卫星编队飞行相对姿态动力学与控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要对编队飞行中涉及到相对姿态的动力学与控制问题作了探索和研究,旨在为卫星编队飞行的设计和应用提供有益的理论基础。
     本文首先在编队构形的研究基础上,给出了伴随卫星绕飞(伴飞)轨道设计的一些参考准则。这些参考准则仅适用于主星近圆轨道、不考虑摄动影响等因素的理想编队,没有涉及主星大偏心率椭圆轨道和非理想情况。
     对于伴随卫星跟踪观测目标卫星,如果任务中没有其它条件的限制,伴随卫星的期望姿态是不确定的。因此需要增加一些约束条件来完成期望姿态的规划设计。本文采取了根据轨道信息确定期望姿态和根据相对位置信息确定期望姿态两种方式,并分别增加了角速度约束和四元数约束。还在太阳帆板法线方向尽量对准太阳的限制下,研究姿态控制问题。这可以扩展到编队中一颗卫星同时和两颗卫星通讯的应用。采用基于四元数反馈的控制律,可以实现编队中相对姿态的长时间、大角度的姿态跟踪机动。对该控制律,利用Lyapunov稳定性定理证明了闭环系统的渐近稳定性。
     对于编队飞行相对姿态一致保持的情况,四元数反馈控制律依然可用。如果目标卫星、追踪卫星的姿态角、姿态角速度相差足够小时,可以近似的认为姿态相对运动学方程为互相解耦的关系式。可在此前提下进行控制律设计,例如利用线性二次型的设计方法。
     追踪卫星观测失效的目标卫星特定面,追踪卫星必须同时进行相对轨道和相对姿态的跟踪控制。本文给出了编队飞行中相对位置和相对姿态的动力学方程,研究了一种可能的相对位置和相对姿态的跟踪控制方法。控制律中进一步考虑目标卫星转动惯量的不确定性,通过算法逼近了转动惯量比值的真实值。本文给出一种三角形编队队形保持的策略。通过相对轨道和姿态的联合控制,保证了卫星之间距离保持不变。由于三角形结构的特点,从而维持了三角形编队队形。但此方式不保证编队队形整体方位的不改变。
     最后初步讨论了平面情况下太阳帆航天器的姿态被动稳定。设计不对称的太阳帆结构,仿真验证了此结构可以用于螺线轨道的太阳帆姿态被动稳定。
This thesis mainly studies on the dynamics and control issues of relative attitude in formation flying, aiming to provide some useful theoretical reference for the practical applications of satellite formation flying.
     This thesis firstly presents some orbit design reference criteria for the accompanying satellite in formation flying, which is based on the research of formation relative configuration. These guidelines are only applied to the ideal formation, in witch the satellites’s orbits are near circular and perturbation effects are not considered. The eccentric elliptical orbits and non-ideal situation is not involved.
     For the situation that accompanying satellite tracks and observers target satellite, the desired attitude of the accompanying satellite is uncertain, if there are no other tasks restrictive conditions. Therefore, more restrictive conditions are needed to plan and design desired attitude. The thesis determines the desired attitude by two ways. One is based on orbit informations and the other is based on relative orbit information. In these processes the constraint of angular velocity and the constraint of quaternion are added respectively. Forthermore, the thesis researches the attitude dynamics and control when the task requires that the solar panel face to the sun as much as possible. Similar research methods can be used in the formation application, which requires a satellite comunicate two satellite at the same time. Cotrol law based on quaternion is adopted to achieve long duration, large angle attitude tracking maneuver. Lyapunov stability theory was used to prove the asymptotic stability of the closed-loop control system.
     For the situation of relative attitude maintaining consistency in formation flying, the quaternion feedback control law is still available. If the differences of attitude angle and the angular velocity between the chase satellite and the target satellite are small enough, it can be thought approximately that the relative attitude kinematic equations are decoupling. The control law can be designed under the premise mentioned above, such as the use of linear-quadratic design method.
     To observe a specific surface of the target satellite, the chaser satellite must perform the attitude and orbit tracking control at the same time. The thesis developed relative orbit and relative attitude dynamics equations, and an effective control law. Further, considering the uncertainty of inertia, an adaptive control method is developed to obtain the correct inertial ratio.
     The thesis presents a strategy for triangular formation configuration. Relative orbit and attitude joint control ensures that the distance between the satellites would remain unchanged. Because of the characteristic of triangular structure, a triangular formation configuration is maintained. But this approach does not guarantee that the formation does not change the overall direction.
