有限元/边界元法腔体分析及圆极化天线研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天线是无线通信系统中的重要组成部分。随着电子技术的发展和空间技术的进步,通信系统正在向着宽带化、小型化的方向发展。新型的宽带和小型圆极化天线及波导裂缝阵列天线都成为具有重大理论意义和工程实用价值的课题。本论文结合各种无线通信系统的需求,围绕宽边纵缝波导阵列天线、GPS波段宽带圆极化天线、可重构宽带圆极化天线、宽带宽波束圆极化天线、电感加载小型圆极化天线、室内覆盖宽带天线几个问题进行了研究。作者的主要工作和创造性成果可以概括为:
     1.研究了一种精确分析宽边纵缝波导阵列天线的方法。将有限元-边界元混合算法(FE-BI)应用于波导裂缝阵列天线的计算中,建立了理论分析模型,计算了波导裂缝上的等效磁流,进而求解了整个天线阵列的远场辐射特性。将计算结果与文献中的实验结果进行了对比,结果表明该方法具有很高的计算效率和精确度。为计算波导裂缝阵列天线提供了一种精确有效的方法。
     2.设计了两副GPS波段的宽带圆极化天线。采用耦合馈电的双层立体结构来实现天线的宽带圆极化,并且研究了T型馈电探针对天线性能的影响,比较了T型馈电探针和L型馈电探针的结果。两副天线在所需频带内满足设计要求。
     3.研究了一种可重构的宽带圆极化天线。在一副宽带圆极化天线的基础上加入一个开关电路,利用开关的闭合对天线的极化型式进行控制,使其可以实现左旋圆极化、右旋圆极化和线极化的可重构。该天线与其它极化可重构天线相比,具有成本低廉和结构简单的优点,具有良好的实用性。
     4.研究了一种宽带宽波束圆极化天线。采用加寄生振子和反射板的方法展宽天线的波束宽度。详细分析了各种主要参数对天线电性能的影响,根据分析结果实际制作并调试了一副宽带宽波束圆极化天线,并进行了实际测试。测试结果和仿真结果表明,本文所提的设计方法对宽带宽波束圆极化天线的设计具有一定指导意义。
     5.研究了两种电感加载的小型圆极化天线。对实现圆极化天线的进一步小型化的方法进行了研究,将一种新的电感加载技术应用于十字交叉偶极子天线中,这就相当于增加了天线的电长度。给出了等效电路模型,完成了两种小型圆极化天线的设计,并与最新发表的文献做了比较。结果表明,这种电感加载的方法是一种实现天线小型化的有效方法,这两种天线模型均比文献中的天线具有更小的体积。
     6.研究了两种用于移动通信领域的室内覆盖宽带天线。研究了一种覆盖GSM/UMTS/WLAN频段的双频宽带埋墙天线和一种频带更宽的覆盖800MHz~3GHz的室内埋墙天线。研究了将天线置于墙壁中时,墙壁对天线性能的影响。结果表明,这两种天线在室内的环境中,具有良好的辐射性能。文中给出了两种天线的仿真与测试结果以及实物照片。
Antenna is one of the key components of wireless communication systems. With the development of electronic technique and advancement of space technique, the communication systems are developing towards wideband and miniaturization direction, which makes the design and manufacture of waveguide slots array antennas and wideband and compact circularly polarized antennas to be an urgent and important issue. Being associated with the demands of the wireless communication systems, this dissertation makes deeply insight to waveguide slots array antennas, wideband and circularly polarized antennas for GPS, reconfigurable wideband and circularly polarized antennas, wideband and broad beamwidth circularly polarized antenna, Inductively-Loaded and Magnetically-Coupled Small Antenna and "buried-on-wall" antenna for indoor applications. The author's major contributions are as follows:
     1. A new method for analyzing waveguide slots array is investigated. The Finite element-boundary integral (FE-BI) method is introduced to analyze waveguide slots array antennas. The numerical model based on FE-BI is established. Then by obtaining the equivalent magnetic current on the surfaces of the slots, far field radiation characteristics of the waveguide slots array can be acquired. Also simulated and measured results are compared to verify the efficiency and accuracy of the presented method. The good agreement shows that FE-BI can be utilized as an efficient method for analyzing waveguide slots array.
