微流道内表面效应对流体流动及传热特性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着微机电系统(Micro-electro-mechanical System,MEMS)技术的迅猛发展,诸如微流道散热器、微泵、微阀、微混合器、微喷嘴、微生物芯片等微流体器件的应用越来越广泛。在这些器件中,微流道是介质输运的基础,各种功能部件之间均由它连接。与宏观流动系统不同,随着特征尺度的减小,表面效应成为影响微流体系统性能的主要因素。深入了解微流道内流体流动和传热特性,对微流体器件的功能实现和优化设计具有重要作用。本文主要对微流道内动电效应、壁面滑移和壁面粗糙度三种表面效应的影响机理进行系统深入的研究,获得了表面效应影响下的流体流动及传热规律。论文的主要研究工作及获得的结论如下:
     (1)研究了壁面非对称边界条件下,动电效应对压力驱动微流体流动及热传递特性的影响。系统地分析了动电参数、壁面zeta电势、上下壁面zeta电势比及热通量比等参数对电势场、流场、温度场及微流体传热性能的影响。结果表明上下壁面zeta电势的大小相同、极性相反时,其引起的电场力相互抵消,动电效应消失;微流道内的温度场与双电层电势分布密切相关,上下壁面zeta电势取值不同时,造成双电层分布的不一致,从而影响壁面附近的温度场;对流传热性能与流体流速紧密相关,动电参数值小时,溶液浓度较低,此时双电层的厚度较大,努赛尔数随着zeta电势的增加而减小。而当动电参数值大时,双电层较薄,即使壁面zeta电势增加,它对努赛尔数的影响也很小。此结果表明可通过人工调控壁面zeta电势或改变溶液浓度来改善通道的流动和传热性能,为实现压力驱动下微流道内流体的精确操控、温度控制以及散热分析提供了依据。
     (2)研究了壁面滑移和动电效应两种因素耦合作用下微流体流动及传热特性,建立了相应的数学模型。运用电势分布的解析表达式,推导出流动电势及无量纲速度分布的解析表达式,将速度解代入能量方程,得到流道内的温度分布数值解。研究结果表明,流动电势阻滞流体流动,降低流速,而壁面滑移促进流动,使流速增加并放大电黏效应。在两种效应耦合作用下,定量分析了两者对流动及传热的影响大小,研究表明在流动中,动电效应占优,而在传热中,壁面滑移效应占优。在高壁面zeta电势下,壁面滑移和动电效应对滑移流速及努赛尔数的影响相互抵消。耦合分析和量化计算所得结果表明,为增强微流道的输运效率和散热性能,应采用疏水材料;而增加zeta电势,可大大改善疏水微流道内动电效应对流动和散热性能的不利影响。
     (3)采用几何形状描述法对微流道内的壁面粗糙度效应进行建模。构造了矩形、三角形、圆顶形和锯齿形等四种粗糙微流道模型,给出一种基于随机函数构造锯齿形随机粗糙元的方法。全面地分析了粗糙元形状、间距和高度对速度分布、压降、温度分布、摩擦因子及努赛尔数的影响规律。研究结果显示,壁面粗糙元的间隙区域有大量旋涡和回流,使壁面附近的流动发生明显改变,使主流区沿流动方向的压降增大,流阻增加。粗糙元的高度和密度会显著影响微流体流动及传热特性,粗糙元高度增加,对微流道传热及流动均不利,而粗糙元密度增加,增大了散热面积,微流道流阻增大但传热性能却增强。该结果合理解释了壁面粗糙度使努赛尔数增加的原因,对于人工粗糙元微流道散热器的优化设计具有指导意义。
     (4)最后还研究了壁面粗糙度及动电效应耦合作用下微流体的流动与传热特性。结果显示在粗糙微流道中,动电效应的存在使微流道流阻增大,而传热性能却增强,指出动电效应引起的逆向扰动是传热性能增强的原因。
With the rapid development of micro-electro-mechanical systems(MEMS), themicrofluidic devices are widely used in many engineering fields, such asmicrochannel heat sinks, micropumps, microvalves, micromixers and microfluidicchips. Microchannels, however, are the basic structures in these devices. Transportphenomena at the microscale reveal many features that are not observed in themacroscale devices, the surface effects will become a dominant factor to control thebehavior of microfluidic system. It is very important to deeply understand the liquidflow and heat transfer characteristics in microchannels in order to guide the designand application of the microfluidic devices. This thesis mainly studies the mechanismof electrokinetic effect, wall slip and surface roughness, and reveals the nature ofsurface effects on liquid flow and heat transfer in microchannels. The main topics inthis thesis are stated as follows:
     (i) This work investigates the electrokinetic effect on pressure-driven liquid flowand heat transfer in microchannels under asymmetric wall boundary conditions. Theinfluences of electrokinetic parameter, zeta potential, ratio of two wall zeta potentialsand heat flux ratio on electrical potential field, flow field, temperature field and heattransfer performance are analyzed in detail. The results show that the influence of theelectrokinetic effect in the microchannel disapperas due to the cancellation of reverseeffects stemming from two walls at zeta potentials of the same magnitude butopposite polarity. Temperature field is closely related to the electrical potentialdistribution of electrical double layer(EDL) in the microchannels, the potentialdistribution is inconsistent in two parts of microchannels because the value of upperand lower wall zeta potentials is different, thus affecting the temperature field nearthe channel wall. The convective heat transfer performance is also colsely related tothe flow velocity, if the electrokinetic parameter is small, which means a lowersolution concentrations and a larger thickness of the EDL, then the Nusselt numberdecreases with increasing zeta potential, this is due to the EDL is thicker, then theelectro-viscous become stronger, thereby causes flow velocity to decrease dramatically, and consequently lowers the heat transfer performance. But if theelectrokinetic parameter is large, which means the EDL is thin, the counter-ions aretightly bound to the channel wall, charge density in the bulk fluid area tends to zero,the EDL field only affects a small area near the wall, even if increasing zeta potential,its impact on nusselt number is still very small. The results indicates that the heattransfer performance in microchannels can be enhanced by changing the solutionconcentration or regulating the wall zeta potential manually. It provides the referencefor precise fluid and temperature control in pressure-driven microchannel flow, whichcan also be used to analyze the impact factors of heat transfer through microchannelstheoretically.