     Finally, the thesis holds a preliminary discussion on attitude passive stability of the solar sail spacecraft in the plane situation. The asymmetric structure of the solar sail is designed. Simulation proves that the structure can make the solar sail attitude to be passive stable on the spiral trajectories.
引文
[1]中国大百科全书总编委会《天文学》编辑委员会.中国大百科全书.天文学.北京:中国大百科全书出版社, 1980.
    [2]林来兴.现代小卫星及其关键技术.中国空间科学技术, 1995, 15(4): 37-43.
    [3]林来兴.现代小卫星和星座技术.现代小卫星星座及其关键技术文集.北京. 1998:1-8.
    [4]范剑峰,卫星星座述评,中国空间科学技术, 1986, (6): 22-30.
    [5]佘明生,戴超.卫星星座设计概述.中国空间科学技术, 1996,(06): 45-49.
    [6] Folta D C, Bordi F, Scolese C. Considerations on formation flying separation for Earth observing satellite missions. AAS 92-144: 803-822
    [7] Folta D C, Newman L K, David Q. Design and implementation of satellite formations and constellations. AAS 98-304: 57-70
    [8] Gramling C J, Lee T, David J, et al. Relative navigation for formation flying of spacecraft. AAS 97-627: 435-450
    [9] Meissinger H F, Collins J, Gurevich G, et al. Low-cost, minimum-size satellites for demonstration of formation flying modes at small, kilometer-size distances.SSC99-VI-3. 13th AIAA/USU Conference on Small Satellites, 1999: 1-15
    [10] Yuri Ulybyshev. Long-term formation keeping of satellite constellation using linear-quadratic controller. Journal of Guidance, Control, and Dynamics. 1998, 21(1): 109-115
    [11] Sell S W, Akin D L. Design of a low-cost attitude determination and control system for a free-flying telerobotic satellite servicer. Guidance and Control, Advances in the Astronautical Science, 1997, 94: 23-40
    [12]胡松杰,王歆,刘林.卫星星座与编队飞行问题综述,天文学进展, 2003, 21(03): 231-240.
    [13] Jozel C. van der Han(ed.). Mission design and implementation of satellite constellations. Proceedings of an International Workshop, held in Toulous, France, 1997. Kluwer Academic Publishers, 1998
    [14] ICO Global Communications. Aviation Week and Space Technology. 1999: 25-26
    [15] Ben Iannotta. Overcoming the‘Iridium effect’. Aerospace America, 2000: 32-35
    [16]杨维廉.圆轨道星座覆盖性能分析研究.现代小卫星星座及其关键技术文集. 1998
    [17]姜昌.由小卫星星座组成的区域性三维导航定位系统.现代小卫星星座及其关键技术文集. 1998.
    [18]王莉,区域导航卫星系统的星座设计与比较.飞行器测控学报, 1999, 18(4): 1-8.
    [19]白鹤峰,任萱.玫瑰星座的优化设计方法.宇航学报, 1999, 20(4): 77-82.
    [20]张洪华,李鸿铭,邹广瑞,等.圆轨道星座位置保持控制的仿真与研究.控制工程, 1999, 6: 1-7.
    [21]李鸿铭译(A. Gavin, Y. Johnston, Colin R. McInnes. AAS97-104).环状卫星星座的自主控制.控制工程, 1998, 6: 40-46.
    [22]严拱添译(J. Draim. Space Technology. Vol.16(1): 21-29).中高度椭圆轨道星座,控制工程, 1999, 5: 25-32.
    [23]李鸿铭译(Dan Smith. AIAA-96-1051-CP).由48颗卫星组成的“全球星”星座的操作新方法.控制工程, 1999, 2: 44-49.
    [24]白鹤峰,任萱,郗晓宁.近地轨道卫星星座设计时的轨道模型.国防科技大学学报, 1999, 21(2): 1-4.
    [25]向开恒,肖业伦.卫星星座的系统仿真研究.北京航空航天大学学报, 1999, 25(6): 629-633.
    [26]王晓海.蓬勃发展的现代小卫星.中国航天, 2002, 1: 9-14.
    [27]林来兴.微小卫星编队飞行组成虚拟卫星研究.微小卫星编队飞行及应用论文集.北京:国家高技术航天领域专家委员会微小卫星技术组, 2000: 1-35.
