23(1):156-162.
    [25]黄国勇,姜长生,王玉惠.自适应Terminal滑模控制及其在UASV再入中的应用[J].控制与决策,2007,22(11):1297-1301.
    [26]李彬,邵汉永,姜长生.空天飞行器姿态运动的模糊滑模鲁棒控制研究[J].电光与控制,2008,15(10):21-25.
    [27]杨俊春,胡军,吕孝乐.高超声速飞行器再入段滑模跟踪控制设计[C]. Proceedings of the 26th Chinese Control Conference,Hunan, China, 2007:2-5.
    [28]黎科峰,任章.高超声速导弹再入的鲁棒变结构控制方法研究[J].战术导弹控制技术,2006,54(3):1-4.
    [29]梅生伟,申铁龙,刘康志.现代鲁棒控制理论与应用[M].北京:清华大学出版社,2003:16-45.
    [30] Zhang Youan,Yang Huadong,Hu Yuan. Robust Nonlinear Control for Bank to Turn Missile[C]. Proceedings of the 4th World Congress on Intelligent Control and Automation,Shanghai,China, 2002:2973-2977.
    [31] Mahdi J.K. Farhad B. Robust Nonlinear H∞Autopilot Design[J]. IEEE 0-7803-8142-4/03 2003:621-625.
    [32] Zha Xu, Hu Yunan, Cui Pingyuan. Hybrid Control of Backstepping Incorporated with L2-Gain Analysis for Aircraft Attitude[C]. Proceedings of the 5th World Congress on Intelligent Control and Automation, Hangzhou, China, 2004:5462-5465.
    [33]鹿存侃,马骏,闫杰.基于QFT的高超声速飞行器鲁棒控制器设计[J].系统仿真学报,2010,22(3):695-698.
    [34]刘燕斌,陆宇平.基于H∞最优控制理论的高超声速飞机纵向逆控制[J].系统工程与电子技术,2006,28(12):1882-1885.
    [35] B. A. WHITE, L. BRUYERE, A. TSOURDOS. Missile Autopilot Design using Quasi-LPV Polynomial Eigenstructure Assignment[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007,43(4):1470-1483.
    [36]黄显林,葛东明.吸气式高超声速飞行器纵向机动飞行的鲁棒线性变参数控制[J].宇航学报,2010,31(7):1789-1797.
    [37]张军,毕贞法,邵晓巍.一种高超声速飞行器的非线性再入姿态控制方法[J].空间控制技术与应用,2008,34(4):51-54.
    [38] Ming Xin, S.N.Balakrishnan,etc. Nonlinear Bank-to-Turn/Skid-to-Turn Missile Outer-Loop/Inner-Loop Autopilot Design withθ-D Technique[C]. AIAA 2003-5581.
    [39] MingXin, S.N.Balakrishnan. Nonlinear Missile Autopilot Design withθ-D Technique[J]. Journal of Guidance,Control, and Dynamics. 2004,27(3): 406-417.
    [40] MingXin, S.N.Balakrishnan. Nonlinear H∞Missile Longitudinal Autopilot Design withθ-D Method[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008,44(1):41-56.
    [41] MingXin, S.N.Balakrishnan. Missile longitudinal autopilot design using a new suboptimal nonlinear control method[C]. IEE Proc.-Control Theory Appl., 2003,150(6):577-584.
    [42] MingXin, S.N.Balakrishnan. Missile Autopilot Design Using A New Suboptimal Nonlinear Control Method[C]. 41st Aerospace Sciences Meetingand Exhibit, Reno, Nevada, 2003:1-5.
    [43] Changlong Lin, Xisheng Feng, Peiliang Gong,etc. An Application of the Improved Hybrid Fuzzy PID Control System[C]. Proceedings of the 7th World Congress on Intelligent Control and Automation, Chongqing, China, 2008:5704-5709.
    [44] Meng Joo Er, Ya Lei Sun. Hybrid Fuzzy Proportional-Integral Plus Conventional Derivative Control of Linear and Nonlinear Systems[J]. IEEE Transactions on Industrial Electronics, 2001,48(6):1109-1117.
