大庆油田萨中密井网区萨葡油层高分辨率层序地层及剩余油研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在高分辨率层序地层学理论以及储层沉积学的指导下,以大庆油阳萨中密井网区萨葡油层为研究对象,利用岩心、测井等资料进行了高频等时层序划分,将研究区层段划分为1个长期基准面旋回层序、5个中期基准面旋回层序和58个短期基准面旋回层序。与此同时,针对距离很近的临井砂体差异大、甚至突变,砂体垂向切叠严重(最厚砂层达20m)、可分性极差这一复合砂体劈分难题,结合储层沉积背景,利用砂体成因分析、测井微相识别与组合等技术,对重点层段的复合砂体进行系统研究,提出了“识别厚砂条带一统计可分井数.标定劈分位置”的复合砂体劈分方法,对于切叠型复合砂体采用“按成因一参临井一定界线”的劈分原则,客观有效地解决了厚砂劈分的难题,为全区统层对比扫清了障碍,也为高分辨层序地层格架的建立和成因单砂体的准确识别奠定了坚实的基础。
     在高频等时成因地层格架的控制下,将研究区的沉积微相由原河道砂、表内砂岩、表外砂岩和尖灭区4种类型,细分为2相3亚相26种微相,特别是根据砂岩电性、物性、含油性等定量特征以及全区储层发育状况,将河道(曲流河道、分流河道和水下河道)细分为一类河道、二类河道和三类河道;结合表内、表外储层细分溢岸或漫流砂,前者细分为:表内粉砂级溢岸砂,表外粉砂级溢岸砂,泥粉级溢岸砂、粉泥级溢岸砂和河道间泥,后者细分为:一类席主体、二类席主体、一类席状砂、二类席状砂。从而建立起了泛滥平原、三角洲分流平原、三角洲前缘2相3亚相26微相测井微相模式,通过逐井逐层的精细识别与组合绘制了研究区层段短期层序平面沉积微相,不但清晰地揭示了短期层序内砂体的成因、规模与展布规律,还提出了密井网条件下“主河道砂体非均质性及分流河道砂体连续性”储层砂体新认识:(1)在泛滥平原和分流平原区识别出了典型的废弃河道砂体;(2)原连片砂体,实为可分或基本可分连续带状河道砂体;(3)原坨状不连续砂体,实为连续带状或枝状水下河道砂体。通过对河道砂体的重新认识,详尽揭示了短期层序内单砂体的成因、规模、形态、密度及同一微相内和不同微相间能量单元的变化和接触关系,同时也清晰反映了短期层序间河道发育程度、摆动方向和幅度、以及沉积环境、亚环境的变化。
     在58个短期旋回层序垂向沉积演化规律的基础上,提出了萨葡油层沉积体系演化模式,即(1)湖岸线顺源进退,相与亚相边界近平行于湖岸线,(2)沉积环境时而相对稳定,时而跨相、亚相或区带变化,(3)主体水系左右摆动幅度较大,且能量变化频繁,(4)湖浪作用强弱不定、持续时间长短不一。在对研究区各短期层序平面沉积微相精细刻画和定量统计分析的基础上,据萨中密井网解剖,提出了“大型河控浅水三角洲亚相带细分模式”,包括(1)泛滥平原区“特大、严重切叠、宽带状主河道砂体”沉积模式,(2)三角洲上分流平原区“大型、带状、断续可分一类河道砂体”沉积模式,(3)三角洲下分流平原“中型、独立、带状连续河道砂体”模式,(4)三角洲内前缘近岸区“中小型、连续、条带状水下河道.大面积泥质沉积”模式,(5)三角洲内前缘中岸区“小型、连续、窄条带状水下河道。河控带状席状砂”模式,(6)三角洲内前缘远岸区“窄小型、连续、干枝状水下河道(术端).河控席状砂”模式,(7)三角洲外前缘区“河控扇状席状砂”和(8)三角洲外前缘区“浪控席状砂”模式。该模式的建立进一步明确了萨中密井网区萨葡油层的河流.三角洲沉积体系类型和范畴。搞清了萨葡油层的储层发育程度及分布规律,对整个萨中地区储层空间分布模式的建立、成因单砂体的识别与预测以及丌发调整和剩余油挖潜提供了可靠的储层沉积学保障,同时对周边或与之相近的储层预测、剩余油研究具有极为重要的指导意义。
     通过精细储层研究,提出了密井网条件下高-特高含水期萨葡油层剩余油主控因素为层内非均质性和平面非均质性,剩余油的主要类型为原井网控制不住的窄小河道砂体型剩余油、废弃河道遮挡型剩余油、注采系统不完善型剩余油等,其中前两种剩余油类型为本次密井网揭示的重点。通过本次密井网解剖在45个(占短期层序总数77.6%)短期层序内共识别出414个(占95.4%)窄小型水下河道砂体,在13个陆上沉积的短期层序的河道砂体内共识别出71处废弃河道砂体。此外,还提出了剩余油的挖潜措施。
Taking the SaPu reservoir in dense well pattern area of Sazhong in Daqing oilfield as the studied area and layer, under the guide of high resolution sequence stratigraphy theories and reservoir sedimentology, utilizing core and logging data, to systematically make division, layer unification and correlation of the high frequency isochronous sequences, the studied area and layer is divided into 1 long-term,5 mid-term and 58 short-term base level cycles, to set up the framework of the high resolution sequence stratigraphy. At the same time, according to the sand body division problem that the differences of the sand body on the near distance adjacent wells is obvious, even to be sudden varies, and that cutting-piling sand bodies are serious so that their divisibility is worst in vertically(the thickest sandstone layer is nearly 20m). Combining depositional setting of the reservoir, and utilizing formation cause analysis of the sand body and identification and combination of the logging microfacies, to systematically study the compound sand body in the dominant layer. To put forward divisional methods, that is "identification of the thick sand belt-statistics of number of the divisible well-standardization of the division location", in order to divide cutting-piling compound sand body, to adopt-'accordance to formation cause-reference to adjacent wells-delimitation'-divisional principle, to objectively and effectively resolve thick sand body division problem and to clear away barrier for layer unification and correlation of the whole studied area, and also to settle sound foundation for the establishment of the high resolution sequence stratigraphy framework and precise identification of the same formation cause single sand body.