    [28]林来兴.小卫星编队飞行及其轨道构成.中国空间科学技术, 2001, (1):23-28.
    [29]张振民,林来兴.小卫星编队飞行动力学及其应用.航天控制, 2002, (3):44-50.
    [30]闻新,杨嘉伟.军用卫星的发展趋势分析.现代防御技术, 2002, 30(4):7-19.
    [31] Li K, Goldstein R M. Studies of multibaseline space-borne interferometric synthetic aperture radar. IEEE Transactions on Geoscience and Remote Sensing. 1990, 28(1): 88-97.
    [32] Moccia A, Vetrella S. A tethered interferometric synthetic aperture radar for a topographic mission. IEEE transactions on Geoscience and Remote Sensing. 1992, 30(1): 103-109.
    [33] Kong E, Sedwick r, Miller D. Exploiting micropropulsion and orbital dynamics for aperture synthesis using distributed satellite systems. AIAA Defense and Civil Space Programs Conference and Exhibit, Huntsville AL, Oct. 1998: AIAA 98-5289.
    [34] Steyskal H, Schindler J K, Franchi P, et al. Pattern synthesis for TechSat21– a distributed space-based radar system. Proceedings of the IEEE Aerospace Conference, Big Sky, USA, 2001: 725-732.
    [35] Decou A B. Orbital station-keeping for multiple spacecraft interferometry. Journal of the Astronautical Science. 1991, 39(3): 183-297.
    [36] Colavita M M, McGuire J P, Bartman R K, et al. Separated spacecraft interferometer concept for the new millennium program. Proceedings of SPIE, 1996, 2807: 51-58.
    [37] Robertson A, Inalhan G and How J P. Formation control strategies for a separated spacecraft interferometer. Proceedings of the 1999 American Control Conference, CA, June 1999: 4142-4147.
    [38]杨家墀.航天器轨道动力学与控制.北京:宇航出版社, 1995.
    [39]范剑峰.伴随轨道的简捷计算.宇航学报, 1996(2):87-93.
    [40]肖业伦,张晓敏.空间站伴随卫星的轨道控制技术研究.国家高技术(863)航天领域课题研究报告, 1998.
    [41] Spallicci A, et al. Microsatellites and space station for science and technology utilization. Acta Astronautica, 1997, 39(8): 605-616.
    [42]罗建军,袁建平.空间站伴随卫星的轨道及形成分析.中国空间科学技术, 1999(4): 22-26.
    [43]林来兴.微小卫星绕飞空间站的动力学和控制.航天控制, 1999, (3):26-33.
    [44] Wilde D., Kertein L. and Frumkin Y. et al. The Inspector Family. 49th International Astronautical Congress, IAF-98-T.3.03. Melbourne, Australia, 1998.
    [45] Kerstein L., Frumkin J. and Brocksmith D. et al. The X-Mir Inspector Mission. IAF-95-T.3.02, 46th Congress of the International Astronautical Federation, Oslo, Norway, 1995.
    [46] Fabrega J., Godet V., Perarnaud D. et al. ATV: Designing Avoinics for Rendezvous Safety. IAF-98-T.2.10. 49th International Astronautical Congress, Melbourne, Australia, 1998.
    [47] Heloret J. Y., and Amadieu P.. The European Automated Transfer Vehicle: An Overview. IAF-98-T1.08. 49th International Astronautical Congress, Melbourne, Australia, 1998.
    [48] Perroton G., Busson M.F. and Wagner D.. The Future of The European ATV. IAF-98-V.2.03. 49th International Astronautical Congress, Melbourne, Australia, 1998.
    [49] Cislaghi M., Dore B., Fehse W.. From ARP to ATV: Verification and Validation of Automated Rendezvous Function. IAF-98-T.2.02. 49th International Astronautical Congress, Melbourne, Australia, 1998.
    [50]冶元菲.椭圆轨道非合作目标伴飞模型与控制策略研究: [硕士学位论文] .北京:中国空间技术研究院北京控制工程研究所, 2004.
    [51] Hiroyuki Ogo. HTV(H-II Transfer Vehicle) operations systems concept. IAF-98-T-3.01. 49th International Astronautical Congress, Melbourne, Australia, 1998.