     (ii) This work carries out the investigation on the fluid flow and convective heattransfer with consideration of wall slip and streaming potential effects simultaneously,the corresponding mathematical model is established. The dimensionless analyticalexpressions of streaming potential and velocity distribution are derived byintroducing the analytical solution of Poisson-Boltzmann equation withoutconsideration of Debye-Huckel approximation, after that the velocity solution issubstituted into energy equation, then the numerical solution of temperaturedistribution in microchannels can be obtained. The numerical results show that theflow-induced streaming potential retards the pressure-driven flow, however, wall sliptends to increase the flow velocity and amplifies electroviscous effect. When theabove two effects are both considered, the impacts of them on liquid flow and heattransfer behavior are analyzed quantitatively, the electrokinetic effect is dominant inmicrochannel flow, while wall slip effect is the main influence factor on heat transfer.In case of high wall zeta potential, the impacts of wall slip and electrokinetic effect onthe Nusselt number and slip velocity will counteract each other. It can be seen fromthe above conclusions, in order to enhance transport efficiency and heat transferperformance in microchannels, the hydrophobic materials should be given priority forthe design of microfluidic devices, the adverse influence of electrokinetic effect onflow and heat transfer performance can be greatly improved by increasing wall zetapotential in hydrophobic microchannels.
     (iii) The geometry method is used to model the surface roughness in microchannels. Four types of rough surface are modeled by rectangular, dome-shaped,triangular and random sawtooth roughness elements, a method of constructingrandom roughness elements with random function is presented. The influences ofroughness element shape, roughness height and roughness element spacing onvelocity distribution, pressure drop, temperature distribution, friction factor andNusselt number are discussed in detail. The study indicates that there is a largeamount of vortex and reflux in the gap of wall roughness elements, so that the liquidflow near the channel wall is changed significantly, thereby the pressure drop in bulkfluid area increases along the flow direction, that is, the flow resistance becomes large.The height and density of roughness elements can also significantly affect fluid flowand heat transfer characteristics in microchannels, it is negative for flow and heattransfer when the height of roughness elements increase, but when the density ofroughness elements increases, then increasing the cooling area, it is positive forenhancing heat transfer performance and increasing the flow resistance. The resultsgive a reasonable explanation that Nusselt number increases with increasing wallroughness, it is helpful for the design and optimization of microchannel heat sinkwith artificial roughness elements.
     (iv) Finally, the thesis studies the wall roughness and electrokinetic effects onfluid flow and heat transfer characteristics. The results indicate that the electrokineticeffect increases the flow resistance in rough microchannels, and enhances the heattransfer performance. The inverse disturbance caused by the electrokinetic effect isthe reason for improved heat transfer performance.
引文
[1]梅涛,孔德义,张培强等.微电子机械系统的力学特性与尺度效应[J].机械强度,2001,23(4):373~379.
    [2] Bharat B. Nanotribology and nanomechanics of MEMS/NEMS and BioMEMS/BioNEMSmaterials and devices[J]. Microelectronic Engineering,2007,84:387~412.
    [3]刘莹,温诗铸.微机电系统中微摩擦特性及控制研究[J].机械工程学报,2002,38(3):1~5.
    [4]王卫东.面向MEMS设计的微流体流动特性研究[D].西安:西安电子科技大学博士学位论文,2007.
    [5] http://en.wikipedia.org/wiki/Microfluidics[EB/OL].
    [6]杨芃原:微流控技术有望十年内得到普遍应用[EB/OL].http://www.18show.cn/news/d420387.html.
    [7] http://www.memsweekly.com/market/2012110122940.html [EB/OL].
    [8]张春平.粗糙度对微细通道内流动与换热特性影响的实验研究与理论分析[D].北京:中国科学院工程热物理研究所博士学位论文,2007.
    [9]山仑,黄占岐.节水农业[M].北京:清华大学出版社,2002.
    [10]杨世铭,陶文铨.传热学(第三版)[M].北京:高等教育出版社,1998.
    [11]过增元.国际传热研究前沿——微细尺度传热[J].力学进展,2000(30):1-6.