     Under the control of stratigraphy framework of the high frequency and isochronal formation cause, sedimentary microfacies of the studied area are subdivided to 2 facies 3 subfacies 26 microfacies, instead of original four types which are channel sandstone、inner table sandstone、outer table sandstone and pitch out area, especially, according to quantitative characteristics of electric property、porosity and permeability、oiliness, to development condition of the reservoir of studied area, channel(meandering channel、distributary channel and under-water channel) are subdivided typeⅠ、-ⅡandⅢchannel. On the basis of inner and outer table reservoir, to subdivide overflow and sheetflood sandstone, the former is subdiviede inner table silt-sand、outer table silt-sand、mudsilt-sand、siltmud-sand and interchannel mud. The latter is subdivided sheet main bodyⅠandⅡ, sheet sandⅠandⅡ. To establish floodplai、deltaic distributary plain and delta front 2 facies 3 subfaices 26 microfacies logging microfacies models. By means of fine identification and combination of each well and layer, short-term sequences plane sedimentary microfacies of the studied area and layers are drew:Not only clearly reveal formation cause、scale and distribution of sandbody in the short term sequence, but also come up with new standpoints under the condition of dense well pattern, that are "heterrogenetity of the main channel sand body and continuity of the distributary channele sand body", which are (1) abandoned channel sand body is identified in the flood plane and distributary plane; (2) original connected thick sand body, in fact, they are divisible or broadly divisible continuous banding channel sand body; (3) original mound discontinuous sand body, they actually are continuous belt or dentritic under water sand body. Via these new viewpoints, exhaustively reveal formation cause、scale、shape、density、within the same microfacies and between different microfacies energy unit variation and connect relation, at the same time, distinctly reflect channel upgrowth degree、swing direction and amplitude and the change of depositional environment and sub-enviornment.
     On the basis of vertical depositional evolution of the 58 short term sequences, to propose depositional system evolution patterns of the SaPu reservoir, that are(1) lake shoreline advance and retreat along the source, facies and subfacies boundaries approximately parallel to the lake shoreline; (2) depositional setting sometimes relatively stable, sometimes stride facies and subfacies or region variation; (3) the amplitude of main river system swing is wide, and energy variation is often; (4) lake wave function is unsteady, time of duration also is long or short. On the basis of plane sedimentary fine draw and quantitative statistic analysis of the each short term in the studied area, according to anatomy of dense well pattern in Sazhong, to propose the depositional pattern that is "large shallow delta subfacies subdivision under the control of the channel", including (1) the flood plane "especially big-size、serious cutting-piling、wide banding main channel sand body " depositional pattern; (2) the upper distributary plane "big-size、banding and interruption dividable channelⅠsand body" depositional pattern; (3) the lower distributary plane "mid-size、independent、banding and continuous channel sand body" pattern; (4) deltaic internal front near-shore "mid-small size、continuous belt under water channel-large area mud deposition" pattern; (5) deltaic internal front mid-shore "small size、continuous narrow belt under water channel-channel controlled sheet-sand" depositional pattern;(6) deltaic internal far-shore "narrow-small、continuous dry dentritic under water channel(or channel ends)-channel controlled sheet-sand" pattern; (7) deltaic external front "channel controlled fan-shaped sheet-sand" and (8) deltaic external front "wave controlled sheet-sand" pattern. The pattern further confirm the type and scope of river-deltaic depositional system of SaPu reservoir in the dense well pattern area of Sazhong. It is clear that reservoir development degree and distribution regularity of the SaPu oil layer. It provide reservoir sedimentary guarantee for reservoir space distribution pattern establishment of the whole Sazhong area, identification and forecast of the same formation cause, development adjust and remaining oil development, meanwhile, it is of extremely important guidance significance for reservoir predict of the rim or similar with it, for the remaining oil research.
     By means of fine reservoir study, to put forward under the condition of dense well pattern, in the high to highest water flooding stage, the dominant factors of the remaining oil of the SaPu reservoir are herogenety in the layer and on the plane. The main types of the remaining oil is narrow and small channel sand body that is uncontrolled in the original well network, abandoned channel blocking and injection-productiion system is inperfeccable so on. The two former are the important points of the revelation under the dense well pattern.414 narrow and small channel sand bodies are indentified in the 45 short term sequences (occupy the total short term sequences of 77.6%).71 abandoned channel sand bodies are indentified in the 13 continental short term sequences in the this study in the dense well pattern condition. Beside also to propose remaining oil development measures.
引文
[1]裘亦楠.中国陆相碎屑岩储层沉积学的进展[J].沉积学报,1992,10(3):16~24.
    [2]Pettijohn F.J. et al., Sand and Sandstone[M].1972.
    [3]Conybeare C.E.B. Geomorphalogy of oil and gas fields in sandstone bodied[M].976-982.
    [4]Taylor J, C.M.Sand stones as reservoir rocks, Developents in Petroleum Geology.1977, P. 147-196.
    [5]Tillman R. W. et al eds. Reservoir Sedimentology, SEPM Spec. publ.1987, No.40.
    [6]裘亦楠,等.松辽陆相湖盆河流—三角洲各种沉积砂体油水运动特点[J].石油学报增刊,1980,73~94.
    [7]赵澄林.渤海湾早第三纪断陷盆地含油气岩系沉积学及沉积相的基本特征[J].石油学报,1991,12(2):28~32.
    [8]裘亦楠.湖盆三角洲分类的探讨[J].石油勘探与开发,1982(1):1-11.
    [9]裘亦楠.我国河道砂体储层沉积特征和非均质模式碎屑岩沉积物研究[M].北京:石油工业出版社,1988,216~244.
    [10]吴宗药.构造湖盆三角洲与油气分布[J].沉积学报,1983,1(1):5-26.
    [11]于兴河.碎屑岩系油气储层沉积学[M].北京:石油工业出版社,2002,1~121.
    [12]顾家裕,张兴阳.油气沉积学发展回顾和应用现状[J].沉积学报,2003,21(1):7~141.
    [13]于兴河,李剑峰.油气储层研究所面临的挑战与新动向[J].地学前缘,1995,2(4):213~220.
