辅以ETM+的MODIS影象土地利用变化监测及土壤有机碳库估算研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近二十年来,我国经济发达地区土地利用发生了前所未有的快速变化。城市迅速扩展、农田大量流失,使得人地矛盾更加尖锐,伴随而来的环境恶化、土地质量下降等问题非常突出,并且制约了经济的快速协调发展。因此开展不同区域土地利用变化的动态监测研究是迫在眉睫的任务。但传统的统计方法不仅费时费力,且时效性、准确度都不高,遥感作为一门技术手段具有广域性、周期性、连续性和经济性的特点,可以快速有效地获取研究区域在某时间段内土地利用的变化信息。而新一代中等分辨率光谱仪(MODIS)具有高光谱和高时相分辨率的优势,且其空间分辨率也由NOAAAVHRR的1 km提高到250 m,非常有利于捕捉连续的土地利用变化信息,而且其对更高空间分辨率、低时相分辨率比较适合中小尺度土地利用变化研究的TM/ETM+影象具有明显的补益作用。因此,本研究以我国经济发达地区江苏省吴江市为例,使用1984、1991、1998和2005年TM/ETM+影象研究了水稻田近20年来的土地利用变化情况,着重探讨了MODIS数据与TM/ETM+相结合的方法来提取土地利用变化信息的方法,并进一步应用遥感解译的土地利用变化结果结合第二次全国土壤普查数据、2003年全国土壤定位监测数据及吴江市土壤年度定位监测资料研究了水稻表层土壤有机碳库的变化情况,主要研究结果如下:
     ●根据遥感解译,吴江市1984-2005年土地利用分1984-1991年,1991-1998年和1998-2005年三个时段监测结果:1)吴江市1984年和1991年水稻种植面积分别为714.62 km~2和629 km~2,7年间下降了85.62 km~2,其中建设用地、林地、水体和旱地分别占用稻田35.67km~2、13.79 km~2、19.51 km~2和16.65 km~2;2)1998年稻田面积为542.95km~2,1992-1998年间水稻种植面积下降了86.05 km~2,建设用地、林地、水体和旱地分别占用稻田面积为:47.31 km~2、15.8 km~2、13.01 km~2和9.93km~2;3)1998-2005年间土地利用变化有所加快,其中稻田转化为建设用地和林地的面积分别为:253.28km~2和62.63km~2,原1984年稻田在2005年土地利用分布为:稻田254.79 km~2、建设用地336.26 km~2、林地92.22 km~2、旱地10.25 km~2和水体21.10km~2。
     ●基于MODIS数据的多种分类特征选择和良好的分类器能提高区域尺度土地利用分类的精度。在不同分类器比较试验中,以应用MODIS植被指数、水分指数时序系列进行掩膜的分类方法分类效果优于其它分类方法,总体分类精度达到66.60%,决策树分类法也表现出良好效果,在分类树中引入近年发展起来的一种机器学习领域內的增强技术-boosting技术,能提高类别的分类准确率。而神经网络分类精度并不比传统分类方法好,单独使用MODIS影象在中小尺度难以取得较好的分类效果。本研究进一步探索使用2000-2005年MODIS影象与高空间分辨率遥感信息源2005年ETM+相结合的方法来提取土地利用变化信息,结果表明,辅以2005年ETM+的2000-2005年MODIS影象分类方法能够取得较好的分类效果,2000年MODIS影象相对于2000年TM影象的分类精度分别为:水体91.67%、稻田85.40%、建设用地92.09%、旱地70.80%和林地71.93%,该分类方法的总体分类精度达到了85.25%。根据辅以2005年ETM+的2000-2005年MODIS影象分类结果,吴江市2000-2005年的水稻种植面积分别为:368.36km~2、315.21km~2、297.50 km~2、237.77 km~2、261.64 km~2和254.79 km~2,其结果与吴江市农业统计资料比较,两者具有显著的相关性(R~2=0.9873),进一步验证了辅以ETM+影象的MODIS影象土地利用动态监测方法具有较高的利用潜力。
     ●根据辅以2005年ETM+的2000-2005年MODIS影象分类结果,吴江市水稻种植面积在2003年以前下降幅度比较大,但是2003-2005年间又有小幅回升,而旱地面积在2003年前快速上升,而2003年后又明显下降,原因是2003前的建设用地包含了许多未利用土地,2003后政府采取了强有力的耕地保护措施,提高了土地利用效率,部分未利用耕地又得到重新恢复。建设用地占用稻田的面积从2000年258.98 km~2增加到2005年336.26 km~2,6年间增加了29.8%。水域面积2000-2005年基本保持稳定。林地占用稻田的面积也呈逐年增加趋势,从2000年的33.59 km~2增加到2005年的92.22 km~2。总体来看,吴江市的土地利用变化受人为因素影响很大。
     ●根据2003年全国耕地质量调查与第二次土壤普查结果比较,吴江市水稻土有机碳含量普遍有上升的趋势,含量在15.20g.kg~(-1)的样本比例有了较大的提高,平均有机碳含量从1982年的16.63 g.kg~(-1)增加到2003年的16.95 g.kg~(-1),年增长率约0.01g.kg~(-1)。稻田转化为林地和旱地后土壤有机碳含量則不同程度的下降,年下降率分别为:0.06g.kg~(-1)a~(-1)和0.03g.kg~(-1)a~(-1)。
     ●结合遥感监测土地利用变化结果与土壤有机碳测定结果估算水稻土表层土壤有机碳库变化结果如下:2005年稻田表层土壤(0-20cm)有机碳储量为2686047 t,相对于1984年的有机碳储量2672884t,22年来共增加了0.49%,其中1984-1991年增加了9454.9t,1991-1998年增加了5834.1t,1998-2005年增加了2125.9t,增长率呈现不断下降态势,原因是稻田转化为建设用地和水域后不再具有固碳效用,而且水稻田转化为林地和旱地后对土壤有机碳还具有释放效应,所以当前的土地利用变化对增加土壤碳储量非常不利。
     总之,本研究中所采用的使用基于TM/ETM+影象与MODIS影象进行土地利用变化动态监测方法取得了较理想的结果,特别是辅以ETM+的MODIS影象土地利用变化监测方法表现出较好的利用潜力,该方法可以为我国其它经济发达地区特别是在更大空间尺度进行土地利用变化研究提供参考。根据基于遥感的土壤有机碳计算结果,吴江市土地利用变化对于增加土壤有机碳库非常不利,而基于第二次土壤普查的资料对发达地区土壤有机碳估算值与实测数据有较大的出入。因此在估算我国经济发达地区水稻土碳储量变化时,有必要借助遥感等技术手段获取适时的土地利用变化信息。