     2. Two wideband and circularly polarized antennas for GPS are studied. With a suspended structure and a T-shaped feeding probe, wideband and circularly polarization are implemented. By incorporating a long probe inside a high substantial cavity (~0.16λ), a circularly polarized (CP) antenna in broadside direction is achieved. The horizontal arm of the probe is implemented by means of a printed monopole that is diagonally coupled to a small special shaped copper plate. The two CP antennas feature a wide operating bandwidth and good bore sight axial-ratios during the GPS band. The maximum gains of these two antennas are recorded as no less than 7.2 dBc across the bandwidth. The measured results are presented.
     3. A polarization reconfigurable microstrip antenna without orthogonal feeding network is proposed. The antenna is composed of a suspended patch, two printed probes and a simple switch circuit. Reconfigurable polarization, i.e. right-hand circular polarization (RHCP) or left-hand circular polarization (LHCP) or linear polarization (LP), is produced by controlling the states of the switch circuit. A prototype is designed and tested. The simulation and measured results show that the proposed antenna demonstrates wide impedance bandwidth, and a good axial ratio in the circularly polarized states.
     4. A novel printed crossed dipole with broad axial ratio (AR) bandwidth and enhanced beamwidth is proposed. The proposed antenna consists of two dipoles crossed through a 90°phase delay line, which produces one minimum AR point due to the sequentially rotated configuration and 4 parasitic ring loops, which generate one additional minimum AR point. By combining these two minimum AR points, the proposed dipole achieves a broadband circularly polarized (CP) performance. Behind the dipoles are 8 erect parasitical monopoles and a reflector, which are placed to broaden the beamwidth. The proposed antenna has not only a broad 3 dB AR bandwidth with respect to the CP center frequency 1.575 GHz, but also a broad 3 dB beamwidth of about 180°. The computed and measured results show the high practicality of this method.
     5. Two kinds of inductively-loaded and magnetically-coupled small antennas with circular polarization are presented. The electronically small size is implemented by employing a new inductively-loaded technique. This technique consists of adding short circuited cylindrical covers to extremes of the structure, making the elements be inductively loaded, and as a result, increases the electronic length. Two antenna prototypes are proposed to verify this method. This method may have some guiding significance for the minimization antennas with circular polarization properties.
     6. Two wideband antennas for indoor communication applications are proposed. One is dual band for GSM/UMTS/WLAN applications, the other has impedance bandwidth of about 116% ranging from 800 MHz to 3 GHz (VSWR<2), making it easy to cover the GSM/DCS/PCS/UMTS/IMT/Wibro/CDMA/WiMAX bands. The wall effects to the antennas are also studied. The computed and measured results show that these two antennas feature good performances in their operating bands.
引文
[1]罗新民,薛少丽,田琛编.现代通信原理.高等教育出版社,2003.
    [2]阮颖铮.雷达截面与隐身技术.北京:国防工业出版社,2000.
    [3]王晓明,殷耀国,杨自明.全球导航卫星系统的现代化进展.全球定位系统,2006(4)pp:39-42.
    [4]初海彬.多种卫星导航定位系统共用关键技术研究.哈尔滨工业大学博士论文,2004.
    [5]王骞.多频段卫星导航天线设计.西安理工大学硕士论文,2008
    [6]付世强,房少军,王钟葆等.多模卫星定位导航系统的宽带天线.哈尔滨工业大学学报,2008,vol.40,no.11,pp:1811-1814.
    [7]周世钢.无线通信系统中宽带与多频天线的研究.西安电子科技大学博士论文,2010.