    [14]戴启德,纪友亮.油气储层地质学[M].东营:石油大学出版社,1996,23~56.
    [15]于兴河,郑秀娟.沉积学的发展历程于展望[J].地球科学进展,2004,19(2):173~182.
    [16]薛良清.层序地层学研究现状、方法与前景[J].石油勘探与开发,1995,22(5).8-13.
    [17]P.R.Vail,J.B. Sangree著.应用层序地层学[M].张宏遗等译.东营:石油大学出版社,1991,17~27.
    [18]宋万超,刘波,宋新民,等编著.层序地层学概念、原理、方法及应用[M].北京:石油工业出版社,2003,1-15.
    [19]聂逢君.层序地层学的起源及其发展[J].铀矿地质,2001,17(6):193~202.
    [20]侯明才,陈洪德,田景春.层序地层序的研究进展[J].矿物岩石,2001,21(3):128~134.
    [21]王正文,赵追,李峰,等.陆相盆地层序地层学研究现状及发展趋势[J].河南石油,2002,16(3):8-11.
    [22]C.E.佩顿编.地震地层学(在油气勘探中的应用)[M].牛毓荃,徐怀大,陈俊生等译.北京:石油工业出版社,1980,5-36.
    [23]郭建华,朱美衡,刘辰生等.陆相断陷盆地湖平面变化曲线与层序地层学框架模式 讨论[J].矿物岩石,2005,25(2):87~92.
    [24]威尔逊著.层序地层学概述[J].阵中强译.地层学杂志,1994,18(2):154~160.
    [25]姜在兴,李华启.层序地层学原理及应用[M].北京:石油工业出版社,1996,45-90.
    [26]纪友亮,张世奇等.层序地层学原理及层序成因机制模式[M].北京:地质出版社,1998,1-28.
    [27]C. K. Uail等编,徐怀大等译.层序地层学原理(海平面变化综合分析)[M].北京:石油工业出版社,1993,1~515.
    [28]池秋鄂,龚福华.层序地层学基础与应用[M].北京:石油工业出版社,2001,1-38.
    [29]薛良清.层序地层学在湖相盆地中的应用探讨[J].石油勘探与开发,1990,17(6):29~34.
    [30]J.C.Uan Wangoner, et al Seismic stratigraphy interpretation using sequence stratigraphy In C.W. Bally(ed), Atlas of Seismic Stratigraphy. AAPG Studies in Geology,1987, (27):11-14.
    [31]J. C.Van Wangoner et al.Siliciclastic sequence stratigraphy in well logs, cores, and outcrops:concepts for high-resolution of time and facies. AAPG Methods in Exploration Series,7,1990,1-150.
    [32]Van Wagoner J C.Mitchum r M, Campion K M et al.1990.Siliciclastic Sequence Stratigraphy in Well Logs, Cores, and Outcrops.AAPG Methods in Exploration, Series7:1-55.
    [33]Liangmiao Ye sequence stratigraphy of the middle Pennsylvanian Bartlesville sandstone, Northeastern Oklahoma:a case of an underfilled incised valley[J]. AAPG,2000, 84(8):1185-1204.
    [34]Yoshida S.Sequence and fades architecture of the upper Blackhawk for mation and the Lower Castlegate Sandstone, Book Cliffs, Utah, USA[J].Sedimentary Geology,2000, 136(2):239-276.
    [35]顾家裕,邓宏文,朱筱敏主编.层序地层学及其在油气田勘探开发中的应用[M].北京:石油工业出版社,1997,1-25.
    [36]邓宏文,王红亮,祝永军,Cross T A等.高分辨率层序学原理及应用[M].北京:地质出版社,2002,3-26.
    [37]Cross T A. Controls on coal distribution in transgressive regressive cycles Upper Cretanceous Western Interior. U. S.A[A].Wilgus C K. Sea level changes:An integrated approach [C]. SPEM Special Publish,1988(42):371-380.
    [38]邓宏文.美国层序地层学研究中的新学派:高分辨率层序地层学[J].石油与天然气地质,1995,16(2):89~97.
    [39]邓宏文,王洪亮,李熙品.层序地层基准面的识别、对比技术及应用[J].石油与天然气地质,1996,17(3):177~184.
    [40]邓宏文,王洪亮,宁宁.沉积物体积分配原理——高分辨率层序地层学的理论基础 [J].地学前缘,2000,7(4):305~313.
    [41]Cross T A, Baker M R, Chapin M A, Clark M S etal.Applications of high-resolution sequence stratigraphy to reservoir analysis, in R. Eschard, and B Doligez, (eds), Subsurface Reservior Characterization from Outcrop Observations.Proceedings of the 7th IEP Exploration and Producion Research Conference:Paris, Technip,1993,11-33.
    [42]Cross T A, Controls on coal distribution in transgressive-regressive cycles, Upper Cretaceous, Western Interior, U. S A. In:Wilgaus C K, et al. Sea-level changes:An integrated approach. SEPM Special Pubication,42,1998.371-380.
    [43]Johnson J G, Klapper G Sandberg C A Devonian Eustatic Fluctuations in Euramerica[J]. Bull.Geol.Soc. America,1985(99):567-587.
    [44]Johnson J G, Klapper G.North American mid-continent Devonian T-R cycles[J].Oklahoma Geological Survey Bulletin,1992(145):127-135.
    [45]Galloway W E. Genetic stratigraphy sequence in basin analysis I:Architecture and gensis of flooding surface bounded depositional units[J].AAPG Bull,1989(73):125-142.
    [46]Uail P R, Michum R M, Thonoson S.Seismic stratigaphy and global changes of sea level[J]. AAPG Memorir,1977,26(1):63-81.
    [47]Uail, P. R, Hardenbol, and R G Todd, Jurassic unconformities, chronostratigraphy and seal-level changes from seismic stratigraphy and biostratigraphy, in J. S. Schlee, ed., Inter-regional unconformities and hydrocarbon accumulation:AAPG,1984, p.129-144.
    [48]Haq B U, Hardenbol J, Vail P R. Chronology of fluctuating sea levels since the Triassic[J].Science,1987(235):1156-1167.