    [45] Li H X, Tong S C. A hybrid adaptive fuzzy control for a class of nonlinear MIMO systems [J]. IEEE Transactions on Fuzzy Systems, 2003,11(1): 24-34.
    [46] S. Vahid Hashemi, Ali Reza Mehrabian, Jafar Roshanian. Control-Oriented Fuzzy Multi-Model Identification of a Highly Nonlinear Missile[C]. 3rd International IEEE Conference Intelligent Systems, 2006:326-331.
    [47] Anna L. Blumel, Evan J. Hughes, Brian A. White. Fuzzy Autopilot Design Using A Multiobjective Evolutionary Algorithm[J]. IEEE 0-7803-6375-2/00 2000:54-61.
    [48]黎科峰,宋剑爽,任章,等.基于模糊逻辑的再入RCS控制方法[J].北京航空航天大学学报,2008,34(12):1407-1410.
    [49] T.Screenuch, A.Tsourdos, E.J.Hughes, etc. Fuzzy Gain-Scheduled Missile Autopilot Design using Evolutionary Algorithms[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006,42(4):1323-1339.
    [50]周锐,魏晨,张鹏,等.导弹模糊增益调参鲁棒飞控系统设计[J].宇航学报,2005,26(4):431-435.
    [51]高道祥,孙增圻,罗熊,等.基于Backstepping的高超声速飞行器模糊自适应控制[J].控制理论与应用,2008,25(5):805-810.
    [52]钱承山,吴庆宪,姜长生,等.空天飞行器再入姿态模糊切换多模型控制[J].系统工程与电子技术,2007,29(11):1912-1916.
    [53] Ducard G, Geering HP. A reconfigurable flight control system based on the EMMAE method[C]. Proceedings of the 2006 American Control Conference, Minneapolis, Minnesota, USA, 2006:5499-5504.
    [54]张春雨,方炜,姜长生.基于T-S模糊系统的空天飞行器鲁棒自适应轨迹线性化控制[J].航空学报,2007,28(5):1153-1161.
    [55]薛雅丽,姜长生,朱亮.空天飞行器鲁棒自适应模糊跟踪控制[J].南京航空航天大学学报,2008,40(1):70-75.
    [56]王玉惠,吴庆宪,姜长生,等.基于模糊前馈的空天飞行器再入姿态的模糊鲁棒跟踪控制[J].宇航学报,2008,29(1):150-155.
    [57]王玉惠,吴庆宪,姜长生,等.具有闭环极点约束的空天飞行器再入姿态的模糊保性能控制[J].航空学报,2007,28(3):654-660.
    [58]方炜,姜长生.基于自适应模糊系统的空天飞行器非线性预测控制[J].航空学报,2008,29(4):988-994.
    [59] S.S.Vaddi, P.Sengupta. Controller Design for Hypersonic Vehicles Accommodating Nonlinear State and Control Constraints[C]. AIAA 2009-6286.
    [60] Seung-Hwan Kim, Yoon-Sik Kim, Chanho Song. A robust adaptive nonlinear control approach to missile autopilot design[J]. Control Engineering Practice, 2004,12:149-154.
    [61] Kevin A. Wise. Robust Stability Analysis of Adaptive Missile Autopilots[C]. AIAA 2008-6999.
    [62]龚宇莲,吴宏鑫.基于特征模型的高超声速飞行器的自适应姿态控制[J].宇航学报,2010,31(9):2122-2128.
    [63] H.J.Kim, D.H.Shim, S.Sastry. Nonlinear Model Predictive Tracking Control for Rotorcraft-based Unmanned Aerial Vehicles[C]. Proceedings of the ACC, 2002:3579-3581.
    [64] S.Kang, J.Shin, H.J.Kim. Observer-based Nonlinear Model Predictive Tracking Control for Bank-to-Turn Missiles[C]. SICE Annual Conference 2007, Kagawa University, Japan, 2007:2620-2624.
    [65]程路,姜长生,都延丽,等.基于滑模干扰观测器的近空间飞行器非线性广义预测控制[J].宇航学报,2010,31(2):423-431.