The land-use in developed area of China has changed dramatically in recent 20 years,of which,agricultural land area has decreased substantially due to rapid industrialization and urbanization.Changes in land-use may have significant effects on enviroment,soil quality and may limit the increasing of economic development,so monitoring the changes of land-use has been the case.But the traditional statistical method for acquiring the land-use data is time-consuming and hard sledding;besides, calculation mistakes easily occur and could result in errors.Satellite images for land and crop classification are in common use and remote sensing has become a powerful tool in the real-time identification of rand-use classes.A new generation of advanced optical sensor-the Moderate Resolution Imaging Spectral-radiometer(MODIS) provide dally global imagery at spatial resolutions of 250 m(red and NIR1) and 500 m(blue,green,NIR2,SWIRl,SWIR2) and hay obvious advantages for identifying paddy fields pixels compared to NOAA AVHRR 1 km spatial resolutions.The Landsat TM and ETM++ imagery offer much better quality data sets but at infrequent intervals to capture the seasonal dynamics of crops.Therefore,the combined TM /ETM+ data and MODIS data may be more suitable for timely monitoring the land-use changes of paddy fields.In this study,we test the performance of combining MODIS and TM/ETM+ analysis to extract yearly land-use informations of Wujiang County during 2000-2005.Land-use classmaps derived from the TM/ETM+ and MODIS data were further used to estimate the topsoil SOC pool and the changes of sequestration potential of paddy soils in Wujiang County(one of the earliest open districts in theYangtze River Delta of China).The soil organic carbon(SOC) data were obtained from the 2nd State Soil Survey(2SSS),the nationwide arable soil monitoring system(NASMC) and the county level soil reconnaissance data.The major results are as follows:
     ●According to the TM/ETM+ images analysis:1) The rice-plant area of 1984 paddy fields area has decreased 85.62 km~2 during 1984-1991.The construction land,woodland(including orchard land,mulberry field,nursery land),upland and water body occupied 35.67 km~2,13.79 km~2,19.51 km~2 and 16.65 km~2, respectively.2) The rice-plant area of 1984 paddy fields was 542.95 km~2 in 1998, having reduced 86.05 km~2 during 1991-1998.The construction land,woodland, upland and water body occupied 47.31 km~2,15.80 km~2,13.01 km~2 and 9.93 km~2, respectively.The loss of the rice area during 1991-1998 is near to 1984-1991.But areas of the new-built of construction land and woodland during 1991-1998 were greater than 1984-1991,account for 54.98%and 18.36%of the total loss of paddy area,respectively.The areas of the new-built upland and water body during 1991-1998 were less than 1984-1991,account for 15.12%and 11.54%of the total loss of rice area,respectively;3) The land-use changes have speeded up during 1998-2005,the construction land and woodland occupied 253.28 km~2 and 62.63 km~2 of rice-plant area,respectively.The areas distribution of different land-use types of 1984 paddy fields in 2005 were as follows:rice 254.79km~2,construction land 336.26 km~2,woodland 92.22 km~2,upland 10.25km~2 and water-logged land 21.10km~2,respectively.