    [49]Vail P R.Stratigraphy interpretation using sequence stratigraphy. Part 1:Seismic stratigraphy interpretation procedure [J]. American Association of Petroleum Geologists, Studied in Geology,1987(27):1-10.
    [50]吴富强,刘家铎,胡雪,等.经典层序地层学与高分辨率层序地层学[J].中国海上油气地质,2001,15(3):220~226.
    [51]汪彦,彭军,游李伟,等.中国高分辨率层序地层学的研究现状[J].天然气地球科学,2005,16(3):14~17.
    [52]蔡希源,李思田,等.陆相盆地高精度层序地层学—隐蔽油气藏勘探基础、方法与时间(基础理论篇)[M].北京:地质出版社,2004,1-30.
    [53]陈崇河,马晓芬,吴胜和.用地震资料进行早期储层预测的新思路[J].石油学报,1998,19(2):1-4.
    [54]孟万斌.从层序地层学到高分辨率层序地层学[J].成都理工学院学报,29(4):380~384.
    [55]Aitken J F.高分辨率层序地层学创新、应用及发展前景[J].地质科学译丛,1997,14(2):19~22.
    [56]薛良清.成因层序地层学的回顾与展望[J].沉积学报,2000,18(3):484~488.
    [57]池英柳.陆相断陷盆地层序成因初探[J].石油学报,1996,17(3):19-26.
    [58]邓宏文,王洪亮,李小孟.高分辨率层序地层对比在河流相中的应用[J].石油天然气地质,1997,18(2):90~95.
    [59]邓宏文,徐长贵,王洪亮.陆东凹陷上朱罗统层序地层与生储盖组合[J].石油与天然气地质,1998,19(4):275~279.
    [60]王洪亮,邓宏文.地层基准面原理在湖相储层预测中的应用[J].石油与天然气地质,1997(2):96~102.
    [61]王洪亮,邓宏文.渤海湾盆地第三系层序地层特征与大中型油气田分布[J].中国海上油气,2000,14(2):100~103.
    [62]王洪亮,邓宏文.东澄凹陷蹼卫环洼带层序划分与沉积体系[J].古地理学报,2000,2(1):49~52.
    [63]邓宏文,王红亮等.中国陆源碎屑盆地层序地层与储层展布[J].石油与天然气地质,1999,20(2):108~114.
    [64]叶泰然,郑荣才,文华国.高分辨率层序地层学在鄂尔多斯盆地苏里格气田苏6井区下石盒子组砂岩储层预测中的应用[J].沉积学报,2006,24(2):259~266.
    [65]张尚锋,洪秀娥,郑荣才等.应用高分辨率层序地层学对储层流动单元层次性进行分析[J].成都理工学院学报,2002,29(2):147~151.
    [66]樊继宗,陈林媛,张素君.高分辨率层序地层学在划分流动单元中的应用[J].西安石油学院学报,2006,28(5):23~26.
    [67]胡前泽,土玲利,孙美丽.高分辨率层序地层学在牛圈湖油田储层中应用[J].吐哈油气,2007,12(2):110~112.
    [68]许广明,徐怀打,孔祥言.高分辨率层序地层学在油藏数值模拟中的应用[J].石油与天然气地质,1999,20(2):115~119.
    [69]尹艳树,吴胜和,张尚峰等.高分辨率层序地层学在澄城油田沙二中亚段油藏储层建模中的应用[J].石油天然气学报,2005,27(2):301~303.
    [70]Aitken J f et al.High resolution sequence stratigraphyinnovations, applications and future prospects[J].Geological Society Special Publication,1996, (104):1-9.
    [71]申木科,胡永乐,田昌炳.油藏描述技术发展与展望[J].石油勘探与开发,2003,30(4):78~81.
    [72]冯明生,别爱芳,方宏长.高含水期剩余油分布研究方法探讨[J].世界石油工业,2000,7(7):40~43.
    [73]谢民勇,吴建云,刘桂平等.特高含水期油砂体的剩余油研究[J].油气田地面工程,2004,23(2):41~42.
    [74]赵磊,刘景兰.特高含水期油藏剩余油分布及开发技术研究[J].内蒙古石油化工2001,27:94~98.
    [75]魏斌,郑浚茂.高含水油田剩余油分布研究[M].北京:地质出版社,2002.
    [76]冯仁鹏,何同均,周兴等.高含水期剩余油分布及挖潜技术研究[J].重庆科技学院学报,2009,11(6):26~28.
    [77]李勇.高含水期剩余油分布及生产研究[J].内蒙古石油化工,2008,(1):106~107.
    [78]牛纪凤,王新征,王新海等.特高含水期厚油层层内剩余油研究方法[J].石油天然气学报,2006,28(4):345~347.
    [79]汪立君,陈新军.储层非均质性对剩余油分布影响[J].地质科技情报,2003,22(2):71~73.
    [80]徐文峰,杨丽英,杜振惠.非均质砂岩油藏高含水期剩余油分布规律研究[J].国外油气田工程,2004,20(1):16~18.
    [81]张昌维.剩余油分布规律研究综述[J].高校论坛,2004(1):2-5.
    [82]曲伟.剩余油分布研究现状及发展方向[J].长江大学学报(自然科学版),2010,7(2):240~242.
    [83]王振强,王建华,李文光等.潮阳沟油田5-朝45区块剩余油分布特征[J].大庆石油地质与开发,2002,21(4):36~38.
    [84]杨勇.剩余油分布规律影响因素分析研究[J].石油天然气学报,2009,31(1):100~103.
    [85]孙焕泉.油藏动态模型和剩余油分布模式[M].北京:石油工业出版社,2002.
    [86]刘东,胡廷惠.剩余油研究方法及其特点综述[J].复杂油气藏,2009,2(3):48~51.
    [87]林承焰.剩余油的形成与分布[M].东营:石油大学出版社,2000.
    [88]曲伟.剩余油分布研究现状及发展方向[J].长江大学学报(自然科学版),2010,7(2):240~242.
    [89]刘建民,徐守余.河流相储层沉积模式及对剩余油分布的控制[J].石油学报,2003,24(1):58~62.