    [52] Isao kawano, Masaaki Mokuno, Mitsushige Oda, et al. First result of autonomous rendezvous docking technology experiment on NASDA’s EST-VII satellite. IAF-98-A.3.09. 49th International Astronautical Congress, Melbourne, Australia, 1998.
    [53] Isao kawano. Masaaki Mokuno. Autonomous rendezvous docking system of engineering test satellite VII. AAS 97-467: 751-765.
    [54]尹军用.基于Halo轨道的航天器编队飞行[硕士学位论文].北京:清华大学航天航空学院, 2006.
    [55]龚胜平,李俊峰,高云峰,宝音贺西.地日系统中拉格朗日点附近的编队队形重构.清华学报, 2007, 47(5):738-741.
    [56]龚胜平,李俊峰,宝音贺西,高云峰.拉格朗日点附近编队的离散控制方法.宇航学报, 2007, 28(1):77-81.
    [57] Gong Shengping, Baoyin Hexi, Li Junfeng. Solar sail formation flying around displaced solar orbits. Journal of Guidance, Control, and Dynamics. 2007, 30(4):1148-1152.
    [58] Gong Shengping, Li Junfeng, Baoyin Hexi. Formation Reconfiguration in Restricted Three Body Problem. Acta Mechanica Sinica., 2007, 23(3):321-328.
    [59] Gong Shengping, Baoyin Hexi, Li Junfeng. Formation Around Planetary Displaced Orbit. Applied mathematics and mechanics, 2007, 28(6):759-767.
    [60]龚胜平,李俊峰,宝音贺西,高云峰.太阳帆悬浮轨道附近的编队.工程力学, 2007, 24(6):165-168.
    [61] Vicram Kapila, Andrew G. Sparks, James M. Buffington and Qiguo Yuan. Spacecraft Formation flying: dynamics and control. Proceedings of American Control conference. San Diego. California. June,1999: 4137-4141.
    [62] Claudio Ariotti. X-MIR inspector mission. http://www.ik1sld.org/inspector.htm, June 24, 2003.
    [63] Trish Johnson, Leslie Allen. EO-1 baseline mission history. http://eo1.gsfc.nasa.gov/, June 25, 2003.
    [64] Folta D C, Newman L K, Gardner T.. Foundations of Formation Flying for Mission to Planet Earth and New Millennium. Proceedings of AIAA Guidance, Navigation, and Control Conference and Exhibit, CA, 1996: AIAA 96-3645.
    [65] Laura Rocchio. LandSat 7. http://landsat.gsfc.nasa.gov/, June 25, 2003
    [66] Nancy Leon. About new millennium program. http://nmp.nasa.gov/program/ program.html, June 25, 2003.
    [67] Michelle , Kristy Kawasaki. ORIGINS. http://origins.jpl.nasa.gov/, Jan. 14, 2003.
    [68] Lau K, Lichten S, Young L, et al. An innovative deep space application of GPS technology for formation flying spacecraft. AIAA Guidance, Navigation and Control Conference, San Diego, CA, July 1996: AIAA 96-3819.
    [69] Duren R L and Lay O P. The starlight formation-flying interferometer system and architecture. Proceedings of the IEEE Aerospace Conference, Big Sky, USA, 2002, (4): 1703-1719.
    [70] JPL. Terrestrial planet finder. http://planetquest.jpl.nasa.gov/TPF/tpf_index. html, Apr. 22, 2003.
    [71] Beichman C A, Woolf N J, Lindensmith C A. The terrestrial planet finder (TPF): A NASA origins program to search for habitable planets. Tech. Rep., JPL Publication 99-003, 1999: 1-11.
    [72] Gomez G, Lo M, Masdemont J, et al. Simulation of formation flight near Lagrange Points for the TPF mission. Advances in the Astronautical Sciences. 2002, (109): 61-75.
    [73] European Space Agency. Cluster. http://sci.esa.int/science-e/www/area/ index.cfm? fareaid = 8, June 29, 2003.
    [74] Roux, Alain. Cluster regroups for relaunch. Aerospace America. 1998, 36(8): 48-51.
    [75] Danzmann K. LISA mission overview. Advances in Space Research. 2000, 25: 1129-1136.
    [76] Sandi Beck. Laser interferometer space antenna. http://lisa.jpl.nasa.gov/, June 3, 2003.