     ●Classification feature derived from MODIS such as the vegetation indices,water indices could improve the accuracy in land-use classification.Among various classifiers,the new developed classifier by using the time series of vegetation indices and land surface water indices has the greatest potiential in monitoring the changes of land-use,and its accuracy achieved 66.60%.The decision tree classification,an algorithm based on human-computer interaction is applied to remote sensing image classification with better flexibility and robust compared with classic automatic classification technology,Classification accuracy based on neural network is not improved compared to Maximum Likelihood Classifier (MLC).In all,using a good classifier and choosing suitable features are important in MODIS land-use classification.
     ●Our newly-built land use classification method by combining MODIS and ETM+ data is favorable and feasible for land-use mapping.The total accuracy of 2000 MODIS land-use map is 85.25%when compare to the results of 2000 TM land-use classification.A significant linear relationship between 2000-2005 MODIS derived paddy fields areas and statistical data(R~2 is 0.9873) demonstrated the potential of the newly-built MODIS classification method. According to the results of 2000-2005 MODIS images land-use classification,the total paddy fields area has decreased by 30%(113.57 km2) during 2000-2005. The area of upland was estimated to be nearly doubled during 2000-2003 but dropped dramatically during 2004-2005.This is probably because the fallow land was forbidden by the government and the fallow land was returned to paddy fields again.The waterlogged area was relatively stable in recently six years.
     ●The SOC contents for the plow layers in the paddy fields in 2003 follow a normal distribution.About 40%,30.6%and 12.5%of the soil samples of paddy soils had SOC contents ranging from 17.5 to 20 g·kg~(-1),from 15 to 17.5 g·kg~(-1) and 12.5 to 15 g·kg~(-1) in 2003.In 1984,in contrast,24.06%,39.89%and 18.97%of the soil samples had SOC contents ranging from 17.5 to 20 g·kg~(-1),from 15 to 17.5 g·kg~(-1) and from 12.5 to 15 g·kg~(-1),respectively.The percentage of samples with SOC contents greater than 20 g·kg~(-1) or less than 12.5 g.kg~(-1) in 2003 was relatively similar to that in 1984.However,the percentage of samples with SOC contents of 17.5-20 g·kg~(-1) in 2003 was greater than that in 1984.During 1980 to 2003,the SOC contents of paddy soils have been increased by 0.32 g·kg~(-1).This suggests that irrigation-based rice cultivation in Wujiang County has significantly increased SOC content compared to the data obtained by the 2~(nd) SSS.
     ●The average SOC content of paddy soils exhibited an increase(ASOC) of 0.01g·kg~(-1) per year during the past 20 years.On the contrary,obvious decreases in the SOC content were found in uplands and woodlands.The annual decrease rate(△SOC) in uplands and woodlands were 0.03 g·kg~(-1) and 0.06 g·kg~(-1), respectively.The changes of SOC content under different land-uses conversions reflects that land-use changes may play an important role in C sequestration.
     ●The C stock in 2005 has increased by 0.49%during 22 years relative to the total of 2672884t C stock in topsoil of paddy fields in 1984.Of which,the C stocks have increased by 9454.9t during 1984.-1991,5834.1t during 1991-1998,2125.9t during 1998-2005.The increase rate of SOC stocks has reduced as a consequence of decreasing cultivation area of paddy rice since 1984.The total SOC loss has exceeded the total SOC sequestration since 2001 in 1984 paddy fields.Given that the SOC content of buried soils in construction land and newly converted fish-breeding water body keeps stable,the SOC was observed to decrease after paddy fields had been converted to plant nursery land during 1984 to 2005. Moreover,conversion of rice paddy to upland had been also shown decline in the SOC.
     In all,the method using MODIS and TM/ETM+ images for monitoring the changes of land-use is favorable in the study area during 1984 to 2005.Especially,the yearly land-use changes monitoring by using MODIS in addition to ETM+ images has obtained a reasonable results.The method used in this research could be regarded as a reference for land-use monitoring in other region or more large spatial scale in other developed area in China.According to the SOC stocks calculating results,the currently land-use changes in Wujiang County are not favorable for the increasing of the soil C stocks.Further more,the calculation of carbon pool based on data from 1980s soil survey could result in errors because dramatic change of land-use in China during the recent 20 years may has a great influence upon soil C stocks.To accurately estimate soil carbon pool in these areas,the timely informations about land-use changes based on the remote sensing are very useful.
引文
[1] Batjes, N H, 1996. Total carbon and nitrogen in the soils of the world[J]. European Journal of Soil Science, 47:51-163.
    
    [2] Bonn, H. L, 1982. Estimate of organic carbon in world soils[J]. Soil Sci. Soc. A. J. 46:1118-1119.
    [3] Bruce, P, Forme, M, 1999. Carbon sequestration in soils[J]. Journal of Soil and wanter conservation, 54: 382-389.
    [4] Burke, I. C, Elliott, E. T, Cole, C. V, 1995. Influence of macro-climate, landscape position, and management on soil orgainic matter in agroecosystems[J]. Ecol. Appl. 5:124-131.