    [66]方炜,姜长生.一类基于模糊系统的非线性鲁棒自适应预测控制[J].西安交通大学学报,2008,42(6):669-673.
    [67]方炜,姜长生.空天飞行器的自适应变论域模糊预测控制[J].控制与决策, 2008, 23(12):1373-1377.
    [68] Peng Wu, Ming Yang. Design of Missile Attitude Controller Based on Backstepping Method[C]. Proceedings of the 7th World Congress on Intelligent Control and Automation, Chongqing, China, 2008:4091-4094.
    [69]安相宇,王小虎.高超声速滑翔飞行器动态逆解耦跟踪控制方法研究[J].系统仿真学报,2010,22(2):107-110.
    [70] HuangShengjie, Zhao Zhuwei, Luo Qi. Design for BTT Missile Controller Base on the RBF Neural Networks[C]. Proceedings of the 26th ChineseControl Conference, Zhangjiajie,China, 2007:91-95.
    [71]周丽,姜长生,钱承山.一种基于神经网络的快速回馈递推自适应控制[J].宇航学报,2008,29(6):1888-1894.
    [72]吴浩,杨业,王永骥,等.基于RCMAC干扰观测器的高超声速飞行控制[J].系统工程与电子技术,2010,32(8):1721-1726.
    [73] YangQuan Chen, Dingyu Xue, Huifang Dou. Fractional Calculus and Biomimetic Control[C]. Proceedings of the 2004 IEEE International Conference on Robotics and Biomimetics, Shenyang, China, 2004:901-906.
    [74] Chyi Hwang, Jeng-Fan Leu, Sun-Yuan Tsay. A Note on Time-Domain Simulation of Feedback Fractional-Order Systems[J]. IEEE Transaction on Automatic Control, 2002,47(4):625-631.
    [75] Podlubny I. Geometrical and physical interpretation of fractional integration and fractional differentiation[J]. Fractional Calculus & Applied Analysis, 2002,5(4):357-366.
    [76]曾庆山.分数阶控制系统的研究及其在MCFC中的应用[D].上海:上海交通大学,2004:12-16.
    [77]刘式达,时少英,刘式适,等.天气和气候之间的桥梁——分数阶导数[J].气象科技,2007,35(1):15-19.
    [78]李远禄,于盛林.分数阶微分器的实现及其阶次对方法选择的影响[J].南京航空航天大学学报,2007,39(4):505-509.
    [79] Ivo Petras, Igor Podlubny, Paul O’Leary, etc. Analogue Realizations of Fractional Order Controllers[J]. Fakulta BERG,TU Kosice, 2002:1-4.
    [80] Fujio Ikeda,Shigehiro Toyama. Fractional Derivative Control Designs by Inhomogeneous Sampling for Systems with Nonlinear Elements[C]. SICE Annual Conference 2007, Kagawa University, Japan, 2007:1224-1227.
    [81] D. Valerio, J. Sa da Costa. Time-domain implementation of fractional order controllers[J]. IEE Proc.-Control Theory Appl., 2005,152(5):539-552.
    [82] Chen Y.Q., Moore K.L.. Discretization Schemes for Fractional-order Differentiators and Integrators[J]. IEEE Trans on Circuits and Systems, 2002,49(3):363-367.
    [83]曹军义,曹秉刚.分数阶控制器的数字实现及其特性[J].控制理论与应用,2006,23(5):791-794.
    [84]樊玉华,李文.分数阶微分算子的离散化方法比较[J].大连交通大学学报,2008,29(3):95-105.
    [85] Sehoon Oh, Yoichi Hori. Realization of Fractional Order Impedance by Feedback Control[C]. The 33rd Annual Conference of the IEEE Industrial Electronics Society, Taipei, Taiwan, 2007:299-304.
    [86] Chien-Cheng Tseng. Improved Design of Digital Fractional-Order Differentiators Using Fractional Sample Delay[J]. IEEE Transactions on Circuits and Systems, 2006,53(1):193-203.