    [77] JPL. Autonomous sciencecraft experiment. http://www-aig.jpl.nasa.gov/public/ planning/asc, Mar. 7, 2003
    [78] Martin M, Stallard M J. Distributed satellite missions and technologies– the TechSat21 program. Space Technology Conference and Exposition, Albuquerque, New Mexico, Sep. 1999: AIAA 99-4479.
    [79] Luu K., et al. University Nanosatellite Distributed Satellite Capabilities to Support TechSat 21. Proceedings of the 13th annual AIAA/USU Conference on Small Satellites, Logan, UT, 1999.
    [80] Luu K., et al. Microsatellite and Formation Flying Technologies on University Nanosatellites. Proceedings of the AIAA Space Technology Coiferenee and Exposition, Albuquerque, NM, 1999, AIAA 99-4535.
    [81]徐京.我国环境与灾害监测预报小卫星概况.卫星应用, 2002, (3): 25-33.
    [82]孟鑫,李俊峰,高云峰.卫星编队飞行相对轨道的摄动研究综述.宇航学报, 2004, 25(4):473-478.
    [83] Wang P K C, Hadaegh F Y. Minimum-fuel formation reconfiguration of Multiple free-flying spacecraft. The Journal of the Astronautical Sciences, 1999, 47: 77-102.
    [84] Wang P K C, Hadaegh F Y. Optimal formation-reconfiguration for multiple spacecraft. AIAA 98-4226: 686-696.
    [85] Yang G, Yang Q, Kapila V, et al. Fuel optimal maneuvers for multiple spacecraft formation reconfiguration using multi-agent optimization. Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, Florida USA, 2001: 1083-1088.
    [86] Nacozy P, Szebehely V. The Computation of Relative Motion with Increased Precision. Celestial Mechanics and Dynamical Astronomy, 1976, 13(4): 449-453.
    [87] Clohessy W H, Wiltshire R S. Terminal Guidance System for Satellite Rendezvous. Journal of the Aerospace Science, 1960, 27(5): 653-658, 674.
    [88]高云峰,宝音贺西,李俊峰.卫星编队飞行中C-W方程与轨道根数法的比较.应用数学和力学, 2003, 24(8): 799-804.
    [89]李俊峰,高云峰,宝音贺西,李响,王宗钢,王虎妹.卫星编队飞行动力学与控制研究.力学与实践, 2002, 24(2): 1-6.
    [90] Karlgaard C D, Lutze F H. Second-Order Relative Motion Equations. Journal of Guidance, Control, and Dynamics, 2003, 27(1): 499-501.
    [91] Melton R G. Time Explicit Representation of Relative Motion Between Elliptical Orbits. Journal of Guidance Control, and Dynamics, 2000, 23(4): 604-610.
    [92] Inalhan G, Tillerson M, How J P. Relative Dynamics and Control of Spacecraft Formations in Eccentric Orbits. Journal of Guidance Control, and Dynamics, 2002, 25(1): 48-59.
    [93] Sedwick R J, Miller D W, Kong E M C. Mitigation of Differential Perturbations in Clusters of Formation Flying Satellites. AAS/AIAA Space Flight Mechanics Meeting, American Astronautical Society, 1999, AAS 99-124.
    [94] Schweighart S A, Sedwick R J. High-Fidelity Linearized J2 Model for Satellite Formation Flight. Journal of Guidance, Control, and Dynamics, 2002, 25(6):1073-1080.
    [95]高云峰.卫星编队飞行相对轨道运动动力学研究[博士学位论文].北京:清华大学, 2004.
    [96]高云峰,宝音贺西,李俊峰.卫星编队飞行的动力学特性与相对轨道构形仿真.清华大学学报, 2002, 42(4): 458-461.
    [97] Baoyin H, Li J F, Gao Y F. Dynamical behaviors and relative trajectories of the spacecraft formation flying. Aerospace Science and Technology, 2002, 4(6): 295-301.
    [98]杨维廉.卫星相对运动的新解法.中国空间科学技术, 1999, 19(6): 20-26.
    [99]杨维廉.椭圆轨迹编队飞行轨道分析.中国空间科学技术, 2001, 21(5): 1-6.
    [100]张晓敏,肖业伦.编队飞行卫星群的轨道动力学特性与构型设计.宇航学报, 2001, 22(4): 7-12.
    [101]张晓敏.航天器相对轨道运动动力学与控制研究[博士学位论文].北京:北京航空航天大学, 2000.