    [5] Cheng, X. F, Shi, X. Z, Yu, D. S, et al., 2004. Using GIS spatial distribution to predict soil organic carbon in subtropical China[J]. Pedosphere, 14(4): 425-432.
    [6] Cihar J, Huang F, 1994. Effect of Atmospheric Correction and Viewing Angle Restriction on AVHRR Composites. Can. J. Remote Sens, 20(2): 132-137.
    [7] Clawson M and Stewart C L, 1965. Land use information, a critical survey of U.S. statistics including possibilities for greater uniformity, Baltimore: The Johns Hopskins Press.
    [8] Crook F, 1993. Underreporting of China's cultivated land area: Implications for world agricultural trade, in China [J]. International Agricultural and Trade Report, Sit. Outlook Ser. RS-93-4, pp. 33- 39, U.S. Dep. of Agriculture, Washington, D. C, 1993.
    [9] DeFries K L, Townshend J R G, 1994. NDVI-derived land cover classification at global scales [J]. International Journal of Remote Sensing, 15(3): 567-586.
    
    [10] Detwiler, R P, 1986. Land use change and the global carbon cycles: the role of tropical soils [J]. Biogenochemistry, 2: 67-93.
    
    [11] Muchoney D, Borak J, Chi H, et al., 2000. Application of the MODIS global supervised classification model for vegetation and land cover mapping of Central America, Int. J. Remote Sens., 21, pp. 1115-1138,
    
    [12] EL-Magd I A, Tanton T W, 2000. Improvements in land use mapping for irrigated agriculture from satellite sensor data using a multi-stage maximum likelihood classification [J]. International Journal of Remote Sensing, 24: 4197-4206.
    [13] Erda L, Liu Y F, Li Y, 1997. Agricultural C cycle and greenhouse gas emission in China [J]. Nutrient Cycling in Agroecosystem, 49: 295-299.
    [14] Eswaran H, Van den Berg E, Reich P, 1993. Organic carbon in soil of the world [J]. Soil Science Society American Journal, 57:192-194.
    [15] Esser G, 1987. Sensitivity of global carbon pools and fluxes to human and potential climatic Impacts [J]. Tellus, 39:245-260.
    [16] Eswaran H, Berg E V D, Reich, P, 1993. Organic carbon in soil of the world[J]. Soil Sci. Soc. Am. J. 57:192-194.
    [17] Eswaran H, Reich F, Kimble J M, 1999. Global soil carbon stocks. ppl5-26. In: Lal, R., Kimble, J. M, and Eswaran, H, Global Climate Change and Pedogenic Carbonates. Lewis Publishers, USA.
    [18] Falloon P, Smith P, Szabo J, et al., 2002. Comparison of approaches for estimating carbon sequestration at the regional scale [J]. Soil Use & Management, 18:164-174
    [19] Fang, H., Wu, B, Liu H, et al., 1998. Using NOAA AVHRR and Landsat TM to estimate paddy fields area year-by-year [J]. International Journal of Remote Sensing, 19: 521-525.
    [20] FAO, 2001. Soil carbon sequestration for improved land management. Rome, Italy: World Soil Resources Reports, Food & Agriculture Organization.
    [21] Friedl M A, McIver D K, Brodley CE, 2002. Integration of domainknowledge in the form of ancillary map into supervised classification of remotely sensed data [J]. Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), 2:1038-1040.
    [22] Freibauer A M, Rounsevell D A, Smith P, et al., 2004. Carbon sequestration in the agricultural soils of Europe [J]. Geoderma, 122(1): 1-23.
    [23] Freixo A A, de A, Machado P L O, et al., 2002. Soil organic carbon and fractions of a Rhodic Ferralsol under the influence of tillage and crop rotation system s in southern Brazil[J]. Soil and Tillage Research, 64 (324): 221-230.
    
    [24] Frolking S, Qiu J, Stephen B, et al., 2002. Combining remote sensing and ground census data to develop new maps of the distribution of rice agriculture in China[J]. Global Biogeochemical Cycles, 16(4), 109110.1029/2001GB001425.
    
    [25] Gong Z T, 1999. Chinese Soil Taxonomy: Theory, Method, Practice [M]. Beijing: Science Press, 109-199 (in Chinese).
    [26] Hansen M, Dubayah R, DeFries R, 1996. Classification trees: an alternative to traditional land cover classifiers [J]. International Journal of Remote Sensing, 17:1075-1081.
    [27] Houghton R A., 1995. Change in the storage of terrestrial carbon since 1850. In: Lal et al., IPCC. Climate change 1995: Impact, adaptations and mitigation of climate change: scientific technical analyses. Working group 1, Cambridge: Cambridge University Press.
    [28] IPCC, 1996. IPCC Guidelines for National Greenhouse Gas Inventories, Volume 3.
    [29] Jenkinson D S, Ajdama D E, Wild A, 1991. A Model estimates of CO2 emissions from soil in response to global warming [J]. Nature, 351(23): 304-306.