    [87] Oustaloup A, Levron F, Mathieu B, etc. Frequency-band complex noninteger differentiator: characteriza-tion and synthesis [J]. IEEE Transactions on Circuit and Systems-I: Fundamental Theory and Applications, 2000,47(1):25-39.
    [88] Dingyu Xue, Chunna Zhao, YangQuan Chen. A Modified Approximation Method of Fractional Order System[C]. Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation, Luoyang, China, 2006:1043-1048.
    [89]薛定宇,赵春娜,潘峰.基于框图的分数阶非线性系统仿真方法及应用[J].系统仿真学报,2006,18(9):2405-2408.
    [90] A. Charef. Analogue realisation of fractional-order integrator, differentiator and fractional PID controller[J]. IEE Proc.-Control Theory Appl., 2006,153(6):714-720.
    [91] Chen Y Q, Ahn H S, Podlubny I. Robust stability check of fractional order linear time invariant systems with interval uncertainties[J]. Signal Processing 2006,86:2611-2618.
    [92] Ahn H S, Chen Y Q, Podlubny I. Robust stability test of a class of linear time-invariant interval fractional-order system using Lyapunov inequality[J]. Appl Math Compute, 2007,187(1):27-34.
    [93]王振滨,曹广益.分数微积分的两种系统建模方法[J].系统仿真学报,2004,16(4):810-812.
    [94] SHANTANU D. Functional Fractional Calculus for System Identification and Controls[M]. Berlin:Springer Press, 2008:5-12.
    [95] Wang J F, Li Y K. Frequency domain stability criteria for fractional-order control systems[J]. J of Chongqing University, 2006,1(1):30-35.
    [96] Wen Li,Yoichi Hori. Vibration Suppression Using Single Neuron-Based PI Fuzzy Controller and Fractional-Order Disturbance Observer[J]. IEEE Transactions on Industrial Electronics, 2007,54(1):117-126.
    [97] Podlubny I. Fractional-order systems and PIλDμcontrollers[J]. IEEE Trans onAutomatic Control, 1999,44(1):208-214.
    [98] Duarte Valerio , Jose Sa da Costa. Tuning of fractional PID controllers with Ziegler-Nichols-type rules[J]. Signal Processing, 2006,86:2771-2784.
    [99] BlasM. Vinagre, Vicente Feliu. Optimal Fractional Controllers for Rational Order Systems: A Special Case of the Wiener-Hopf Spectral Factorization Method[J]. IEEE Transactions on Automatic Control, 2007,52(12):2385-2389.
    [100]Concepcion A.Monje,Blas M.Vinagre. Tuning and auto-tuning of fractional order controllers for industry applications[J]. Control Engineering Practise, 2008,16:798-812.
    [101]J.Cervera, A.Banios, C.A. Monje, etc. Tuning of Fractional PID Controllers by Using QFT[C]. Proceedings IECON '06-32nd Annual Conference of the IEEE Industrial Electronics Society, Paris 2006:5402-5407.
    [102]Duarte Valério, JoséSáda Costa. Tuning of Fractional Controllers Minimising H 2and H∞Norms[J]. Acta Polytechnica Hungarica, 2006,3(4):55-70.
    [103]N. Sadati, A. Ghaffarkhah, S. Ostadabbas. A New Neural Network Based FOPID Controller[C]. Proc. ICNSC, 2008:762-767.
    [104]Arijit Biswas, Swagatam Das, Ajith Abraham, etc. Design of fractional-order PIλDμcontrollers with an improved differential evolution[J]. Engineering Applications of Artificial Intelligence, 2008:1-5.
    [105]Junyi Cao, Jin Liang, Binggang Cao. Optimization of Fractional Order PID Controllers Based On Genetic Algorithms[C]. Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, Guangzhou, China, 2005:5686-5689.
    [106]Nasser Sadati, Majid Zamani, Deyman Mohajerin. Optimum design of fractional order PID for MIMO and SISO systems using particle swarm optimization techniques[C]. Proceeding of International Conference on Mechatronics. Kumamoto, Japan, 2007:1-6.