    [12] Tuckerman D B, Pease R F W. High performance heat sink for VLSI[J]. IEEE ElectronDevice Letters,1981,2(5):126~129.
    [13]邵宝东,孙兆伟.基于MEMS的微槽冷却系统在微纳卫星热控中的应用[J].上海航天,2006(4):34~38.
    [14]云和明.细通道单相流动和传热特性的研究[D].济南:山东大学博士学位论文,2007.
    [15] Stemme E, Stemme G. A novel piezoelectric valve-less fluid pump[J]. Transducers,1993:110.
    [16] Olsson A, Enoksson P, Stemme G et al. Micromachined flat-walled valveless diffuserpums[J]. Journal of MEMS,1997,6(2):161~166.
    [17]丁英涛.表面效应对微管道中气体流动特性的影响[D].北京:清华大学博士学位论文,2003.
    [18]林炳承,秦建华.微流控芯片实验室[M].北京:科学出版社,2008.
    [19]曹军.电驱动微流控芯片中传输现象的若干关键问题研究[D].上海:上海交通大学博士学位论文,2009.
    [20] Prasher R S, Chang J Y, Saucius I, et al. Nano and Micro technology-based next-generationpackage-level cooling solutions[J]. Intel Technology Journal,2005,9(4):285~296.
    [21]冯焱颍,周兆英,叶雄英等.微流体驱动与控制研究进展[J].力学进展,2002,32(1):1~16.
    [22] Koo J, Kleinstreuer C. Analysis of surface roughness effects on heat transfer inmicro-conduits[J]. International Journal of Heat and Mass Transfer,2005,48(13):2625~2634.
    [23]郭丽祥.双电层影响下的微通道分层流动及其稳定性研究[D].天津:天津大学博士学位论文,2010.
    [24] Liu J.T., Peng X.F., Yan W.M. Numerical study of fluid flow and heat transfer inmicrochannel cooling passages[J]. International Journal of Heat and Mass Transfer.2007(50):1855~1864.
    [25]陆向迅,徐斌,吴建等.矩形微通道内液体流动与传热的数值模拟研究[J].节能技术,2008,26(2):103~106.
    [26]陶然,权晓波,徐建中.微尺度流动研究中的几个问题[J].工程热物理学报,2001,22(5):575~577.
    [27] Lancet R. The effect of surface roughness on the convection heat-transfer coefficient forfully developed turbulent flow in dusts with uniform heat flux[J]. Journal of Heat Transfer,1959(1):168~174.
    [28] Mehendal S S, Shah R K. Fluid flow and heat transfer at micro and meso-scales withapplication to heat exchanger design[J]. Applied Mechanics Reviews,2000,53(7):175-193.
    [29] Acosta R, Muller R, Tobias C. Transport process in narrow(capillary) channels[J]. AIChEJournal,1985,31(3):473~482.
    [30] Pfalher J, Harley J, Bau H H, et al. Liquid and gas transport in small channels[C].Proceedings of ASME DSC,1990:149~157.
    [31] Celata G P, Cumo M, Zummo G. Thermal-hydraulic characteristics of single-phase flow incapillary pipes[J]. Experimental thermal and fluid science,2004,28(2):87~95.
    [32] Peng X F, Peterson G P. Convective heat transfer and flow friction for water flow inmicrochannel structures[J]. International Journal of heat and mass transfer,1996,39(12):2599~2608.
    [33] Xu B, Ooti K T, Wong N T. Experimental investigation of flow friction for liquid flow inmicrochannels[J]. International communications in heat and mass transfer,2000,27(8):1165~1176.
    [34] Wu H Y, Cheng P. Friction factors in smooth trapezoidal silicon microchannels with differentaspect ratios[J]. International Journal of heat and mass transfer,2003,46(14):2519~2525.
    [35] Qu W, Mala G M, Li D. Pressure-driven water flows in trapezoidal silicon microchannels[J].International Journal of heat and mass transfer,2000,43(3):353~364.
    [36] Baviere R, Favre-Marinet M, Person S L. Bias effects on heat transfer measurements inmicrochannel flows[J]. International Journal of heat and mass transfer,2006,49(9):3325~3337.
    [37] Wu P Y, Little W A. Measurement of friction factors for the flow of gases in very finechannels used for microminiature Joule-Thomson refrigerators[J].Cryogenics,1983,23(5):273~277.
    [38]彭晓峰,王补宣.液体内部汽化的汽化空间与拟沸腾[R].中国科学基金,1994(1):7~12.
    [39]王补宣,彭晓峰,胡杭英. V形微槽内沸腾液体的流动阻力特性[J].工程热物理学报,1998,19(3):345~349.
    [40]朱恂,辛明道.滑移流区平行平板微通道内单侧加热流动与换热[J].大连理工大学学报,2001,41(1):84~87.
    [41]云和明,程林,王立秋等.光滑矩形微通道液体单相流动和传热的数值研究[J].工程热物理学报,2007,28(2):33~36.
    [42] Xu J L, Gan Y H, Zhang D C, et al. Microscale heat transfer enhancement using thermalboundary layer redeveloping concept[J]. International Journal of Heat and Mass Transfer,2005,48(9):1662~1674.
    [43]李卓,唐桂华,陶文铨.微通道中极性流体流动特性的研究[J].西安交通大学学报,2007,41(3):274~278.