    [8]A.麦罗拉著,聂涛等译.蜂窝移动通信工程设计.北京:人民邮电出版社,1997.
    [9]李建东,杨家玮.个人通信.北京:人民邮电出版社,1998.
    [10]Nakamura K, Komada K, Ebine Y. A triple-band antenna for mobile base stations. IEICE General Conference, B-1-66, March 2000.
    [11]Y.X. Guo, C.L. Mak, K.M. Luk et al. Analysis and design of L-probe proximity fed-patch antennas, IEEE Trans Antennas Propagation.2001, Vol.49, pp:145-149.
    [12]C.L. Mak, K. F. Lee, and K. M. Luk, Broadband patch antenna with a T-shaped probe, IEE Proceedings Microwave Antennas Propagation,2000, vol.147, No.2, pp:73-76.
    [13]S. Pinhas and S. Shtrikman, Comparison between computed and measured bandwidth of quarter-wave microstrip radiators, IEEE Trans Antennas Propagation.1988, vol.36, pp:1615-1616.
    [14]L. Zaid, G. Kossiavas, J.Y. Dauvignac et al. Dual-frequency and broad-band antennas with stacked quarter wavelength elements, IEEE Trans Antennas Propag.1999, vol.47, pp:654-660.
    [15]Y.X. Guo, A. Shackelford, K.F. Lee et al. Broadband quarter-wavelength patch antennas with a U-shaped slot, Microwave Opt Technol Lett.2001, vol.28, pp:328-330.
    [16]A.K. Shackelford, K.F. Lee, and K.M. Luk, Design of small-size wide-bandwidth microstrip-patch antennas, IEEE Antennas Propag Mag.2003, vol.45, pp:75-83.
    [17]P. Li, K.L. Lau, and K.M. Luk, Wideband folded shorted patch antenna with low profile, Electron Lett.2005, vol.41, pp:112-113.
    [18]J.W.Bailk, Y.J.Suang and Y.S.Kiml, Compact wideband inverted planer monopole antenna, Microwave Opt. Technol. Lett.2007, vol.49, no.12. pp:2913-2914.
    [19]Zhiguo Shi, Wang Ren, Haiwen Liu et al. Novel "buried-on-wall" 900MHz cavity-backed slot antenna with circular polarization Microwave Opt. Technol. Lett. 2007, vol.49, No.12. pp:3169-3172.
    [20]黄有火.移动基站天线及波束赋形天线研究.西安电子科技大学博士论文,2009.
    [21]M. Koshiba, K. Hayata, and M. Suzuki, Finite-element method analysis of microwave and optical waveguides:Trends in countermeasures to spurious solutions. Electronics and Communications in Japan,1987, part2, vol.70, pp:96-108.
    [22]B. M, A. Rahman, E. A. Fernandez et al. Review of finite element method for Microwave and optical waveguides, Proc. IEEE,1991, vol.79, pp:1442-1448.
    [23]Z. J. Cendes and P. Silvester, Numerical solution of dielectric loaded waveguide: I-Finite-element analysis, IEEE Trans. Microwave Theory Tech.1970, vol.18, pp:1124-1131.
    [24]B. M. A. Rahman and J. B. Davies, Penalty function improvement of waveguide solution by Finite elements, IEEE Trans. Microwave Theory Tech.1984,vol.32, pp:922-928.
    [25]I. P.Webb, Finite element analysis of dispersion in waveguides with sharp metal edges, IEEE Trans. Microwave Theory Tech.1988, vol.36, no.12, pp:1819-1824.
    [26]A. Bossavit and J. C. Verite, A mixed FEM-BIEM method to solve 3-D eddy current problems, IEEE Trans. Magnetics,1982, vol.MAG-18, pp:431-435.
    [27]M. L. Barton and Z. J. Cendes, New vector finite elements for three-dimensional magnetic field computation, J. Appl. Phys.1987, vol.61, no.8, pp:3919-3921.