    [30] Kirschbaum.M U F, 2000. Will changes in soil organic carbon act as a positive or negative feedback on global warming?[J] Biogeochemistry, 48:21-51.
    [31].KirschbaumMiko U F, 1995. The temperature dependence of soil organic matter decomposition, and effect of global wanning on soil C storage [J]. Soil Biology and Biochemistry, 753-760.
    [32] Lal R, Kimble J, Levine E, et al., 1995. World soils and greenhouse effect: An overview, in Soils and global change, edited by R. Lal et al., pp1-7, CRC press, Boca Raton, FL. Leemans, R, Zuidenma, G, 1995. Evaluating changes in land cover and their importance for global change. 10(2): 76-81.
    
    [33] Lal R, 1999. World soils and greenhouse effect. IGBP Global Change Newsletter, 37: 4-5.
    [34] Lal, R, 2004. Soil carbon sequestration impacts on global climate change and food security [J]. Science, 304:1623-1627.
    [35] Li C S, Frolking G J, Crocker P R, et al., 1997. Modeling long-term soil organic carbon in agricultural soils with the DNDC model [J]. Geoderma, 81:45-60.
    [36] Li, C S, Zhuang Y H, Frolking S, et al., 2003. Modeling soil organic carbon change in croplands of China [J]. Ecological Applications, 13 (2): 327-336.
    [37] Leifeld J., Bassin S, Fuhrer J, 2005. Carbon stocks in Swiss agricultural soils predicted by land-use soil characteristics and altitude [J]. Agriculture Ecosystems and Environment. 105: 255-266.
    [38] Li Q K, 1992. Paddy Soil of China [M]. Beijing: Science Press, 1-514 (in Chinese).
    
    [39] Liu J Y, Liu M L, Zhuang D F, et al., 2003. Study on spatial patterns of land use change in China during 1995-2000[J]. Science in China, 46: 373-384.
    [40] Liu Q H, Shi X Z, Weindorf. D C, et al., 2006. Soil organic carbon storage of paddy soils in China using the 1:1 000 000 soil database and their implications for C sequestration [J]. Global Biogeochem Cycles, 20: GB3024, DOI:10.1029/2006GB002731.
    [41] Li Z, Zhao Q G, 2001. Organic carbon content and distribution in soils under different land uses in tropical and subtropical China [J]. Plant and Soil, 231:175-185.
    [42] Love land T R, Merchant J W, Ohlen D O et al., Development of a Land Cover Characteristics Database for the Conterminous US [J]. Photogrammetric Engineering and Remote Sensing, 1991, 57:1453-1463.
    [43] Marlen D E, Sperow M, Paustian K,et al., 2002. National-scale estimation of changes in soil carbon stocks on agricultural lands [J]. Environment Pollution, 116: 431-438.
    [44] Melillo J M, 1993. Global climate change and terrestrial net primary production[J]. Nature, 363: 234-240.
    [45] Missfeldt F, Erik H, 2001. The potential contribution of sinks to meeting Kyoto Protocol commitment [J]. Environmental Science and Policy, 42: 269-292.
    [46] Morgan M G, 2000. Managing carbon from the bottom up [J]. Science, 289: 2285.
    [47] Ni J, 2001. Carbon storage in terrestrial ecosystems of China: Estimates at different spatial resolutions and their responses to climate change[J]. Climate change, 49: 339-358.
    [48] Okamoto K, Fukuhara M, 1996. Estimation of paddy field area using the area ratio of categories in each mixel of Landsat TM [J]. International Journal of Remote Sensing, 17: 1735-1749.
    [49] Okamoto K, Kawashima H, 1999. Estimation of paddy fields-planted area in the tropical zone using a combination of optical and microwave satellite sensor data [J]. International Journal of Remote Sensing, 20:1045-1048.
    [50] Okamoto K, Yamakawa S, Kawashima H, 1998. Estimation of flood damage to paddy fields production in North Korea in 1995 [J]. International Journal of Remote Sensing, 19: 365-371.
    [51] Pan G X, Li L Q, WU L S, et al., 2003. Storage and sequestration potential of topsoil organic carbon in China paddy soils [J]. Global Change Biology, 10: 79-92.
    
    [52] Pan G X, Li L Q, Zhang Q, et al., 2005. Organic carbon stock in topsoil of Jiangsu Province, China and the recent trend of carbon sequestration [J]. Journal of Environmental Sciences. Vol. 17, No. 1, pp. 1-7.
    [53] Post W M, Emanuel W R, Zinke P., 1982. Soil carbon pools and world life zone [J]. Nature, 298: 156-159.
    [54] Post W M, King A M, Wullschleger S D, 1996. Soil organic matter models and global estimates of soil organic carbon. In: Powlson, D. S, et al., Eds. Evaluation of soil organic matter models[J]. Berlin, Herdelber: Springer Verlag, 201-224.
    [55] Qiu J, Frolking S, Boles S, et al., 2003. Mapping single-, double-, and triple-crop agriculture in China at 0.580.58 by combining county-scale census data with a remote sensing-derived land cover map [J]. Geocarto International, 18:3 -13.