    [44]吴信宇,吴慧英,屈健等.纳米流体在芯片微通道中的流动与换热特性[J].化工学报,2008,59(9):2181~2187.
    [45]魏珍,吴慧英,吴信宇.水/乙醇混合工质在硅基微通道中的流动与换热[J].化工学报,2008,59(11):2706~2712.
    [46]屈健,吴慧英,郑平.硅基微型振荡热管的流动可视化实验研究[J].中国科学:技术科学,2010,40(5):575~581.
    [47]国家自然科学基金资助项目优秀成果选编(五)[EB/OL]. http://www.nsfc.gov.cn/
    [48]龚磊.微流控系统流动-电场-离子运动多物理场耦合现象研究[D].武汉:华中科技大学博士学位论文,2008.
    [49]陶然,权晓波,徐建中.微尺度流动研究中的几个问题[J].工程热物理学报,2001,22(5):575~577.
    [50] Delgado A V, Caballero F G, Hunter R J. Measurement and interpretation of electrokineticphenomena [J]. Journal of Colloid and Interface Science,2007,309(2):194~224.
    [51]张鹏.微流控芯片中多物理场耦合问题的数值模拟研究[D].长春:吉林大学博士学位论文,2006.
    [52] Burgreen D, Nakache F. Electrokinetic flow in ultrafine capillary slits [J]. Journal of PhysicalChemistry,1964,68(5):1084~1091.
    [53] Rice C L, Whitehead R. Electrokinetic flow in a narrow cylindrical capillary [J]. Journal ofPhysical Chemistry,1965,69(11):4017~4023.
    [54] Mala G M, Li D, Dale J D. Heat transfer and fluid flow in microchannel[J]. InternationalJournal of Heat and Mass Transfer,1997,40(13):3079~3088.
    [55] Mala G M, Li D. Flow characteristics of water through a microchannel between two parallelplates with electrokinetic effects[J]. International Journal of Heat and Fluid Flow,1997,18(5):489~496.
    [56] Li D. Electro-viscous effects on pressure-driven liquid flow in microchannels[J]. Colloidsand Surfaces A: Physicochemical and Engineering Aspecs,2001(195):35~57.
    [57] Claudio L A. Theoretical modeling of electrokinetic flow in microchannel networks[J].Colloids and Surfaces A,2007(301):271~280.
    [58] Nadapana V, Sirshendu D. Electroviscous effects in purely pressure driven flow andstationary plane analysis in electroosmotic flow of power-law fluids in a slit microchannel [J].International Journal of Engineering Science,2010(48):1641~1658.
    [59] Park H, Choa S H. Measurement of liquid flow rate by self-generated electrokinetic potentialon the microchannel surface of a solid[J]. Sensors and Actuators,2014(208):88~94.
    [60]龚磊,吴健康.微通道液体流动双电层阻力效应[J].应用数学和力学,2006,27(10):1219~1225.
    [61]龚磊,吴健康,王蕾,等.微通道周期流动电位势及电粘性效应[J].应用数学和力学,2008,29(6):649~656.
    [62]张鹏,左春柽,周德义.矩形微流道内流体电动效应研究[J].光学精密工程,2007,15(4):522~528.
    [63] You X Y, Guo L X. Analysis of EDL effects on the flow and flow stability inmicrochannels[J]. Journal of Hydrodynamics,2010,22(5):725~730.
    [64] Bocquet L, Barrat J L. Flow boundary conditions from nano-to micro-scales[J]. Soft Matter,2007(3):685~693.
    [65]吴承伟,马国军,周平.流体流动的边界滑移问题研究进展[J].力学进展,2008,38(3):265~282.
    [66] Debye P, Cleland R L. Flow of liquid hydrocarbons in porous vycor[J]. Journal of AppliedPhysics,1959,30(7):843~849.
    [67] Churaev N V, Sobolev V D, Somov A N. Slippage of liquids over lyophobic solid surfaces[J].Journal of Colloid and Interface Science,1984(97):574~581.
    [68]王新亮,狄勤丰,张任良,等.超疏水表面滑移理论及其减阻应用研究进展[J].力学进展,2010,40(3):241~249.
    [69] Gyoko N, Cheng P. Effects of interface wettability on microscale flow by moleculardynamics simulation [J]. International Journal of Heat and Mass Transfer,2004,47:501~513.
    [70] Joly L, Ybert C, Trizac E, et al. Liquid friction on charged surfaces: From hydrodynamicslippage to electrokinetics [J]. Journal of Chemical Physics,2006,125(20):204716.
    [71]周剑锋,顾伯勤,邵春雷.微管道中压力驱动液体流动的边界速度滑移[J].科学通报,2010,55(30):2972~2979.
    [72] Hsieh S S, Lin C Y. Convective heat transfer in liquid microchannels with hydrophobic andhydrophilic surfaces[J]. International Journal of Heat and Mass Transfer,2009(52):260~270.
    [73]霍素斌,于志家,李艳峰,等.超疏水表面微通道内水的流动特性[J].化工学报,2007,58(11):2721~2726.
    [74]宋善鹏,于志家,刘兴华,等.超疏水表面微通道内水的传热特性[J].化工学报,2008,59(10):2465~2469.