    [102]肖业伦,张晓敏.小卫星编队飞行构型参数与设计. 2000年中国空间飞行器总体技术研讨会.江西九江, 2000.
    [103]王虎妹.卫星编队飞行的参照轨道要素方法及应用[博士学位论文].北京:清华大学, 2005.
    [104] Koon W.S., Marsden J.E., Masdemont J. and Murray R.M. J2 Dynamics and Formation Flight. Proceedings of AIAA Guidance, Navigation, and Control Conference. Montreal, Canada, August, AIAA 2001-4090.
    [105] Schaub, Hanspeter and Alfriend, Kyle T., J2 Invariant Reference Orbits for SpacecraftFormations. Celestial Mechanics and Dynamical Astronomy, 2001, 79(2): 77-95.
    [106]李俊峰,孟鑫,高云峰,李响. J2摄动对编队飞行卫星相对轨道构形的影响.清华大学学报(自然科学版), 2004, 44(2):224-227,251.
    [107]侯育卓,赵军.摄动对编队飞行星座相对构型的影响分析.飞行器测控学报, 2003, 22(3): 30-35.
    [108] Schaub H. Incorporating Secular Drifts into the Orbit Element Difference Description of Relative Orbits. American Astronautical Society. February 9-13, 2003, AAS 03-115
    [109]孟鑫.基于相对轨道要素的卫星编队飞行设计和摄动研究[博士学位论文].北京:清华大学, 2005.
    [110] Beard R, Stirling W, Frost R. A hierarchical coordination scheme for satellite formation initialization. AIAA Guidance, Navigation and Control Conference, Boston, MA, August, 1998. AIAA 98-4225:677-685.
    [111] Vadali S, Vaddi S. Orbit establishment for formation flying satellites. Advances in the Astronautical Sciences. AAS 00-111:181-194.
    [112] Beard R W, Lawton J, Hadaegh F Y. A coordination architecture for spacecraft formation control. IEEE Trans. on Control Systems Technology, 2001, 9(6): 777-790.
    [113] Lawton J and Beard R W. Elementary attitude formation maneuvers via behavior-based control. AIAA Guidance, Navigation and Control Conference, Denver, CO, August 2000. AIAA: 2000-4442.
    [114] Bailey C A, McLain T W, Beard R W. Fuel saving strategies for dual spacecraft interferometry missions. J. of the Astronatical Sciences, 2001, 49(3): 469-488.
    [115] Yeh H H, Sparks A. Geometry and control of satellite formations. Proceedings of the American Control Conference Chicago, Illinois, 2000: 384-388.
    [116] Sabol C, Burns R, and McLaughlin C A. Satellite formation flying design and evolution. Journal of Spacecraft and Rockets. 2001, 38(2): 270-278.
    [117] Schaub H, Alfriend K T. Impulsive spacecraft formation flying control to establish specific mean orbit elements. J. of Guidance, Control, and Dynamics. 2001, 24(4): 739-745.
    [118] Sedwick R. J., Miller D. W., Kong E. M. C.. Mitigation of differential perturbations in clusters of formation flying satellites. Advances in the Astronautical Sciences. AAS 99-124: 323-342.
    [119] Atkins E., Pennecot Y.. Autonomous satellite formation assembly and reconfiguration with gravity fields. 2002 IEEE, Paper No: 296, 2: 783-796.
    [120] Wang, P., Hadaegh, F. & Lau, K.. Synchronized formation rotation and attitude control of multiple free-?ying spacecraft, Journal of Guidance, Control and Dynamics 1999, 22(1): 28–35.
    [121] Pan, H. & Kapila, V., Adaptive nonlinear control for spacecraft formation ?ying withcoupled translational and attitude dynamics, Proceedings of the 40st IEEE Conference on Decision and Control, Orlando, FL, USA. 2001, vol.3:2057-2062
    [122] Kang, W. & Yeh, H.. Co-ordinated attitude control of multi-satellite systems. International Journal of Robust and Nonlinear Control, 2002, 12:185–205.
    [123] Mataric, M. Minimizing complexity in controlling a mobile robot population, in: 1992 IEEE, Int. Conf. on Robotics and Automation Proceedings, 1992, Vol. 1:830–835.
    [124] Balch, T. & Arkin, R.. Behavior-based formation control for multirobot teams, IEEE Transactions on Robotics and Automation, 1998, 14(6):926-939.
    [125] Mali, A. D.. On the behavior-based architectures of autonomous agency. IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews 32(3): 231-242.
