空间碎片环境模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从人类发射第一颗人造地球卫星至今,空间技术取得了飞速发展和巨大成就,但与此同时也造成了近地空间范围内长期存留大量的空间碎片,并且这些数量日益增长的空间碎片已经影响到了人类正常的空间活动。论文针对空间碎片环境模型的建立与应用进行了系统的研究,主要研究成果及贡献有:
     1)在对历史航天发射活动总结的基础上,分析了空间碎片环境的演化过程以及目前的基本情况。利用编目空间物体数据资料统计分析了空间物体在轨道长半轴、偏心率与轨道倾角等方面的分布特征,结果表明,在大倾角、近圆轨道上运行的空间目标是空间物体的主体,并且在距离地面高度2000千米以下的LEO区域、半同步轨道以及同步轨道区域有峰值分布。
     2)建立了空间碎片环境模型的体系结构,包括碎片来源数学模型、目前碎片环境分析与评估、未来碎片环境预测以及空间碎片减缓措施与效果评估。
     3)对空间碎片各种来源进行了研究,并且针对空间碎片的不同来源,参考国内外研究成果,研究分析了碎片来源数学模型,包括爆炸与碰撞引发的解体碎裂模型、固体火箭发动机的喷射物模型、NaK合金冷却剂泄漏模型、Westford铜针簇碎片模型以及微粒撞击大型物体表面溅射模型。
     4)研究了小尺寸解体碎片的面质比分布,在理论分析的基础上,对NASA标准解体模型中的碎片面质比分布进行了改进,使改进后的解体碎片面质比分布更加符合实际情况。
     5)根据气体动力学理论,对空间物体之间发生碰撞的概率进行研究,给出了碰撞概率的具体数学表达式。研究了基于空间离散化计算空间碎片密度与通量的方法,对空间物体之间的碰撞几何进行了分析。
     6)对空间碎片的密度分布进行了计算与分析,结果表明在距地面750~1000千米高度之间有最高的密度分布值,在1400~1500千米高度处、半同步轨道以及地球同步轨道区域有密度分布峰值,并且在低地球轨道上高纬度区域的碎片密度比低纬度区域高。
     7)为评定常用轨道上的空间碎片通量,在LEO区域选择了国际空间站(ISS)与欧空局的ENVISAT卫星轨道,在GEO区域选择了BEIDOU 1A卫星轨道为代表进行了碎片通量的计算与分析。结果表明,各个轨道区域上碰撞通量随着空间碎片尺寸的增大而减小且与碎片空间密度相关,ENVISAT卫星轨道上米级尺寸处碰撞通量比国际空间站轨道高出约两个数量级。
     8)针对未来空间碎片环境预测问题,提出了两种对未来空间活动情况的预测方法:稳态估计与任务需求估计方法。
     9)基于稳态估计方法,在历史空间交通量分析的基础上定义了例常业务情况,并在该情况下对可跟踪探测空间碎片的数量与空间密度的增长进行预测,结果表明,如果不采取减缓措施,则未来可跟踪碎片的总数量及空间密度近似线性增长,50年后数量将是目前水平的2~3倍。
     10)基于任务需求估计方法,针对未来空间交通量变化、卫星星座以及纳卫星群的部署对空间碎片环境长期演变的影响进行了研究。结果表明,空间碎片环境的长期演变对未来交通量变化敏感,特别是在没有减缓措施情况下,若未来交通量增加两倍或两倍以上,则空间碎片总数预计将以指数规律增长。另外,部署在最拥挤轨道区域的大型星座及大规模纳星群对空间碎片环境也有较大影响。
     11)对空间碎片的减缓措施进行了相关研究,指出在空间活动中限制操作性物体的释放、钝化以防止在轨爆炸解体、防止故意解体与碰撞事件的发生、航天器寿命后处理以限制轨道寿命等措施是空间碎片减缓的经济、可行的方法。
     12)对空间碎片减缓措施实施效果进行了研究。针对采取钝化与限制释放操作性碎片、航天器任务寿命后处理措施以及综合实施各种减缓措施进行了仿真计算,结果表明,实施各种减缓措施均可降低未来空间碎片总数的增长速率,但单纯采取一种措施不足以稳定未来空间碎片环境,空间物体总数量增长的趋势并不会改变。综合实施各种减缓措施基本上可以将碎片的空间密度稳定在目前的水平,能够有效防止空间碎片环境的进一步恶化。
The dissertation mainly focuses on the theory and application about space debris environment model, the main works and contributions are summarized as follows:
     1、On the basis of historical launches analysis, evolution and current space debris environment is discussed. The distribution of semimajor axis, eccentricities and inclination of the cataloged space objects orbit is analyzed. And the result is that the majority of space objects are in the high inclination and near-circular orbits, with peak concentrations in low-Earth orbits, at altitudes below 2,000km, in the orbits of semi-synchronous about 12-hour periods, and in the geostationary ring.