    [75] Minakov A, Rudyak V, Dekterev A, et al. Investigation of slip boundary conditions in theT-shaped microchannel[J]. International Journal of Heat and Fluid Flow,2013(43):161~169.
    [76] Yan J, Kun Y, Chung J N. Numerical simulation of wall roughness on gaseous flow and heattransfer in a microchannel[J]. International Journal of Heat and Mass Transfer,2006,49(4):1329~1339.
    [77] Kandlikar S G, Joshi S, Tian S. Effect of channel roughness on heat transfer and fluid flowcharacteristics at low Reynolds numbers in small diameter tubes[C]. Proceedings of NHTC_0135th National Heat Transfer Conference, Anaheim, CA,6(2001):1~10.
    [78] Mala G. M., Li D. Flow characteristics of water in microtubes[J]. International Journal ofHeat and Mass Transfer,1999,20(4):142-148.
    [79] Qu W L, Mala G M, Li D. Heat transfer for water flow in trapezoidal siliconmicrochannels[J]. International Journal of Heat and Mass Transfer,2000,43(21):3925~3936.
    [80] Wu H Y, Cheng P. An experimental study of convective heat transfer in silicon microchannelswith different surface conditions[J]. International Journal of Heat and Mass Transfer,2003,46(14):2547~2556.
    [81] Wang X Q, Yap C, Mujumdar AS. Effects of two-dimensional roughness in flow inmicrochannels[J]. Journal of Electronic Packaging,2005(127):357~361.
    [82] Qiao R. Effects of molecular level surface roughness on electroosmotic flow[J]. Microfluid&Nanofluid.2007,3(2):33~38.
    [83] Dharaiya V V, Kandlikar S G. A numerical study on the effects of2d structured sinusoidalelements on fluid flow and heat transfer at microscale[J]. International Journal of Heat andMass Transfer,2013,57(1):190~201.
    [84]云和明,郭桄宇,刘智.平板微通道内流动传热的粗糙元间距效应[J].机械设计与制造,2013(5):117~119.
    [85]尤学一,李胜华,肖厚蓬.微流道粗糙壁面对流动阻力和控制的影响[J].化学工程.2008,36(8):25~27.
    [86]殷欣,何雅玲,陶文铨,等.粗糙微通道内液体流动的多尺度耦合模拟[J].工程热物理学报,2011,32(7):1095~1098.
    [87]邹江,彭晓峰,颜维谋.壁面粗糙度对微通道流动特性的影响[J].化工学报.2008,59(1):25~31.
    [88] Zhao Y C, Su Y H, Chen G W, et al. Effect of surface properties on the flow characteristicsand mass transfer performance in microchannels[J]. Chemical Engineering Science.2010,65(5):1563~1570.
    [89] Xing X Q, Butler D L, Yang C. A lattice Boltzmann base single-phase method for modelingsurface tension and wetting[J]. Computational Materials Science.2007,39(2):282~290.
    [90] Chaudhury M K, Whitesides G M. How to make water run uphill[J]. Science.1992,256(5063):1539~1541.
    [91] Nagayama G, Cheng P. Effects of interface wettability on microscale flow by moleculardynamics simulation[J].International Journal of Heat and Mass Transfer.2004,47(3):501~513.
    [92] Glockner P S, Naterer G F. Surface tension and frictional resistance of thermocapillarypumping in a closed microchannel[J].International Journal of Heat and Mass Transfer.2006,49(23):4424~4436.
    [93] Sedat T. The electric double layer effect on the microchannel flow stability and heattransfer[J]. Superlattices and Microstructures,2004(35):513–529.
    [94] Judy J, Mayes D, Webb B D.Characterization of frictional pressure drop for liquid flowsthrough microchannels[J]. International Journal of Heat and Mass Transfer.2002,45(17):3477~3489.
    [95] Ngoma G. D., Erchiqui F. Heat flux and slip effects on liquid flow in a microchannel[J].International Journal of Thermal Sciences,2007(46):1076~1083.
    [96] Chang C C, Yang R J. Electrokinetic mixing in microfluidic systems[J]. Microfluid andNanofluid,2007(3):501~525.
    [97]王福军.计算流体动力学分析—CFD软件原理与应用[M].北京:清华大学出版社,2007.
    [98]张凯,王瑞金,王刚. Fluent技术基础与应用实例[M].北京:清华大学出版社,2010.
    [99]程煊.表面物理化学[M].北京:高等教育出版社,1995.
    [100] Ren C L, Li D Q. Improved understanding of the effect of electrical double layer onpressure-driven flow in microchannels[J]. Analytica chimica Acta,2005(531):15~23.
    [101] Shin S, Kang I, Cho Y K. A new method to measure zeta potentials of microfabricatedchannels by applying a time-periodic electric fiels in a T-channel[J]. Colloids and Surfaces A,2007,294(1-3):228~235.
    [102] Venditti R, Xuan X, Li D. Experimental characterization of the temperature dependence ofzeta potential and its effect on electroosmotic flow velocity in microchannels[J]. Microfluidicsand Nanofluidics,2006,2(6):493~499.
    [103] Arulanandam S, Li D. Determining Zeta Potential and Surface Conductance by Monitoringthe Current in Electro-osmotic Flow[J]. Journal of Colloid and Interface Science,2000,225(2):421~428.