    [126] Lewis, M. & Tan, K, High precision formation control of mobile robots using virtual structures, Autonomous Robots 4, 1997, 4(4):387-403.
    [127] Ren, W. & Beard, R.. Formation feedback control for multiple spacecraft via virtual structures, In: 2004 IEEE Proceedings of Control Theory Application, 2004, 151(3): 357-368.
    [128] Beard, R. & Hadaegh, F. Y.. Constellation templates: An approach to autonomous formation ?ight. In World Automation Congress, ISIAC, Anchorage, Alaska, 1998, 177.1-177.6.
    [129] Beard, R., Lawtond, J. & Hadaegh, F.. A coordination architecture for formation control, IEEE Transactions on Control Systems Technology, 2001, 9(6): 777–790.
    [130]韦娟,袁建平.编队飞行小卫星相对姿态控制研究.航天控制, 2002, (4): 16-20,32.
    [131]苏罗鹏,李俊峰,高云峰.卫星编队飞行相对姿态控制.清华学报(自然科学版), 2003, 43(5): 683-685,689.
    [132]苏罗鹏.卫星编队飞行相对姿态控制研究[硕士学位论文].北京:清华大学, 2002
    [133]肖业伦,陈万春.飞行器相对姿态运动的静力学、运动学和动力学方法.中国空间科学技术, 2003, (5): 10-15.
    [134]张玉锟.卫星编队飞行的动力学与控制技术研究.[博士学位论文].长沙:国防科技大学, 2002.
    [135]张连礼.编队航天器相对运动分析与控制[硕士学位论文].西安:西北工业大学航天学院, 2007.
    [136]李化义,张迎春,强文义,李葆华.编队InSAR相对姿态控制.宇航学报, 2007, 28(2): 338-343.
    [137]吴云华,曹喜滨,曾占魁,郑鹏飞.编队飞行卫星相对姿态变结构分布式协同控制.吉林大学学报(工学版), 2007, 37(6): 1465-1470.
    [138] McInnes C R. Solar Sail Mission Application for Non-Keplerian Orbits. Acta Astronautica, 1999, 45(4-9): 576-575.
    [139] McInnes C R. Solar Sailing: Technology, Dynamics and Mission Applications [M]. Springer Verlag, London, May 1999
    [140] Wie B. Solar sail attitude control and dynamics, part 1. Journal of Guidance, Control, and Dynamics, 2004, 27(4): 526-535.
    [141] Wie B. Solar sail attitude control and dynamics, part 2. Journal of Guidance, Control, and Dynamics, 2004, 27(4):536-544.
    [142] Diedrich B L. Attitude control and dynamics of solar sail. Master of Science Thesis, Washington, University of Washington, 2001.
    [143] Benjamin L D. Attitude Control and Dynamics of Solar Sails [D]. A thesis submitted in partial fulfillment of the requirements for the degree of. Master of Science in Aeronautics & Astronautics, University of Washington, 2001.
    [144]肖业伦.航天器飞行动力学原理.北京:宇航出版社, 1995.
    [145]章仁为.卫星轨道姿态动力学与控制.北京:航空航天大学出版社, 1998.
    [146] Kerstein.L, Wilde.D, et.al. Inspector, STAR symposium, HongKong, 11-13,Nov.1998,1-11
    [147]孟鑫,李俊峰,高云峰.一种便于摄动分析的编队飞行卫星相对运动的描述.应用数学与力学, 2005, 26(11):1328-1336
    [148] Guang Q. Xing, Shabbir A. Parvez. Implementation of autonomous GPS guidance and control for spacecraft formation flying. Proceedings of the American Control Conference, San Diego, California, June 1999, 4163-4167.
    [149] Matthew C. VanDyke. Decentralized Coordinated Attitude Control of a Formation of Spacecraft. the Virginia Polytechnic Institute and State University, 2004.
    [150] Hirohisa Kojima. Fly-around Motion control based on exact linearization with adaptive law. J. Guidance, control and dynamics. 2005, 28(1): 167-169.
    [151]崔海英.基于Lawden方程的卫星编队队形设计和控制研究[博士学位论文].北京:清华大学, 2005.
    [152] McInnes C R., Simmons J F L. Halo Orbits for Solar Sails I-Heliocentric Case. Journal of Spacecraft and Rockets, 1992, 29(4): 466-471.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700