    [28]C. W. Crowley, Mixed order covariant projection finite elements for vector fields, PH. D. dissertation, McGill University, Montreal,1988.
    [29]A. W. Glisson and D. R. Wilton, Simple and efficient numerical methods for problems of electromagnetic radiation and scattering from surfaces, IEEE Trans. Antennas Propagat.,1980, vol.AP-28, pp:593-603.
    [30]S. M. Rao, D. R. Wilton, and A. W. Glisson, Electromagnetic scattering by surfaces of arbitrary shape, IEEE Trans. Antennas Propagat.1982, vol.30, pp:409-418.
    [31]D. H. Schaubert, D. R. Wilton, and A. W. Glisson, A tetrahedral modeling method for electromagnetic scattering by arbitrarily shaped inhomogeneous dielectric bodies, IEEE Trans. Antennas Propagat.1984, vol.AP-32, pp:77-85.
    [32]Jian Liu and Jian-Ming Jin, A Special Higher Order Finite-Element Method for Scattering by Deep Cavities, IEEE Transactions on Antennas and Propagation,2000, vol.48, no.5, pp:694-703.
    [33]Jian-Ming Jin, Jian Liu, Zheng Lou et al. A Fully High-Order Finite-Element Simulation of Scattering by Deep Cavities, IEEE Transactions on Antennas and Propagation,2003, vol.51, no.9, pp:2420-2429.
    [34]Hu, F.-G., Wang, C.-F., Gan, Y.-B. Efficient Calculation of Interior Scattering From Large Three-Dimensional PEC Cavities, Antennas and Propagation, IEEE Transactions on.2007, Vol.55, Issue 1, pp:167-177.
    [35]Burkholder R.J., Lundin T. Forward-backward iterative physical optics algorithm for computing the RCS of open-ended cavities Antennas and Propagation, IEEE Transactions on.2005, Vol.53, Issue 2, pp:793-799.
    [36]盛新庆,彭朕.合元极技术再认识——一种电大复杂目标散射混合计算技术的考察.电子学报,2006,vol.34(1),pp.93-98.
    [37]年丰,董硕,周乐柱等.三维电磁辐射问题混合阶矢量基有限元完全匹配层方法的研究.北京大学学报(自然科学版)网络版,2006-09,第1卷,第3期,pp.1-5.
    [38]邱兆杰,侯新宇,许家栋等.三维目标电磁散射矢量有限元/边界元法的公式研究.电子学报.2006,Vol.34,No.9.
    [39]何小祥,徐金平.改进的IPO与FEM混合法分析复杂电大腔体电磁散射.电波科学学报.2004,Vol.19,No.5.
    [40]何小祥,陈如山.细长三维腔体电磁散射DDM/FEM快速分析.南京理工大学学报.2006,Vol.30,No.6.
    [41]J. Lowdell, G. Cox, M. Notter et al. Dual band quadrifilar helix antennas for uhf/vhf band operation [J]. IEEE Antennas and Propagation.2003, vol.3 (1), pp:180-185.
    [42]王家勇.低轨移动通信小卫星天线系统设计与分析.上海:中国科学院上海微系统与信息技术研究所.2002.
    [43]Wen-Yi Qin, Jing-Hui Qiu, Qi Wang. A novel multi-frequency quadrifilar helix antenna [J]. IEEE Antennas and Propagation Society International Symposium.2005 (1B),pp:467-470.
    [44]M. Hosseini, M. Hakkak, P. Reznei. Design of a dual-band quadrifilar helix antenna [J]. IEEE Antennas and Wireless Propagation Letters.2005 (4), pp:39-42.
    [45]钟顺时.微带天线理论与应用.西安电子科技大学出版社,1991.
    [46]C. Lin, F.-S. Zhang, Y. Zhu et al. A novel three-fed microstrip antenna for circular polarization application. J. of Electromagn. Waves and Appl.2010, Vol.24, pp: 1511-1520.