    [90]尹太举,张昌民,赵红静等.依据高分辨率层序地层学进行剩余油分布预测[J].石油勘探与开发,2001,28(4):79~82.
    [91]郭德志,王怀民,李翠玲.储层微型构造形成剩余油的水动力原因[J].大庆石油地质与开发,2003,22(1):32~34.
    [92]冉启佑.剩余油研究现状与发展趋势[J].油气地质与采收率,2003,10(5):49~51.
    [93]师永民,霍进,张玉广.陆相油田开发中后期油藏精细描述[M].北京:石油工业出版社,2004.
    [94]荣娜,崔小雷,于会利等.精细油藏描述技术在胜沱油田开发中的应用[J].新疆石油地质,2005,23(2):187~189.
    [95]戴尔勃格E C.陆相储层沉积微相与微型构造[M].北京:石油工业出版社,1992:75~80.
    [96]王延章,林承焰,温长云等.夹层分布模式及其对剩余油的控制作用[J].西南石油 学院学报,2006,28(5):6-10.
    [97]张一伟,熊琦华,王志章,等.陆相油藏描述[M].北京:石油工业出版社,1997.
    [98]吴世旗,钟兴水,李少泉.套管井储层剩余油饱和度测井评价技术[M].北京:石油工业出版社,1999.
    [99]陆大卫,王春利.剩余油饱和度测井评价新技术[M].北京:石油工业出版社,2003,112~123.
    [100]任苏,赵立冬.应用核磁共振在西德克萨斯测量残余油饱和度[J].国外测井技术,1998,13(3):10~14.
    [101]郭宝玺,王秀琴,王喜梅.井间示踪监测确定水驱油藏剩余油饱和度技术应用[J].测井技术,2005,29(3):240~243.
    [102]李淑霞,陈月明,冯其红.利用井间示踪剂确定剩余油饱和度的方法[J].石油勘探与开发,2001,28(2):73~75.
    [103]曾庆娟,刘同敬.高含水期示踪剂及碳氧比测井测定剩余油精度评价[J].特种油气藏,2003,10(5):71-73.
    [104]孟江.水驱油藏剩余油微观分布模拟研究[D].成都理工大学博士学位论文,2007.
    [105]高博禹,彭仕宓,王建波.剩余油形成与分布的研究现状及发展趋势[J].特种油气藏,2004,8(4):38-41.
    [106]谢俊.高含水油藏注聚合物后油藏精细描述与潜力评价[D].成都理工大学,2004.
    [107]徐安娜,穆龙新,裘怿楠.我国不同沉积类型储集层中的储量和可动剩余油分布规律[J].石油勘探与开发,1998,25(5):41~44
    [108]谢俊,张金亮.剩余油描述与预测[M].北京:石油工业出版社,2003:1~131.
    [109]张春龙.河流相储层层内剩余油分布模式及预测方法研究[D].大庆石油学院硕士学位论文,2006.
    [110]伍友佳,李建,赵明,等.裂缝水窜形成的剩余油研究[J].西南石油大学学报,2007,29(3):36~38.
    [111]罗明高.确定含油气面积存在的问题及正确的方法[J].西南石油学院学报,1992,14(3):9-13.
    [112]韩大匡.深度开发高含水油田提高采收率问题的探讨[J].石油勘探与开发,1995,22(5):47~55.
    [113]赵翰卿.高分辨率层序地层对比与我国的小层对比[J].大庆石油地质与开发,2005,24(1):5-12.
    [114]朱筱敏.含油气断陷湖盆盆地分析[M].北京:石油工业出版社,1995.
    [115]朱筱敏.层序地层学原理及应用[M].北京:石油工业出版社,1998.
    [116]朱筱敏,康安,王贵文.陆相坳陷型和断陷型湖盆层序地层样式探讨[J].沉积学报,2003(2):283~287.
    [117]郑荣才,吴朝容,叶茂才.浅谈陆相盆地高分辨率层序地层研究思路[J].成都理 工学院学报,2000,27(3):241~244.
    [118]郑荣才,吴朝容.西部凹陷深层沙河街组生储盖组合的层序分析[J].成都理工学院学报,1999,26(4):348~356.
    [119]郑荣才,柯光明,文华国,等.高分辨率层序分析在河流相砂体等时对比中的应用[J].成都理工大学学报,2004,31(6):641~647.
    [120]中国石油天然气集团公司油气储层重点实验室.陆相层序地层学应用指南[M].北京:石油工业出版社,2002.
    [121]林畅松,林景颜.高精度层序地层分析:建立沉积相和储层规模的等时地层格架[J].现代地质,2002,16(3):276~281.
    [122]胡明卿,刘少峰.高柳地区东营组高分辨率层序地层分析[M].石油天然气学报,2010,32(4):200~202.
    [123]孙雨,马世忠,张秀丽,等.红岗北地区扶余油层河流三角洲体系高分辨率层序地层划分与单砂体等时对比[J].石油天然气学报,2010,32(1):22~26.
    [124]杨会东,王书平,马玉天,等.高精度层序地层技术在松辽盆地南部隐蔽油藏勘探中的应用[J].石油学报,2005,26(3):40-43.
    [125]彭学红,何贞铭.松辽盆地南部海坨子地区高分辨率层序地层划分及沉积特征研究[J].石油天然气学报,2008,30(6):198~202.
    [126]康海亮,于兴河,李胜利,等.准噶尔盆地腹部达巴松地区层序地层与沉积体系研究[J].石油天然气学报,2008,30(2):417~420.
    [127]邓宏文,吴海波,王宁,等.河流相层序地层划分方法—以松辽盆地下白垩统扶余油层为例[J].石油与天然气地质,2007,28(5):621~627.
    [128]管红,孙明亮,董月霞,等.南堡凹陷南部东营组高分辨率层序地层学分析[J].地层学杂志,2008,32(2):177~181.
    [129]张尚锋,李志军,朱有信,等.层序地层学在油气滚动勘探开发中的应用[J].石油天然气学报,2006,28(6):38-40.
    [130]淡卫东,庞锦莲,罗顺社,等.濮城油田南区沙二上亚段2+3砂层组高分辨率层序地层对比[J].石油天然气学报,2006,28(3):182~184.