    [56] Richard O D, Peter E H, David G S, 2003. Pattern Classification [M]. Beijing,:China Machine Press ,CITIC Publishing House.
    [57] Running S W, Justice C O, Salomonson V V, et al., 1994. Terrestrial remote sensing science and algorithms planned for EOS/MODIS[J]. International Journal of Remote Sensing, 15(17): 3587-3620.
    [58]Rustad L E, Campbe J L, Marion G M, et al., 2001. A meta-analysis of the response of soil respiration,net nitrogen mineralization and aboveground plant growth to experimental ecosystem warming [J]. Oecologia, 126:543-562.
    [59] Schwager S J, Mikhailova E A, 2002. Estimating variability in soil organic carbon storage using the method of statistical differentials [J]. Soil Science, 167,194-200.
    [60] Seto K C, Woodcock C E, Song C, et al., 2002. Monitoring land-use change in the Pearl River Delta using Landsat TM [J]. International Journal of Remote Sensing, 23:1985-2004.
    [61] Shimel, D. S, 1995. Terrestrial ecosystem and the carbon cycle [J]. Global Change Biology, 1: 77-91.
    
    [62] Shimel, D, Melillo, J, Tian, H, 2000. contribution of increasing CO2 and climate to carbon storage by ecosystems in the United States[J]. Science, 287(17): 2004-2006.
    [63] Smil V, China's agricultural land [M], China Q, 158,414-429,1999.
    
    [64] Smith P, Milne R, Powlson D S, Smith J U, et al., 2000a. Revised estimates of the carbon mitigation potential of UK agricultural land[J]. Soil Use & Management, 16: 293-295.
    [65] Smith P, Powlson D S, Smith J U, et al., 2000b. Meeting Europe's climate change commitments: quantitative estimates of the potential for carbon mitigation by agriculture [J]. Global Change Biology, 6: 525-539.
    [66] Smith, P, 2004. Carbon sequestration in croplands: the potential in Europe and the global context [J]. European Journal of Agronomy, 20:229-236.
    [67] Song G H, Li L Q, Pan G X, 2004. Topsoil organic carbon storage of China and its loss by cultivation [J]. Biogeochemistry, 00:1-16
    [68] Tennakoon S B, Murty V V N, Etumnoh A, 1992. Estimation of cropped area and grain yield of paddy fields using remote sensing data [J]. International Journal of Remote Sensing, 13: 427-439.
    [69] Townshend J R, Justice C R, Kalb V. Characterization and classification of south American land cover types using satellite data [J]. International Journal of Remote Sensing, 1987,8:1189-1207.
    [70] Townshend J R G, Justice C O,1988. Selecting the spatial resolution of satellite sensors required for global monitoring of land transformations [J]. International Journal of Remote Sensing, 9: 187- 236.
    [71] Trumbore S E, Chadwich O A, Amundoson R, 1996. Rapid exchange of soil carbon and atmospheric CO2 driven by temperature change [J]. Science, 272: 393-396.
    [72] Tucker C J, Townshend J R G, Goff T E, 1985. African land cover classification using satellite data [J]. Science, 227:369-375.
    [73] Uri N D, 2001. The potential impact of conservation practices in US agriculture on global climate change [J]. Journal of Sustainable Agriculture, 18:109-131.
    [74] VandenBygaart A J, Gregorich E G, Angers D A, 2003. Influence of agricultural management on soil organic carbon: A compendium and assessment of Canadian studies [J]. Canadian Journal of Soil Science, 83: 363-380.
    [75] Vermote E F, Tanre D, Deuze J L, et al., 1997. Second simulation of the satellite signal in the solar spectrum, 6S: an overview [J]. IEEE Trans.Geosci. Remote Sens. 35: 675-686.
    [76] Vermote E F, Saleous N Z, Justice C O, et al., 1997. Atmospheric correction of visible to middle infrared EOS-MODIS data over land surfaces: background, erational algorithm and validation [J]. Journal of Geophysical Research, 102:17131-17141.
    [77] Vermote E F, Remer L A, Justice C O, et al., 1995. Atmospheric correction algorithm: spectral reflectances (MOD09), version 2.0, Algorithm Theoretical Basis Document NASA EOS-ID 2015, reenbelt, MD, USA.
    [78] Vleeshouwers L M, Verhagen A., 2002. Carbon emission and sequestration by agricultural land use: a model study for Europe [J]. Global Change Biology, 8: 519-530.
    [79] Wang S Q, Xu J, Zhou C H, 2002. Using remote sensing to estimate the change of carbon storage: a case study in the estuary of Yellow River delta [J]. International Journal of Remote Sensing, 23: 1565-1580.
    [80] Wang S Q, Yu G R, Zhao Q J,et al., 2005. Spatial characteristics of soil organic carbon storage in China's croplands[J]. Pedosphere, 15(4): 417-423.