    [107]M.Zamani, M.K.Ghartemani, N.Sadati. Design of an H∞Optimal FOPID Controller Using Particle Swarm Optimization[C]. Proceedings of the 26th Chinese Control Conference, Zhangjiajie, China, 2007:435-440.
    [108]S.Ladaci, J.J.Loiseau, A.Charef. Stability Analysis of Fractional Adaptive High-Gain Controllers for a Class of Linear Systems General case[C]. IECON 2006 32nd Annual Conference on IEEE Industrial Electronics, 2006 :5397-5401.
    [109]朱呈祥,邹云.分数阶控制研究综述[J].控制与决策,2009,24(2):161-169.
    [110]M.K.Ghartemani, M.Zamani, N.Sadati, etc. An optimal fractional order controller for an AVR system using particle swarm optimization algorithm [C]. Power Engineering, 2007 Large Engineering Systems Conf. IEEE Press, 2007: 244-249.
    [111]Hyo-Sung Ahn, Varsha Bhambhani, YangQuan Chen. Fractional-order integral andderivativecontroller design for temperature profile control[C]. Control and Decision Conference, Shandong, China, 2008:4766-4771.
    [112]N.M.F.Ferreira, J.A.T.Machado, J.B.Cunha. The Cooperation of Two Manipulators with Fractional Controllers[C]. IEEE International Conference on Computational Cybernetics, 2006:1-6.
    [113]C.A. Monje, F. Ramos, V. Feliu, etc. Tip position control of a lightweight flexible manipulator using a fractional order controller[J]. IET Control Theory Appl., 2007,1(5):1451-1460.
    [114]V. Feliu Batlle, R.Rivas Perez, L.Sanchez Rodriguez. Fractional robust control of main irrigation canals with variable dynamic parameters[J]. Control Engineering Practice, 2007,15:673-686.
    [115]V. Feliu Batlle, R.Rivas Pérez, F.J.Castillo García, etc. Smith predictor based robust fractional order control:Application to water distribution in a main irrigation canal pool[J]. Journal of Process Control, 2009,19(3):506-519.
    [116]S.E.Hamamci. An Algorithm for Stabilization of Fractional-Order Time Delay Systems Using Fractional-Order PID Controllers[J]. IEEE Transactions on automatic control, 2007,52(10):1964-1969.
    [117]S.E.Hamamci, P.Kanthabhabha, K.Vaithiyanathan. Computation of All Stabilizing First Order Controllers for Fractional-Order Systems[C]. Proceedings of the 27th Chinese Control Conference, Kunming, China, 2008:123-128.
    [118]Hongmei Fan, Yu Sun, Xiaobin Zhang. Research on Fractional Order Controller in Servo Press Control System[C]. IEEE International Conference on Mechatronics and Automation, Harbin,China, 2007:2934-2938.
    [119]Zhang Bangchu, Zhu Jihong, Pan Shushan. Using Fractional-order PIλDμController for Control of Aerodynamic Missile[J]. Journal of china ordnance, 2005:127-131.
    [120]Dingyu Xue, Chunna Zhao, Yangquan Chen. Fractional order PID control of a DC-motor with elastic shaft: A case study[C]. Proc. of the 2006 American Control Conf. Minneapolis, USA, 2006:3182-3187.
    [121]Jie Zhang,Yunqing Zhang. Fractional-Order PIλDμControl and Optimization for Vehicle Active Steering[C]. Proceedings of the 7th World Congress on Intelligent Control and Automation, Chongqing, China, 2008:3439-3444.
    [122]Dejun Zhuang, Jiang Liu, Fan Yu, etc. Study and Evaluation of Driver-Vehicle System with Fractional Order PDμController[C]. IEEE International Conference on Vehicular Electronics and Safety, Shanghai, China, 2006: 434-439.
    [123]王东风,王晓燕,韩璞.锅炉-汽轮机系统的分数阶控制器设计[J].中国电机工程学报,2010,30(5):113-119.
    [124]姚舜才,潘宏侠.粒子群优化同步电机分数阶鲁棒励磁控制器[J].中国电机工程学报,2010,30(21):91-97.