    [104] Usui S. Electrical double layer interaction between oppositely charged dissimilar oxidesurfaces with charge regulation and Stern-Grahame layers[J]. Journal of Colloid and InterfaceScience,2008,320:353~359.
    [105] Honig B, Nicholls A. Classical electrostatics in biology and chemistry[J]. Science,1995,5214(268):1144~1149.
    [106] Ng E Y K, Tan S T. Study of EDL effect on3D developing flow in microchannel withPoisson-Boltzmann and Nernst-Planck models[J]. International Journal for numerical methodsin engineering,2007,71(7):818~836.
    [107] Yang C, Li D, Masliyah J H. Modeling forced liquid convection in rectangularmicrochannels with electrokinetic effects[J]. International Journal of Heat and Mass Transfer,1998,41:4229~4249.
    [108] Liaw B W, Char M I. Thermal characteristics of electroosmotic flow in a wavy-wallmicrotube[J]. International Communications in Heat and Mass Transfer,2011,38(2):174~178.
    [109]张鹏,左春柽,周德义.矩形微流道内电渗流影响因素的数值模拟[J].机械工程学报,2007,43(3):37~41.
    [110] Ermakov S V, Jacobson S C, Ramsey J M. Computer simulations of electrokinetic transportin microfabricated channel structures[J]. Analytical Chemistry,1998,70(21):4494~4504.
    [111]于冰,任玉敏,丛海林,等.微流控芯片电泳的研究进展[J].分析测试学报,2011,30(9):1067~1073.
    [112] Sun X, Peeni B A, Yang W,et al. Rapid prototyping of poly (methyl methacrylate)microfluidic systems using solvent imprinting and bonding[J]. Journal of Chromatography A,2007,1162:162~166.
    [113]陈宗淇编.胶体与界面化学[M].北京:高等教育出版社,2001.
    [114] Ren C L, Li D. Electroviscous effects on pressure-driven flow of dilute electrolyte solutionsin small microchannels[J]. Journal of Colloid and Interface,2001,274:319~330.
    [115]杨大勇.微流控芯片中电渗流输运特性研究[D].南昌:南昌大学博士学位论文,2009.
    [116] Liu S, Dasgupta P K. Electroosmotically pumped capillary flow-injection analysis[J].Analytica Chimica Acta,1993,283(22):739~745.
    [117] Nadapana V, Sirshendu D. Electroviscous effects in purely pressure driven flow andstationary plane analysis in electroosmotic flow of power-law fluids in a slit microchannes[J].International Journal of Engineering Science,2010,48:1641~1658.
    [118]张靖周编著.高等传热学[M].北京:科学出版社,2009.
    [119] Ren L, Qu W, Li D. Interfacial electrokinetic effects on liquid flow in microchannels[J].International Journal of Heat and Mass Transfer,2001,44:3125~3134.
    [120] Escandon J P, Bautista O, Mendez F, et al. Theoretical conjugate heat transfer analysis in aparallel flat plate microchannel under electro-osmotic and pressure forces with aPhan-Thien-Tanner fluid[J]. International Journal of Thermal Sciences,2011,50:1022~1030.
    [121]吴承伟,马国军.关于流体流动的边界滑移[J].中国科学G辑,2004,34(6):681~690.
    [122]赵士林.超疏水表面及其微通道滑移流动的研究[D].大连:大连理工大学硕士学位论文,2006.
    [123] Choi C H, Westin K J, Breuer K S. To slip or not to slip-water flows in hydrophilic andhydrophobic microchannels[J]. ASME, Electronic and Photonic Packaging,EPP,2002,2:557~564.
    [124] Tretheway D C, Meinhart C D. Apparent fluid slip at hydrophobic microchannels walls[J].Physics of Fluids,2002,14(3):L9~12.
    [125] Bonaccurso E, Kappl M, Butt H J. Hydrodynamic force mensurements:boundary slip ofhydrophilic surfaces and electrokinetic effects.[J]. Physical Review Letters,2002,88:076103.
    [126] Choi C H, Westin K J, Breuer K S, et al. Apparent slip flow in hydrophilic and hydrophobicmicrochannels[J]. Physics of Fluids,2003,15(10):2897~2902.
    [127] Schmatko T, Hervet H, Leger L. Friction and slip at simple fluid-solid interface:the role ofthe molecular shape and the solid-liquid interaction[J]. Physical ReviewLetters,2005,94(24):1~4.
    [128] Zhao S L, Liu X H, Shen S Q. The new progress on the study of liquid slip flow[C].7thInternational Symposium on Heat Transfer,2008.
    [129] Li D, Di Q F, Li J Y. Large slip length over a nanopatterned surface[J]. Chinese PhysicsLetters,2007,24(4):1021~1024.
    [130]曹炳阳,陈民,过增元.纳米通道滑移流动的分子动力学模拟研究[J].工程热物理学报,2003,24:670~672.
    [131]马国军.微纳米间隙流动的边界滑移及其流体动力学研究[D].大连:大连理工大学博士学位论文,2007.
    [132] Young T. An essay on the cohesion of fluids[J]. Philosophical Transactions of the RoyalSociety of London,1805,95(1):65~87.