    [81] Wang X, Liu, L, 1999. Trend of soil fertility of farmlands in Jiangsu, China [M]. Soil science and technology in Jiangsu facing the 21st Century (Soil Science Society of Jiangsu. Nanjing: Hohai University Press. 1-4.
    [82] Wang Y, 1999. The impacts of land use change on C turnover in soils [J]. Global Biogeochemical Cycles, 285:574-578.
    [83] Wessels K J, Fries R S de, Dempewolf J, et al., 2004. Mapping regional land cover with MODIS data for biological conservation: Examples from the Greater Yellowstone Ecosystem, USA and Para' State [J]. Brazil, 92:67-83.
    [84] West T O, Post W M, 2002. Soil organic carbon sequestration by tillage san crop rotation: a global data analysis [J]. Soil Sci. Soc. A. J. 66: 1930-1946.
    [85] West T O, Marland G, 2002. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: comparing tillage practices in the United States [J]. Agr. Ecosyst.Environ.91: 217-32.
    [86] Wu H B, Guo Z T, Peng C H, 2003. Distribution and storage of soil organic carbon in China [J]. Global Biogeochiemiacal Cycles, 17(2): 1048-1058.
    [87] Xiao X X, Stephen B, Frolking S, et al., 2002. Landscape-scale characterization of cropland in China using Vegetation and Landsat TM images [J]. International Journal of Remote Sensing, 23: 3579-3594.
    [88] Xiao X X, Stephen B, Frolking S, et al., 2002. Observation of flooding and paddy fields transplanting of paddy fields at the site to landscape scales in China using VEGETATION sensor data [J]. International Journal of Remote Sensing, 23: 3009-3022.
    [89] Xiao X X, He L, Salas W, et al., 2002. Quantitative relationships between field-measured leaf area index and vegetation index derived from VEGETATION images for paddy fields [J]. International Journal of Remote Sensing, 23: 3595-3604.
    [90] Xiao X X, Stephen B, Liu J Y, et al., 2002. Characterization of forest types in Northeastern China, using multi-temporal SPOT-4 VEGETATION sensor data [J]. Remote Sensing of Environment, 82: 335-348.
    [91] Xiao X X, Braswell, B, Zhang, Q, et al., 2003. Sensitivity of vegetation indices to atmospheric aerosols: Continental-scale observations in Northern Asia [J]. Remote Sensing of Environment, 84: 385-392.
    [92] Xiao X X, Liu J Y, Zhuang D F, et al., 2003. Uncertainties in estimates of cropland area in China: A comparison between an AVHRR-derived dataset and a Landsat TM derived dataset [J]. Global and Planetary Change, 37: 297-306.
    [93] Xiao X X, Stephen B, Liu J Y, et al., 2005. Mapping paddy fields agriculture in southern China using multi-temporal MODIS images [J]. Remote Sensing of Environment, 95: 480-492.
    [94] Xiao X X, Zhang Q, Braswell B, et al., 2004. Modeling gross primary production of a deciduous broadleaf forest using satellite images and climate data [J]. Remote Sensing of Environment, 91: 256-270.
    [95] Xiao, X X, Zhang Q, Saleska S R, et al., 2005. Satellite-based modeling of gross primary production in a seasonally moist tropical evergreen forest [J]. Remote Sensing of Environment, 94: 105-122.
    [96] Xie X L, Sun B, Zhou H Z, et al., 2004. Soil organic carbon storage in China [J]. Pedosphere, 14(4): 491-500.
    [97]Yuri L Zinn,Rattan Lal,Dimas V.S Resck.2005.Changes in soil organic carbon stocks under agriculture in Brazil[J].Soil and Tillage Research,84(1):28-40.
    [98]Zhang M K,He Z L,2004.Long-term changes in organic carbon and nutrients of an Ultisol under rice cropping in southeast China[J].Geoderma,118:167-179.
    [99]Zhan X,DeFries R,Townshend J R G,et al.,2000.The 250 m global land cover change product from the Moderate Resolution Imaging Spectroradiometer of NASA's Earth Observing System[J].International Journal of Remote Sensing,21:1433-1460.
    [100]Zhan X,Sohlberg R A,Townshend J R G,et al.,2002.Detection of land cover changes using MODIS 250 m data[J].Remote Sensing of Environment,83:336-350.
    [101].Zdruli P,Eswaran H,Kimble J,1995.Organic carbon content and rates of sequestration in soils of Albania.Soil Science Society of America Journal,59:1684-1687.
    [102]蔡祖聪,1999.中国稻田甲烷排放研究进展[J].土壤,5:266-269.
    [103]傅伯杰,,陈利顶,蔡运龙,等,2004.环渤海地区土地利用变化及可持续利用研究[M],北京:科学出版社.
    [104]方精云,1996.中国陆地生态系统碳循环及其全球意义[M].北京:中国环境出版社.
    [105]龚子同,1999.中国土壤系统分类:理论.方法.实践[M].北京:科学出版社.