    [131]袁新涛,沈平平.高分辨率层序框架内小层综合对比方法[J].石油学报,2007,28(6):87~91.
    [132]马世忠.松辽盆地河流—三角洲体系高分辨率层序地层学、储层构型及非均质模型研究[D].北京:中国科学院,2003.
    [133]倪超,纪友亮.饶阳凹陷古近系沙河街组层序地层分析及沉积体系研究[J].中国地质,2006,33(1):193-200.
    [134]靳松,朱筱敏,钟大康.扇三角洲高分辨率层序地层对比及砂体分布规律[J].中国地质,2006,33(1):212—220.
    [135]范乐元,朱筱敏,宋锽,等.黄骅坳陷北大港构造带古近系沙河街组高分辨率层 序地层格架及其对储层非均质性的控制[J].地层学杂志,2005,29(4):355~361.
    [136]尹太举,张昌民,李中超,等.濮城油田沙三中6—10砂组高分辨率层序地层研究[J].沉积学报,2003,21(4):663~668.
    [137]李文厚.吐哈盆地台北凹陷侏罗系层序地层学研究[J].石油与天然气地质,1997,18(3):210~215.
    [138]尹太举,张昌民,李中超,等.层序地层学在油田开发中的应用实践[J].沉积学报,2005,23(4):664~670.
    [139]刘爱华,张尚锋,陈轩,等.中拐地区T2k2高分辨率层序地层研究[J].特种油气藏,2009,16(1):27-30.
    [140]刘媛,朱筱敏,袁红旗.三肇凹陷白垩系姚一段葡萄花油层浅水三角洲高分辨率层序地层新认识[M].中国石油大学学报(自然科学版),2010,34(4):7-12.
    [141]魏魁生,徐怀大,叶淑芬,等.松辽盆地白垩系高分辨率层序地层格架[J].石油与天然气地质,1997,18(1):7-14.
    [142]郭巍,刘招君,董惠民,等.松辽盆地层序地层特征及油气聚集规律[J].吉林大学学报:地球科学版,2004,34(2):216~221.
    [143]朱建伟,刘招君,董清水,等.松辽盆地层序地层格架及油气聚集规律[J].石油地球物理勘探,2001,36(3):339-344.
    [144]梁江平,辛仁臣,王书恒,等.松辽盆地中部含油组层序地层格架及介形类特征的响应[J].地层学杂志,2005,29(4):405~409.
    [145]孙钰,钟建华,姜在兴,等.松辽盆地南部坳陷期层序地层研究[J].中国石油大学学报:自然科学版,2006,30(5):1-7.
    [146]刘宗堡,马世忠,孙雨,等.三肇凹陷葡萄花油层高分辨率层序地层划分及沉积特征研究[J].沉积学报,2008,26(3):399~406.
    [147]任延广,王雅峰,王占国,等.松辽盆地北部葡萄花油层高频层序地层特征[J].石油学报,2006,27(增刊):25~30.
    [148]顾家裕,郭彬程,张兴阳.中国陆相盆地层序地层格架及模式[J].石油勘探与开发,2005,32(5):11~15.
    [149]何玉平,刘招君,杜江峰.高分辨率层序地层学基准面旋回识别[J].世界地质,2003,22(1):21~25.
    [150]梁积伟,李文厚.鄂尔多斯盆地东北部山西组高分辨层序地层学研究[J].沉积学报,2006,24(2):251~258.
    [151]陈波,张昌民,韩定坤.干旱气候条件下陆相高分辨层序地层特征研究—以江汉盆地西南缘晚白垩世渔洋组为例[J].沉积学报,2007,25(1):21~28.
    [152]尹艳树,吴胜和,尹太举.濮城油田沙三中亚段高分辨率层序地层学[J].地层学杂志,2006,30(1):54~59.
    [153]高瑞祺,蔡希源.松辽盆地油气田形成条件与分布规律[M].北京:石油工业出版 社,1997.
    [154]大庆油田石油地质志编写组.中国石油地质志卷二——大庆油田[M].北京:石油工业出版社,1993.
    [155]陈开远.高分辨率层序地层学[M].北京:高等教育出版社,2001.126~148.
    [156]书平,马玉天,等.高精度层序地层技术在松辽盆地南部隐蔽油藏勘探中的应用[J].石油学报,2005,26(3):40~43.
    [157]石兰亭,潘树新,郭维华,等.松辽盆地南部上白垩统中部组合层序界面的识别标志及高分辨率层序地层格架[J].沉积学报,2010,28(2):235-242.
    [158]魏魁生.非海相层序地层学—以松辽盆地为例[M].北京:地质出版社,1996:46-94.
    [159]刘招君,董清水,王嗣敏,等.陆相层序地层学导论与应用[M].北京:石油工业出版社,2002:113~137.
    [160]辛仁臣,蔡希源,王英民.松辽坳陷深水湖盆层序界面特征及低位域沉积模式[J].沉积学报,2004,22(3):387~392.
    [161]邹才能,池英柳,李明,等.陆相层序地层学分析技术[M].北京:石油工业出版社,2004.
    [162]赵应成,王天琦,田光荣,等.低渗透油田富集区预测技术研究—以松辽盆地扶扬油层为例[J].岩性油气藏,2007,19(1):21~26.
    [163]胡玉双,李黎明.层序地层学在松辽东部断陷有利勘探区带预测中的应用[J].大庆石油地质与开发,1999,18(2):10~12.
    [164]王始波,任延广,林铁锋.松辽盆地泉三、四段高分辨率层序地层格架[J].大庆石油地质与开发,2008,27(5):1-5.
    [165]纪友亮.层序地层学[M].上海:同济大学出版社,2005.[166]徐怀大,魏魁生,洪卫东,等.层序地层学原理(海平面变化综合分析)[M].北京:
    石油工业出版社,1993.[167] Buseh D. A. Prospecting for stratigraphic traps[J]. AAPG Bulletin,1959,43(12): 2829-2843.
    [168]Wheeler H. E. Baselevel,lithosphere surface and time-stratigraphy[J]. GSABulletin, 1964,75:599-610.