    [133] Zhao J P, Shi X H, Geng X G, et al. Liquid slip over superhydrophobic surface and itsapplication in drag reduction[J]. Journal of Ship Mechanics,2009,13(2):325~330.
    [134] Yang J, Kwok D Y. Analytical treatment of electrokinetic microfluidics in hydrophobicmicrochannels[J]. Analytica Chimica Acta,2004,507(1):39~53.
    [135]王馨,张向军,孟永钢,等.黏度对流固界面滑移影响的试验研究[J].摩擦学学报,2009,29(3):200~204.
    [136]温诗铸,黄平,刘莹,等.界面科学与技术[M].北京:清华大学出版社,2011.
    [137] Craig V S, Neto C, Williams D R. Shear-dependent boundary slip in an aqueous Newtonianliquid[J]. Physical Review Letters,2001,87:054504.
    [138] Zhu Y X, Cranick S. Rate-dependent slip of Newtonian liquid at smooth surfaces[J].Physical Review Letters,2001,87:096105.
    [139]王慧,胡元中,邹鲲,等.纳米摩擦学的分子动力学模拟研究[J].中国科学,A辑,2001,31(3):261~266.
    [140] Sanchez R J, Archer L A. Interfacial slip violations in polymer solutions: Role of microscalesurface roughness[J]. Langmuir,2003,19(8):3304~3312.
    [141] Park H M, Kim T W. simultaneous estimation of zeta potential and slip coefficient inhydrophobic microchannels[J]. Analytica Chimica Acta,2007,593:171~177.
    [142]赵士林,刘晓华.超疏水表面滑移流动的模拟研究[J].热科学与技术,2010,9(1):6~10.
    [143] Thompson P A, Troian S M. A general boundary condition for liquid flow at solidsurfaces[J]. Nature,1997,389:360~362.
    [144] Ngoma G D, Erchiqui F. Heat flux and slip effects on liquid flow in a microchannel[J].International Journal of Thermal Sciences,2007,46:1076~1083.
    [145] Yang C, Li D. Electrokinetic effects on pressure-driven liquid flows in rectangularmicrochannels[J]. Journal of Colloid Interface Science,1997,194(1):95~107.
    [146] Jain A, Jensen M K. Analytical modeling of eletrokinetic effects on flow and heat transfer inmicrochannels[J]. International Journal of Heat and Mass Transfer,2007,50:5161~5167.
    [147] Roy P, Anand N K, Banerjee D. Liquid slip and heat transfer in rotating rectangularmicrochannels[J]. International Journal of Heat and Mass Transfer,2013,62:184~199.
    [148] You X, Zheng J, Jing Q. Effects of boundary slip and apparent viscosity on the stability ofmicrochannel flow[J]. Forsch Ingenieurwes,2007,71:99~106.
    [149] Languri E M, Hooman K. Slip flow forced convection in a microchannel with semi-circularcross-section[J]. International Communications in Heat and Mass Transfer,2011,38(2):139~143.
    [150] Jamaati J, Niazmand H, Renksizbulut M. Pressure-driven electrokinetic slip-flow in planarmicrochannels[J]. International Journal of Thermal Sciences,2010,49:1165~1174.
    [151]罗根祥,金军,王好平.平板型高电位胶粒双电层相互作用[J].物理化学学报,2001,17(6):484~487.
    [152] Chen X Y, Toh K C, Chai J C, et al.Developing pressure-driven liquid flow in microchannelin microchannels under the electrokinetic effects[J].International Journal of EngineeringScience,2004,42:609~622.
    [153] Cetin B, Travis B E, Li D.Analysis of the electro-viscous effects on pressure-driven liquidflow in a two-section hegerogeneous microchannel[J]. Electrochimica Acta,2008,54:660~664.
    [154]郭丽祥,尤学一.平行平板微通道流场在双电层和边界滑移条件下的解析解[J].纳米技术与精密工程,2010,8(5):470~474.
    [155] Zhao C, Yang C.On the competition between streaming potential effect and hydrodynamicslip effect in pressure-driven microchannel flows[J].Colloids and Surfaces A,2011,386:191~194.
    [156] Mohammed H A, Gunnasegaran P, Shuaib N. H. Heat transfer in rectangular microchannelsheat sink using nanofluids[J]. International Communications in Heat and Mass Transfer,2010,37:1496~1503.
    [157]林晓梅,张铭. PDMS微流控芯片加工技术研究[J].长春工业大学学报(自然科学版),2013,34(2):172~178.
    [158]张高朋,田桂中,曹伟龙.微流体系统中微通道制作工艺的研究进展[J].微纳电子技术,2013,50(8):512~517,527.
    [159] Goldenberg B G, Goryachkovskaya T N, Eliseev V S, et al. Fabrication of LiGA masks formicrofluidic analytical systems[J]. Journal of Surface Investigation-X-ray Synchrotron andNeutron Techniques,2008,2(4):637~640.
    [160]叶梅,叶虎年.金属微流控芯片的微区电化学加工[J].实验室研究与探索,2008,27(10):6~8.
    [161]杨凯钧,左春柽,丁发喜,等.微通道散热器长直微通道的新加工工艺研究[J].吉林化工学院学报,2011,28(9):61~64.