    [47]章敏.卫星导航定位系统中的圆极化天线研究.西安电子科技大学硕士论文.2011..
    [48]边少锋,李文魁.卫星导航系统概论.电子工业出版社.2005.
    [49]吴苗,朱涛,李方能等.无线电导航原理与应用.国防工业出版社.2008.
    [50]P. H. Dana. Global positioning system overview. Department of Geography, University of Texas at Austin.2000.
    [51]Elliott D. Kaplan,邱致和,王万义译.GPS原理与应用.北京:电子工业出版社.2002.
    [52]张孟阳.”北斗”卫星导航系统应用发展综述.国际太空.2009,No.11,pp.27-31.
    [53]童凯.中国导航定位系统的进展http://www.navchina.com.2004.
    [54]干国强,邱致和.导航与定位-现代战争的北斗星.北京:国防工业出版社.2000.
    [55]陈秀万,方裕,尹军等.伽利略导航卫星系统.北京大学出版社.2005.
    [56]G.W. Hein. The European satellite navigation system Galile. University FAF Munich. 2003.
    [57]H.D. He. A novel wide beam circular polarization antenna-microstrip-dielectric antenna.3rd ICMMT 2002, Aug.2002, pp:381-384.
    [58]L.L. Zhong, J.H. Qiu, N. Zhang et al. Novel Ultrawide-band Wide Beam Circular Polarization Antenna, APMC 2007. Dec.2007, pp:1-4.
    [59]S.S. Francesca and N. M. Sergey. A Low-Multipath Wideband GPS Antenna With Cutoff or Non-Cutoff Corrugated Ground Plane. IEEE Transactions on Antennas and Propagation,2009, Vol.57, No.1, pp:33-46.
    [60]L. Yoann and S. Ala. Broadband Folded Printed Quadrifilar Helical Antenna. IEEE Transactions on Antennas and Propagation,2006, Vol.54, No.5, pp:1600-1604.
    [61]Kwok L. Chung, A Wideband Circularly Polarized H-Shaped Patch Antenna. IEEE Trans. Antennas Propag.2010, vol.58, No.10, pp:3379-3383.
    [62]Jung-Woo Baik, Tae-Hak Lee, Seongmin Pyo et al. Broadband circularly polarized crossed dipole with parasitic loop resonators and its arrays, IEEE Trans. Antennas Propag.2011, vol.59, No.1, pp:80-88.
    [63]Guo, Y. X., K. M. Luk, and K. F. Lee, A dual-band patch antenna with two U-shaped slots, Microwave Opt. Technol. Lett.,2000, vol.26, No.2, pp:73-75.
    [64]Lau, K. L., K. M. Luk, and K. F. Lee, A patch antenna with a rectangular-loop feed. IEEE Trans. Antennas Propag.2003, Vol.51, pp:2464-2468.
    [65]J.W.Bailk, Y.J.Suang and Y.S.Kiml, Compact wideband inverted planer monopole antenna, Microwave Opt. Technol. Lett.2007, vol.49, No.12.
    [66]K. L. Lau, K. C. Kong, and K. M. Luk, A Miniature FoldedShorted Patch Antenna forDual-Band Operation, IEEE Trans. Antennas Propag.2007, vol.55, pp:2391-2398.
    [67]K. L. Lau, K. M. Luk, P. Li et al. A Dual-Band Shorted Patch Antenna Proximity-Fed by a Combined L- and T-probe feed structure, Microwave Opt. Technol. Lett,2003, vol.37, (2), pp:127-129.
    [68]K. L. Lau, P. Li, and K. M. Luk, A wideband and dual-frequency shorted patch antenna with compact size, IEEE Antennas Propagat. Soc. Int. Symp. Dig,2004, vol.1, pp:249-252.
    [69]P. Li, K. L. Lau, and K. M. Luk, Wideband folded shorted patch antenna with low profile, Electronics Letters,2005, vol.41, (3),pp:112-113.