    [125]王飞,雷虎民.基于分数阶微积分PDλ比例导引制导规律[J].控制理论与应用,2010,27(1):126-130.
    [126]李大字,曹娇,关圣涛,等.一种分数阶预测控制器的研究与实现[J].控制理论与应用,2010,27(5):658-662.
    [127]韩京清.从PID技术到“自抗扰控制”技术[J].控制工程,2002,9(3):13-18.
    [128]韩京清.最速反馈控制的不变性[J].系统科学与数学,2005,25(4):498-506.
    [129]韩京清,王伟.非线性跟踪微分器[J].系统科学与数学,1994,4(2):177-183.
    [130]韩京清,袁露林.跟踪_微分器的离散形式[J].系统科学与数学,1999,19(3):268-273.
    [131]黄一,韩京清.非线性二阶连续扩张状态观测器的分析与设计[J].科学通报,2000,45(13):1373-1379.
    [132]韩京清,张荣.二阶扩张状态观测器的误差分析[J].系统科学与数学,1999,19(4):465-471.
    [133]韩京清.一种新型控制器——NLPID[J].控制与决策,1994,9(6):401-407.
    [134]Jingqing Han. From PID to Active Disturbance Rejection Control[J]. IEEE Transactions on Industrial Electronics, 2009, 56(3):900-906.
    [135]韩京清.自抗扰控制技术——估计补偿不确定因素的控制技术[M].北京:国防工业出版社,2008:243-263.
    [136]D.Sun. Comments on active disturbance rejection control[J]. IEEE Trans. Ind. Electron., 2007,54(6):3428-3429.
    [137]J.-H. She, F. Mingxing, Y. Ohyama, etc. Improving disturbance-rejection performance based on an equivalent-input-disturbance approach[J]. IEEE Trans. Ind. Electron., 2008,55(1):380-389.
    [138]M.Valenzuela, J.M.Bentley, P.C.Aguilera, etc. Improved coordinated response and disturbance rejection in the critical sections of paper machines[J]. IEEE Trans. Ind. Appl., 2007,43(3):857-869.
    [139]Gang Tian, Zhiqiang Gao. Frequency Response Analysis of Active Disturbance Rejection Based Control System[C]. 16th IEEE International Conference on Control Applications Part of IEEE Multi-Conference on Systems and Control,Singapore, 2007:1595-1599.
    [140]陈新龙,杨涤,翟坤,等.一类光滑控制函数构造研究[J].宇航学报, 2007,28(6):1565-1568.
    [141]夏卫星,杨晓东.基于鲁棒滤波理论的最速跟踪微分器滤波特性研究[J].电光与控制,2010,17(2):78-81.
    [142]孙彪,孙秀霞.离散系统最速控制综合函数[J].控制与决策,2010,25(3):473-477.
    [143]韩京清.自抗扰控制技术[J].前沿科学,2007(1):24-31.
    [144]Li Congying, Wang Shixing, Yue Zhi, etc. Anti-windup Nonlinear PID Controller Design and Its Application to Winged Missile Control System[C]. Proceedings of the 27th Chinese Control Conference, Kunming, China, 2008:377-379.
    [145]Qing Zheng, Linda Q.Gao, Zhiqiang Gao. On stability analysis of active disturbance rejection control for nonlinear time-varying plants with unknown dynamics[C]. Proceedings of the 46th IEEE Conference on Decision and Control,New Orleans,USA, 2007:3501-3506.
    [146]Qing Wang, Jing Yao, Jiaqing Wang. Genetic-based Active Disturbance Rejection Controller for Super-heated Steam Temperature Regulation[C]. Second International Conference on Genetic and Evolutionary Computing, 2008:101-104.
    [147]Dan Wu, Ken Chen. Design and Analysis of Precision Active Disturbance Rejection Control for Noncircular Turning Process[J]. IEEE Transactions on Industrial Electronics, 2009,56(7):2746-2753.
    [148]Qing Zheng, Lili Dong, Dae Hui Lee, etc. Active Disturbance Rejection Control for MEMS Gyroscopes[J]. IEEE Transactions on Control Systems Technology, 2009,17(6):1432-1438.