    [169]Vail P. R. Sequence stratigraphy workbook, fundamentals of sequence stratigraphy [A]. In:Bally A.W. AAPG annual convention short course:sequence stratigraphy interpretation of seismic stratigraphy interpretation procedure[C]. AAPG Atlas of seismic stratigraphy,1988.
    [170]Vail P. R., Audelllard F, BowmanSA, et al. The stratigraphic signatures of tectonics, eustasy and sedimentology:an overview [A]. In:Einsele G, RickenW, Seilacher A. Cycles and eventsinstratigraphy[C]. Berlin:Springer-Verlag,1991.617-659.
    [171]Van Wagoner JC. Overview of sequence stratigraphy of forelandbasin deposits: terminology, summary of papers, and glossary of sequence stratigraphy [J]. AAPG Memoir, 1995,64:400-490.
    [172]Plint, A. G., P. J. McCarthy, U. F. Faccini. Nonmarine Sequence Stratigraphy:Updip Expression of Sequence Boundaries and Systems Tracts in a High-Resolution Framework, Cenomanian Dunvegan Formation, Alberta Foreland Basin, Canada. AAPG Bulletin,2001, 85(11):1967-2001.
    [173]王居峰,蔡希源,邓宏文,等.准噶尔盆地腹部侏罗系高分辨率层序地层特征[J].石油学报,2006,27(2):16~19.
    [174]Cross T A, Homewood P W. Amanz Gressly's role in founding modem stratigmphy[J]. Geologic Society of American Bulletin,1997,109:1617-1630.
    [175]Cross T. A., Lessenger M A. Correlaion strategies for clastic wedges[A]. In:Coalson E. B., Osmend J. C. Williams E. T. Innovative applications of petroleum technology in the Rocky Mountain[C]. Denve Area-Rocky Mountain Association of Geologists,1997,183-203.
    [176]Cross T. A., Lessenger M. A. Construction and application of a stratigraphic inverse model[A]. I-Harbaugh J. W., Watney W. L., Rankey E. C., et al. Numerical experiments in stratigraphy:receadvances in stratigraphic and sedimentologic computer simulations[C]. SEPM Special Publicatio 1999,62:69-83.
    [177]郑荣才,尹世民,彭军.基准面旋回结构与叠加样式的沉积动力学分析[J].沉积学报,2000,18(3):369~375.
    [178]郑荣才,彭军,吴朝容.陆相盆地基准面旋回的级次划分和研究意义[J].沉积学报,2001,19(2):249~255.
    [179]宋来明,徐强,彭仕宓,等.对基准面旋回定义进行修改的建议[J].石油学报,2009,30(4):630~634.
    [180]隋军,吕晓光,等.大庆油田河流~三角洲相储层研究[M].北京:石油工业出版社,2000,36~46.
    [181]吕晓光,赵淑荣,高宏燕.三角洲平原相低弯度分流河道砂体微相及水淹变化特征[J].新疆石油地质,1999,20(2):130~133.
    [182]吕晓光,李长山,蔡希源,等.松辽盆地大型浅水湖盆三角洲沉积特征及前缘相储层结构模型[J].沉积学报,1999,17(4):572~576.
    [183]王建功,王天琦,卫平生,等.大型坳陷湖盆浅水三角洲沉积模式—以松辽盆地北部葡萄花油层为例[J].岩性油气藏,2007,29(2):29~34.
    [184]孙雨,马世忠,姜洪福,等.松辽盆地三肇凹陷葡萄花油层河控浅水三角洲沉积模式[J].地质学报,2010,84(10):1502~1509.
    [185]韩晓东,楼章华,姚炎明,等.松辽盆地湖泊浅水三角洲沉积动力学研究[J].矿物学报,2000,20(3):305~313.
    [186]赵澄林.储层沉积学[M].北京:石油工业出版社,1998.
    [187]中国石油学会石油地质委员会编.碎屑岩沉积相研究[M].北京:石油工业出版社, 1988,65~78.
    [188]张红薇,赵翰卿,麻成斗.泛滥—分流平原相储层中河间砂体的精细描述[J].大庆石油地质与开发,1998,17(6):22~24.
    [189]吕晓光赵翰卿付志国,等.河流相储层平面连续性精细描述[J].石油学报,1997,18(2):66~70.
    [190]姜在兴.沉积学[M].北京:石油工业出版社,2003.
    [191]张金亮.沉积环境和沉积相[M].北京:石油工业出版社,1996.
    [192]楼章华,袁笛,金爱民.松辽盆地北部浅水三角洲前缘砂体类型、特征与沉积动力学过程分析[J].浙江大学学报,2004,31(2):211~215.
    [193]卓弘春,林春明,李艳丽,等.松辽盆地北部上白垩统青山口—姚家组沉积相及层序地层界面特征[J].沉积学报,2008,25(1):29-38.
    [194]王建功,王天琦,梁苏娟,等.松辽盆地北部葡萄花油层浅水湖泊三角洲沉积特征及对油气分布的控制[J].中国石油勘探,2008,13(1):11~16.
    [195]黄薇,王雅峰,王革,等.松辽盆地北部卫星油田多类型油藏形成条件及分布规律[J].大庆石油地质与开发,2004,23(5):30~32.
    [196]孙雨,马世忠,刘云燕,等.松辽盆地三肇凹陷葡萄花油层局部构造控油模式探讨[J].地质论评,2009,55(5):693~700.
    [197]薛培华.河流点坝相储层模式概论[M].北京:石油工业出版社,1991:50~77.
    [198]张昌民.上荆江马羊洲网状河沉积特征及其形成机理[J].水文地质工程地质,1988,4(2):13~18.
    [199]王俊玲.嫩江下游现代河流沉积特征[J].地质论评,2001,47(2):193~199.
    [200]赵翰卿.松辽盆地大型叶状三角洲沉积模式[J].大庆石油地质与开发,1987,6(4):1-9.
    [201]赵翰卿,付志国,吕晓光,等.大型河流—三角洲沉积储层精细描述方法[J].石油学报,2000,21(4):109~113.
    [202]赵翰卿.大庆油田河流—三角洲沉积的油层对比方法[J].大庆石油地质与开发,1988,7(4):25~31.
    [203]代黎明,李建平,周心怀,等.渤海海域新近系浅水三角洲沉积体系分析[J].岩性油气藏.2007,19(4):75~81.