    [70]R. F. Harrington, Time-Harmonic Electromagnetic Fields, McGraw Hill, New York, 1961.
    [71]K. S. Yee, Numerical Solution of Initial Boundary Value Problems Involving Maxwell Equations in Isotropic media, IEEE Trans. On AP,1966, pp:302-307.
    [72]金建铭.电磁场有限元方法.西安电子科技大学出版社.2001.
    [73]Girish Kumar, K. P. Ray. Broadband Microstrip Antennas. Artech House, Boston, London.2003.
    [74]Kin-Lu Wong. Compact and Broadband Microstrip Antennas. A wiley-interscience publication.2002.
    [75]Chia-Luan Tang, Jyh-Ying Chiou, and Kin-Lu Wang. Beamwidth enhancement of a circularly polarized microstrip antenna mounted on a three-dimensional ground structure. Microwave and Optical Technology Letters.2002, Vol.32, no.2, pp: 149-153.
    [76]C.-W. Su, S.-K. Huang and C.-H. Lee. CP microstrip antenna with wide beamwidth for GPS band application. Electronics Letters.2007, Vol.43, no.20, pp:1062-1063.
    [77]V. Rokhlin, Rapid solution of integral equations of classical potential theory, Journal of Computational Physics,1985, Vol.60(2), pp:187-207.
    [78]J.M. Song, C.C. Lu, and W.C. Chew, Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects, IEEE Trans. Antennas Propagat. 1997, vol. AP-45, no.10, pp:1488-1493.
    [79]J.Y. Li, L.W. Li, B.L. Ooi et al. On Accuracy of Addition Theorem for Scalar Green's Function Used in FMM, Microwave and Optical Technol. Lett.2001, vol.31, no.6, pp: 439-442.
    [80]E. Bleszynski, M. Bleszynski and T. Jaroszewicz. Adaptive Integral Method for Solving Large-scale Electromagnetic scattering and Radiation Problems, Radio Science,1996,vol.31, no.5, pp:1225-1251.
    [81]Jing-Li Guo; Jian-Ying Li; Qi-Zhong Liu, Analysis of arbitrarily shaped dielectric radomes using adaptive integral method based on volume integral equation, IEEE Transactions on Antennas and Propagation,2006, vol.54, no.7, pp:1910-1916.
    [82]J. R. Phillips and J. K. White, A Precorrected FFT method for Electrostatic Analysis of Complicated 3-D Structures, IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems,1997,vol.16, No.10, pp:1059-1072.
    [83]Xiao-Chun Nie, Le-Wei Li, Ning Yuan et al. Precorrected-FFT Solution of the Volume Integral Equation for 3-D Inhomogeneous Dielectric Objects, IEEE Transactions on Antennas and Propagation,2005,vol.53, no.1, pp.313-320.
    [84]J. M. Jin, The Finite Element Method in Electromagnetics. New York:Wiley,1993.
    [85]J. M. Jin, Electromagnetic scattering from large, deep, and arbitrarily shaped open cavities, Electromagn.1998, vol.18, no.1, pp:3-34.
    [86]Jian Liu and Jian-Ming Jin, A Special Higher Order Finite-Element Method for Scattering by Deep Cavities, IEEE Transactions on Antennas and Propagation, 2000,vol.48, no.5, pp:694-703.
    [87]Jian Liu and Jian-Ming Jin, Scattering Analysis of a Large Body with Deep Cavities, IEEE Antennas Propagation Society International Symposium, Salt Lake City, Utah, USA,2000, July 16-21, pp:556-559.
    [88]Jian-Ming Jin, Jian Liu, Zheng Lou et al. A Fully High-Order Finite-Element Simulation of Scattering by Deep Cavities, IEEE Transactions on Antennas and Propagation,2003,vol.51, no.9, pp:2420-2429.
    [89]Aihua Wood, Analysis of electromagnetic scattering from an overfilled cavity in the ground plane, Journal of Computational Physics.2006, Vol.215, pp:630-641.