    [162] Andrea L, Hannes S, Bjoern C F M. Analysis of the topography of microchannels withdifferent sizes[J]. Applied Thermal Engineering,2011,31:619~626.
    [163]申雪飞,陈涛.CO2激光直写PMMA微通道工艺改进的实验研究[J].中国激光,2011,38(6):1~5.
    [164]黄道君,尤学一.聚合物PDMS片表面特性的AFM和XPS初步研究[J].现代仪器,2007,1:23~25.
    [165] Tang G H, Lu Y B, Zhang S X, et al. Experimental investigation of non-Newtonian liquidflow in microchannels[J]. Journal of Non-Newtonian Fluid Mechanics,2012,173:21~29.
    [166] Croce. G.., Agaro P. D. Numerical simulation of roughness effect on microchannel heattransfer and pressure drop in laminar flow[J]. Journal of Physics D: Applying Physics.2005,38(10):1518-1530.
    [167] Chen Y P, Fu P P, Zhang C B, et al. Numerical simulation of laminar heat transfer inmicrochannels with rough surfaces characterized by fractal Cantor structures[J].InternationalJournal of Heat and Fluid Flow,2010,31:622~629.
    [168] Liaw B W, Char M. Thermal characteristics of electroosmotic flow in a wavy-wallmicrotube[J].International Communications in Heat and Mass Transfer,2011,38:174~178.
    [169] Rawool A. S., Mitra S.K., Kandlikar S.G. Numerical simulation of flow throughmicrochannels with designed roughness[J]. Microfluid&Nanofluid,2006,2(3):215-221.
    [170] Gamrat G, Marinet M, Person S. Modelling of roughness effects on heat transfer inthermally fully-developed laminar flows through microchannels[J].International Journal ofThermal Sciences,2009,48(12):2203~2214.
    [171] Natrajan V K, Christensen K T. The impact of surface roughness on flow through arectangular microchannel from the laminar to turbulent regimes[J].Microfluid and Nanofluid,2010,9:95~121.
    [172]闻劭意,彭晓峰,吴海玲,等.粗糙表面不同粗糙元间局部流动与换热特性[J].化工学报.2005,56(3):408~411.
    [173]叶仪,殷晨波,贾文华,等. Gauss型粗糙表面对微通道流动与换热的影响[J].农业机械学报.2013,44(12):294~300.
    [174]云和明,陈宝明,程林.粗糙平板微通道流动和传热的数值模拟[J].工程热物理学报.2009,30(11):1939~1941.
    [175]王樱,刁彦华,赵耀华.微通道内流体流动的阻力特性[J].工程热物理学报.2010,31(6):998~1000.
    [176]张程宾,陈永平,施明恒,等.表面粗糙度的分形特征及其对微通道内层流流动的影响[J].物理学报.2009,58(10):7050~7056.
    [177]产品几何技术规范表面结构轮廓法表面结构的定义及参数[S]. GB/T3505-2009.
    [178] Mandelbrot B B.The fractal geometry of nature[M].W.H.Freeman, New York,1982.
    [179] Hu Y, Werner C, Li D. Influence of the three-dimensional heterogeneous roughness onelectrokinetic transport in microchannels[J]. Journal of Colloid and Interface Science,2004,280:527~536.
    [180] Croce G, D’agaro P, Nonino C.Three-dimensional roughness effect on microchannel heattransfer and pressure drop [J].International Journal of Heat and Mass Transfer,2007,50:5249~5259.
    [181] Mala G M, Li D. Flow characteristic of water in microtubes[J]. International Journal ofHeat and Fluid Flow,1999,20(2):142~148.
    [182] Merkle C L, Kubota T, Ko D R S. An analytic study of effects of surface roughness onboundary layer transition[R]. Air force office of scientific research space and missile systemsorganization,1974.
    [183] Van Dyke M. Perturbation method in fluid mechanics[M]. Academic Press, New York,1964.
    [184]刘东.高热流密度微结构散热器换热特性的研究[D].合肥:中国科学技术大学博士学位论文,2011.
    [185]陈建华,张会强,张贵田.含人为粗糙元微小冷却通道内的流动与换热[J].清华大学学报(自然科学版),2008,48(5):900~903.
    [186]董涛.微管道换热器内微流体的流动与换热[D].南京:南京理工大学博士学位论文,2003.
    [187]刘青.微通道热沉内流体流动与传热的数值模拟[D].北京:北京工业大学硕士学位论文,2005.
    [188]余伟竟,刘莹,杨大勇.微流道壁面粗糙度影响的电渗流数值模拟[J].机械设计与研究,2009,25(6):47~53.
    [189] Park H M, Lee H D. Effects of roughness and velocity slip on streaming potential ofmicrochannels[J]. International Journal of Heat and Mass Transfer,2012,55:3295~3306.
    [190]谢华清,奚同庚,王锦昌.纳米流体介质导热机理初探[J].物理学报,2003,52(6):1444~1449.
    [191] Shamshiri M, Khazaeli R, Ashrafizaadeh M, et al. Electroviscous and thermal effects onnon-Newtonian liquid flows through microchannels[J].Journal of Non-Newtonian FluidMechanics,2012,173-174:1~12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700