    [149]Brian Fast, Robert Miklosovic, Aaron Radke. Active Disturbance RejectionControl of a MEMS Gyroscopes[C]. 2008 American Control Conference, Washington, USA, 2008:3746-3750.
    [150]Zhe Zuo, Ya-ping Dai, Dong-hai Li, etc. Active Disturbance Rejection Control of Toggle-Motor Coupling Servomechanism System[C]. Proceedings of the 7th World Congress on Intelligent Control and Automation,Chongqing, China, 2008:3429-3433.
    [151]Qiang Ma, Daping Xu, Yuntao Shi. Research of Synthesis Tuning Algorithm of Active-Disturbance-Rejection Controller[C]. Proceedings of the 7th World Congress on Intelligent Control and Automation, Chongqing, China, 2008:2788-2793.
    [152]Hua Xiong, Feng-shui Jing, Jian-qiang Yi, etc. Automatic Takeoff of Unmanned Aerial Vehicle based on Active Disturbance Rejection Control[C]. IEEE International Conference on Robotics and Biomimetics, Guilin, China, 2009:2474-2479.
    [153]Hua Xiong, Jian-qiang Yi, Guo-liang Fan, etc. Autolanding of Unmanned Aerial Vehicles based on Active Disturbance Rejection Control[C]. IEEE International Conference on Intelligent Computing and Intelligent Systems, Shanghai,China, 2009:772-776.
    [154]王丽君,童朝南,彭开香,等.板宽板厚多变量系统的自抗扰控制及混沌优化[J].控制与决策,2007,22(3):304-308.
    [155]史永丽,侯朝桢,苏海滨.基于粒子群优化算法的自抗扰控制器设计[J].系统仿真学报,2008,20(2):433-436.
    [156]王兵树,姜萍,林永君,等. SIMULINK中自抗扰控制技术自定义模块库的创建[J].系统仿真学报,2010,22(3):610-615.
    [157]姚郁,毕永涛.姿控式直接侧向力与气动力复合控制策略设计[J].航空学报,2010,31(4):701-708.
    [158]张海波,孙立国,孙健国.直升机/涡轴发动机综合系统鲁棒抗扰控制设计[J].航空学报,2010,31(5):883-892.
    [159]李顺利,李立涛,杨旭.柔性多体卫星自抗扰控制系统的研究[J].宇航学报,2007,28(4):845-849.
    [160]周振雄,曲永印,杨建东,等.平面精密磁悬浮轴承的悬浮位置控制[J].控制与决策,2010,25(3):437-444.
    [161]付永领,陈辉,刘和松,等.基于自抗扰控制的导弹电液舵机系统研究[J].宇航学报,2010,31(4):1051-1055.
    [162]熊治国,孙秀霞,胡孟权.自抗扰控制器在超机动飞行快回路控制中的应用[J].控制与决策,2006,21(4):477-480.
    [163]朱承元,杨涤,李顺利.用户卫星天线跟踪指向自抗扰控制方法[J].北京理工大学学报,2006,26(1):82-86.
    [164]Shaughnessy J D, Pinckney S Z, McMinn J D. Hypersonic vehicle simulation model: winged-cone configuration[R], NASA TM-102610, 1990.
    [165]John D S. Hypersonic Vehicle Simulation Model:Winged-Cone Configuration [R]. NASA Technical Memorandum 102610, 1990.
    [166]Shahriar K. Six-DOF Modeling and Simulation of a Generic Hypersonic Vehicle for Conceptual Design Studies[C]. Modeling and Simulation Technologies Conference, AIAA 2004-4805.
    [167]胡建兵,韩焱,赵灵冬.基于Lyapunov方程的分数阶混沌系统同步[J].物理学报,2008,57(12):7522-7526.
    [168]Gao Z Q, Huang Y, Han J Q. An alternative paradigm for control system design[C]. IEEE CDC conference, December 2001:4578-4585.
    [169]赵汉元.飞行器再入动力学与制导[M].湖南:国防科技大学出版社,1997:229-231.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700