    [90]Jianjun Ding, S. Shang, Rushan Chen et al. Analysis of electromagnetic scattering of cavities with nonuniform plasma coating. Microwave and Millimeter Wave Technology (ICMMT),2010 International Conference,2010, pp:148-151.
    [91]K. K. Chan, F. Tremblay, S. Laird et al. Scattering from Rotating Blades in a Cylinder. Proceedings of the International Conference on Radar, Paris, France,1994, pp:83-88.
    [92]T. M. Wang, H. Ling, Electromagnetic scattering from three-dimensional cavities via a connection scheme. Antennas and Propagation Society International Symposium,1991, vol.2, pp:1046-1049.
    [93]Fu-Gang Hu, Chao-Fu Wang, Preconditioned Formulation of FE-BI Equations With Domain Decomposition Method for Calculation of Electromagnetic Scattering From Cavities. IEEE Transactions on Antennas and Propagation,2009,57(8), pp: 2506-2511.
    [94]张永杰,孙秦.稀疏矩阵存储技术.长春理工大学学报.2006年,29卷,3期,pp:38-41.
    [95]张继锋,汤井田,王烨等.多自由度块行压缩存储技术及大型稀疏方程组的求解.物探化探计算技术,2009年,31卷,2期,pp:108-112.
    [96]J. M. Jin, J. L. Volakis. A finite element-boundary integral formulation for scattering by three-dimensional cavity-backed apertures. IEEE Transactions on Antennas and Propagation,1991, vol.39(1), pp:97-104.
    [97]S. M. Rao, D. R. Wilton, A. W. Glisson, Electromagnetic Scattering by Surfaces of Arbitrary Shape,.IEEE Trans on Antennas and Propagation,1982, vol.30(3) pp:409-418.
    [98]何小祥,陈如山.细长三维腔体电磁散射DDM/FEM快速分析.南京理工大学学报,2006年,30卷,6期,pp:760-763.
    [99]丁卫平,卢春兰 开口腔体电磁散射特性分析的FEM/BI方法.军事通信技术,2004年,25卷1期,pp:9-12.
    [100]Khac T V. Solutions for some waveguide discontinuities by the method of moments. IEEE Transactions Microwave Theory and Techniques,1972,20(6), pp:416-418.
    [101]Lyon R W, Sangster A J. Efficient moment method analysis of radiating slots in a thick-walled rectangular waveguide. IEE Proceedings H Microwaves, Optics and Antennas,1981,128(4), pp:197-205.
    [102]Elliott R S, Kurtz L A. The design of small slot arrays. IEEE Transactions Antennas and Propagation,1978, vol.26(2), pp:214-219.
    [103]Hamadallah M. Frequency Limitations on Broad-Band Performance of Shunt Slot Arrays. IEEE Transactions Antennas and Propagation,1989, vol.37(7), pp:817-823.
    [104]Gulick J J, Elliott R S. The design of linear and planar arrays of waveguide-fed longitudinal slots. Ann Arbor Mich:UMI,1987.
    [105]Yee H Y. The design of large waveguide arrays of shunt slots. IEEE Transactions. Antennas and Propagation,1992, vol.40(7), pp:775-781.
    [106]李建瀛,梁昌洪.矩形波导纵缝阵列的矩量法分析与设计.电波科学学报,1998,vol.13(4),pp:428-432.
    [107]李建瀛,梁昌洪.波导窄边等长双裂缝功率耦合机构实验研究.电波科学学报,1998,vol.13(1)pp:52-54.
    [108]丁君,王旭刚,侯新宇,章传芳.平面波导缝隙阵列的散射特性分析与计算.电波科学学报,2008,vol.23(6),pp:1051-1055.
    [109]Mondal P, Chakrabarty A. Slotted Waveguide Antenna with Two Radiation Nulls. IEEE Transactions Antennas and Propagation,2008, vol.56(9), pp:3045-3049.