    [204]楼章华,卢庆梅,蔡希源,等.湖平面升降对浅水三角洲前缘砂体形态的影响[J].沉积学报,1998,16(4):27~31.
    [205]刘波,赵翰卿,王良书,等.古河流废弃河道微相的精细描述[J].沉积学报,2001,19(3):394~398.
    [206]方度,王冰洁,倪军娥.鄂尔多斯盆地麻黄山西块延长组浅水三角洲沉积特征[J].南方油气,2006,19(4):23~26.
    [207]Barrel J. Rhythm sand the measurement of geologic time[J].GSABulletin,1917, 28:745-904.
    [208]Posamientier H. W., Jervey M. T., Vail P. R. Eustatic controls on clastic deposition I-conceptual framework [A]. In:Wilgus C. K., Hastings B. S., Kendall C. G. St C., et al. Sea-level changes:an integrated approach[C]. SEPM Special Publication,1988,42:69-125.
    [209]Jervey M T. Quantitative geological modeling expression[A]. In:Wilgus C. K, Hastings B. S., KendallC. G. St C., et al. Sea-level changes:an integrated approach[C]. SEPM Special Publication,1988,42:47-70.
    [210]Miall A. D. Architectural-Element Analysis:A new Method of Facies Analysis Applied to Fluvial Deposits[J]. Earth Science Reviews.1985,22:261-308.
    [211]Miall A. D., Architectural Elements and Bounding Surfaces in Fluvial Deposits: Anatomy of the Kayenta Formation (Lower Jurassic), Southwest Colorado[J]. Sedimentary Geology 1988,155:233-262.
    [212]Miall A. D. The Geology of Fluvial Deposits:Sedimentary Facies, Basin Analysis and Petroleu Geology[M]. Berlin, Heidelberg. New York:Spinger-Verlag.1996:57-98.
    [213]Miall A D. hierarchies of architectural units in clastic rocks, and their relationship to sedimentation rate[J]. In:Miall A. D., Tyler N. The three dimensional facies architecture of terrigenous clastic sediments, and its implications for hydrocarbon discovery and recovery[C]. Soc. Eco Paleontol Mineral Cone Sedimentol Paleontol,1991,3:6-12.
    [214]Allen JRL. Studies in fluviatile sedimentation:bars, bar complexes and sandstone sheets(lower-sinuosity braided streams) in the Brownstones(L.Devonian),Welsh Borders[J]. Sediment Geol.1983,33:237-293.
    [215]Ravenne C., Eschard R., Galli A., et al. Heterogeneity and geometry of sedimentary bodies fluvial-deltaic reservoir [J]. SPE,1989,4:239-246.
    [216]Robinson J W, Mccabe P J. Sandstone-body and shale-body dimensions in a braided fluvial system salt wash sandstone member(Morrison Formation), Garfield County, Utan [J].AAPG Bulletin,19981(8):1267-1289.
    [217]Cornel Olariu, Janok P. Bhattacharya Terminal Distributary Channels and Delta Front Architecture of River-dominated Delta Systems [J], Journal of Sedimentary Research,2006, 76:212-233.
    [218]赵翰卿.储层非均质体系、砂体内部建筑结构和流动单元研究思路探讨[J].大庆石油地质与开发,2002,21(6):16~18.
    [219]赵翰卿.对储层流动单研究的认识与建议[J].大庆石油地质与开发,2001,20(3):8-10.
    [220]刘波,赵翰卿,于会宇.储集层的两种精细对比方法讨论[J].石油勘探与开发,2001,28(6):94~96
    [221]姚光庆,马正,赵彦超,等.浅水三角洲分流河道储层砂体特征[J].石油学报, 1995,16(1):1-8.
    [222]邹才能,赵文智,张兴阳,等.大型敞流坳陷湖盆浅水三角洲与湖盆中心砂体的形成与分布[J].地质学报,2008,82(6):813~825.
    [223]冯增昭,王英华,刘焕杰,等.中国沉积学[M].北京:石油工业出版社,1994.
    [224]王建功,王天琦,卫平生,等.大型坳陷湖盆浅水三角洲沉积模式[J].岩性油气藏,2007,19(2):28~34.
    [225]刘吉余,马志欣,吕靖.高含水期剩余油分布研究现状[J].石油地质与工程,2007,21(3):61~63.
    [226]隋新光.曲流河道砂体内部建筑结构研究[D].大庆石油学院博士研究生学位论文,2006.
    [227]束青林.河道砂侧积体对剩余油分布的影响[J].油气地质与采收率,2005,12(2):45~48.
    [228]陈程,贾爱林,孙义梅.厚油层内部相结构模式及其剩余油分布特征[J].石油学报,2000,25(5):99~102.
    [229]陈程,孙义梅.厚油层内部夹层分布模式及对开发效果的影响[J].大庆石油地质与开发,2003,22(2):24~27.
    [230]王国鹏,何光玉.双河油田厚油层内夹层分布特征[J].石油勘探与开发,1995,22(2):55~58.
    [231]束青林,张本华,河道砂储层油藏动态模型和剩余油预测[M].北京:石油工业出版社,2004.12.
    [232]束青林.孤岛油田河流相储层结构与剩余油分布规律研究[D].中国科学院研究生院博士学位论文,2005.
    [233]马世忠,孙雨,范广娟,等.地下曲流河道单砂体内部薄夹层建筑结构研究方法[J].沉积学报,2008,4(26):632~639.
    [234]刘吉余.油气田开发地质基础[M].北京:石油工业出版社,2006.364~367.
    [235]姜天良,陆陈,黄金林.江苏小断块油藏剩余油成因和挖潜调整对策[J].中外能源,2009,14(2):62~66.
    [236]何鲁平,陈素珍,俞启泰.注水正韵律油层水平井开采剩余油数值模拟研究[J].石油勘探与开发,1996,23(1):47~50.
    [237]束青林.正韵律厚油层剩余油分布模式及水平井挖潜[J].油气地质与采收率,2004,11(6):34-38.
    [238]姜汉桥,姚军,姜瑞忠.油藏工程原理与方法[M].东营.石油大学出版社,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700