    [106]顾朝林,1999.北京土地利用/覆盖变化机制研究[J].自然资源学报,14(4):309-312.
    [107]龟山哲,张继群,王勤学,2004.应用Terra/MODIS卫星数据估算洞庭湖蓄水量的变化[J].地理学报,59(1):88-94.
    [108]国家土地管理局,1989-1996.中国土地统计资料[Z].北京:国家土地管理局.
    [109]韩涛,2004.遥感监测土地覆盖变化的方法及研究进展[J].Vol.22 NO.2 76-81.
    [110]侯鹏程,徐向东,潘根兴,2007.不同土地利用方式对农田表土有机碳库的影响[J].南京农业大学学报,30(2):68-72.
    [111]黄福奎,1998.论遥感技术在土地利用动态监测中的应用[J].中国土地科学,(3):21-25
    [112]江苏省农林厅,2004.江苏省吴江市耕地地力质量调查与评价[M].
    [113]李长生,2000.土壤碳库量之减少:中国农业之隐患--中美农业生态系统碳循环比较研究[J].第四纪研究,20(4):345-350.
    [114]李庆逵,1992.中国水稻土[M].北京:科学出版社.
    [115]李秀彬,1999.中国近20年来耕地面积的变化及其政策启示[J].自然资源学报,Vol.14 No.4.
    [116]刘纪远,1996.中国资源环境遥感宏观调查与动态研究[M],中国科学技术出版社,北京.
    [117]刘纪远,布和敖斯尔,2000.中国土地利用变化现代过程时空特征的研究-基于卫星遥感数据,第四纪研究,20(3):229-239.
    [118]刘玉洁,2001.MODIS遥感信息处理原理与算法[M].科学出版社.
    [119]潘根兴,1999.中国土壤有机碳、无机碳库量研究[J].科技通报,15(5):330-332.
    [120]潘根兴,曹建华,周运超,2000.土壤碳及其在地球表层生态系统碳循环中的意义[J].第四纪研究,20:325-333.
    [121]潘根兴,李恋卿,张旭辉,2002.土壤有机碳库与全球变化研究的若干前沿问题--兼开中国水稻土有机碳固定研究的建议[J].南京农业大学学报,25(3):100-109.
    [122]潘根兴,李恋卿,张旭辉,2003.中国土壤有机碳库与农业土壤碳固定动态的若干问题[J].地球科学进展,18(4):608-618.
    [123]潘根兴.地球表层系统土壤学[M].北京:地质出版社,2000.30-37.
    [124]沈润平,2002.土地利用遥感监测的关键技术及其应用研究--以江西都阳湖地区为例.浙江大学博士论文
    [125]史培军,宫鹏,李晓兵,等,2000.土地利用/覆盖变化研究的方法与实践.科学出版社,47-51.
    [126]唐俊梅,张树文,2002.基于MODIS数据的宏观土地利用/土地覆盖监测研究.遥感技术与应用,17(2):104-107.
    [127]王秀兰,包玉海,1999.土地利用动态变化研究方法探讨[J].地理科学进展.18(1):81-87
    [128]解宪丽,孙波,周慧珍,等,2004.不同植被下中国土壤有机碳的储量与影响因子[J].土壤学报,41(5):687-699.
    [129]解宪丽,孙波,周慧珍,2004.中国土壤有机碳密度和储量的估算与空间分布分析[J].土壤学报,411:35-43.
    [130]徐美,黄诗峰,黄绚,2000.遥感用于土地利用变化动态监测中的若干问题探讨.遥感技术与应用,15(4):252-255
    [131]徐琪,杨林章,董元华,等,1998.中国稻田生态系统[M].北京:中国农业出版社,50-81.
    [132]杨桂山,2004.土地利用/覆被变化与区域经济发展-长江三角洲近50年耕地数量变化研究的启示[J].地理学报第59卷增刊.
    [133]杨桂山,2002.长江三角洲耕地数量变化趋势及总量动态平衡前景分析[J].自然资源学报,17(5):525-532.
    [134]赵其国,骆永明,2000.开展我国东南沿海经济快速发展地区资源与环境质量问题研究建议[J].土壤,32(4):169-172,187.
    [135]张甘霖,何跃,龚子同,2004.人为土壤有机碳的分布特征及其固定意义[J].第四纪研究.24(2):149-159.
    [136]张国盛,黄高宝,Yin Chan,2005.农田土壤有机碳固定潜力研究进展[J].生态学报,25(2):351-357.
    [137]张琪,李恋卿,潘根兴,等,2004.近20年来宜兴市域水稻土有机碳动态及其驱动因素[J].第四纪研究,24(2):236-241.
    [138].赵庚星,1997.遥感土地利用设想与动态监测研究综述[J].山东农业大学学报,28(1):67-72
    [139].赵英时,2004.遥感应用分析原理与方法[M],北京:科学出版社.
    [140].朱振海,黄晓霞,李红音,等,2002.中国遥感的回顾与展望.地球物理学进展,17(2):310-316

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700