    [110]Jin J M, Volakis J L. A finite element-boundary integral formulation for scattering by three-dimensional cavity-backed apertures. IEEE Transactions Antennas and Propagation,1991,39(1), pp:97-104.
    [111]Jin J M, Lou Z, Li Y J et al. Finite Element Analysis of Complex Antennas and Arrays. IEEE Transactions Antennas and Propagation,2008, vol.56(8), pp:2222-2240.
    [112]Pozar D M. A microstrip antenna aperture coupled to a microstrip line. Electronics Letters,1985, vol.21(1), pp:49-50.
    [113]Targonski S D, Waterhouse R B. Design of wideband aperture stacked patch microstrip antennas. IEEE Transactions on Antennas and Propagation,1998, vol.46(9), pp:1245-1251.
    [114]Gao S C, Li L W, Leong M S, et al. Wideband microstrip antenna with an h-shaped coupling aperture. IEEE Transactions on Vehicular technology,2002, vol.51(1), pp: 17-27.
    [115]Kwok L. Chung, A Wideband Circularly Polarized H-Shaped Patch Antenna IEEE Trans. Antennas Propag.2010, vol.58, No.10, pp:3379-3383.
    [116]F. S. Chang, K. L. Wong, and T.-W. Chiou, Low-cost broadband circularly polarized patch antenna, IEEE Trans. Antennas Propag.2003, vol.51, pp:3006-3009.
    [117]Nasimuddin, Qing, X., and Chen, Z., Compact Asymmetric-Slit Microstrip Antennas for Circular Polarization, IEEE Trans. Antennas Propag.2011, vol.59(1), pp:285-288.
    [118]W. B. Wei, Q. Z. Liu, Y. Z. Yin et al. Reconfigurable Microstrip Patch Antenna With Switchable Polarization, Progress In Electromagnetic Research, PIER 75,2007, pp.63-68.
    [119]Kin-Lu Wong, Compact and Broadband Microstrip Antennas,2002 John Wiley & Sons, Inc.
    [120]Iwasaki, H. A circularly polarized small-size microstrip antenna with a cross slot, IEEE Trans. Antennas Propag.1996, AP-44, (10), pp:1399-1401.
    [121]Wong, K.L., and Lin, Y.F. Circularly polarised microstrip antenna with a tuning stub, Electron. Lett.1998, vol.34, pp:831-832.
    [122]Yang, K.P., and Wong, K.L. Dual-band circularly-polarized square microstrip, IEEE Trans. Antennas Propag.2001, vol.49, (3), pp:377-382.
    [123]何海丹.新型宽波束圆极化天线——微带介质天线,电讯技术,2003年第1期.pp:48-50.
    [124]薛睿峰,钟顺时.微带天线小型化技术.电子技术.2002年第3期.pp:62-64.
    [125]Kim-Lu Wong, Plannar antenna for wireless communication, A John Wiley&Sons, inc, Publication,2000.
    [126]Kim-Lu Wong and S.C.Pan. Compact triangular microstrip antenna, Electron. Lett. 1997, March 13, (33), pp:433-434.
    [127]王丽萍,许峰,傅德民等Minkowski分形天线分析.西安电子科技大学学报,2002,12月,第29卷,第6期,pp:753-755.
    [128]王晓冬.分形与多频天线的研究.南京航空航天大学硕士学位论文.2004.
    [129]R. M. Barts and W. L. Stutaman, A reduced size helical antenna, IEEE,1997.
    [130]Daniel K. C. Chew and Simon R. Saunders, Meander Line technique for size reduction of quadrifilar helix antenna, IEEE Antenna and wireless propagation letters,2002, vol.1, issue.l,pp:109-111.
    [131]Lin C C., Jin P., and Ziolkowski R.'Multi-functional, magnetically-coupled, electrically small, near-field resonant parasitic wire antennas,'IEEE Trans. Antennas Propag.2011, vol.59(3), pp:714-724.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700