     2、The system of space debris envrionment model is established, including debris source models, current space debris envrionment assessment, prediction of future space debris environment and effects of debris mitigation measures.
     3、On the basis of research of the generation process of space debris by various source terms, the breakup model, solid rocket motor firings model, NaK coolant droplets release model, West-Ford needles model and ejecta model are established and analyzed in detail.
     4、NASA standard breakup model turned out to have a shortcoming in the representation of the particles’area-to-mass ratio for fragments in the submillimetre regime. On the basis of theoretic analysis, this shortcoming has been corrected.
     5、According to the laws of kinetic gas theory, the expression of impact probability of space objects is given. Spatial density and flux of space debris based on volume discretization is discussed. And collision geometries of space debris are analyzed.
     6、The spatial density of space debris is calculated and analyzed. Peak concentrations in LEO regime are at altitude shells between 750km and 1000km, and near 1450km. In the super-LEO regime, peak concentrations are in the orbits of semi-synchronous ~12-hour periods, and in the geostationary ring.
     7、For the LEO regime two sample orbits are used to sense space debris environment: one is the orbit of the International Space Station (ISS), the other is the orbit of ESA’s ENVISAT satellite. And the flux on the orbit of BEIDOU 1A satellite is calculated and analyzed for the geostationary ring.
     8、Two different types of future launch traffic model are studied: the steady-state model and the mission model.
     9、The steady-state model is based on the assumption that the historical launch activity of the past few years is typical of future activity, with a constant, average overall launch rate. After the historical launch activities analysis, business-as-usual (BAU) forcast scenario is defined. For BAU scenario, the number and the spatial density of the cataloged objects after fifty years is calculated. A near-linear increase can be observed, and the total number is 2 to 3 times the current number.
     10、The mission model is purely based on estimates of the future uses of space such as new technology, new launchers, new space architectures, and speculations of civil, military, and commercial objectives and benefits. The research based on mission model revealed that the long-term evolution of space debris environment is sensitive to variations of traffic rate. The deployment of satellite constellations and nano-satellite swarms in narrow altitude and inclination bands can strongly increase local spatial densities and collision risk levels.
     11、The effective debris mitigation measures in view of operational, technical, and economic feasibility versus improvements in environmental stability are as follows:
     ·prevention of on-orbit explosions
     ·reduction of mission-related objects
     ·collision avoidance between trackable objects
     ·post-mission disposal of space systems
     12、The effectiveness of debris mitigation measures is studied. Each mitigation measure can reduce the absolute growth of potentially hazardous objects, but a trend towards increasing growth rates is maintained, indicating that single mitigation measure is a necessary but not sufficient condition to provide a stable space debris environment for future generations.
     However, if full mitigation is applied, the space debris environment in LEO can reach a stable level, with no growth of total population, despite continuing space operations at present deployment rates.
引文
[1]都亨张文祥庞宝君刘静.空间碎片[M].北京:中国宇航出版社,2007
    [2]张守信,外弹道测量与卫星轨道测量基础[M].北京:国防工业出版社,1992
    [3]王威于志坚,航天器轨道确定—模型与算法[M].北京:国防工业出版社,2007
    [4]夏南银,航天测控系统[M].北京:国防工业出版社,2002
    [5]唐颀,航天器空间碎片环境风险评估技术研究[D],哈尔滨工业大学硕士学位论文,2004
    [6]冯昊王荣兰于有成向开恒,基于国际空间站历史变轨事件的空间碎片碰撞预警和主动规避策略研究[C],第五届全国空间碎片专题研讨会论文集,山东烟台,2009
    [7]李怡勇沈怀荣李智,空间碎片环境危害及其对策[J],导弹与航天运载技术,2008年第6期
    [8]马晓宇,空间碎片环境建模、分析与仿真研究[D],哈尔滨工业大学硕士学位论文,2001
    [9]李爽,空间碎片环境建模及分析预报软件研制[D],哈尔滨工业大学硕士学位论文,2003
    [10]郭荣,近地轨道航天器的空间碎片碰撞预警与轨道规避策略研究[D],国防科技大学硕士学位论文,2005
    [11]王若璞张超朱凯,空间碎片环境及其探测方法[J],军事测绘,2010年第1期
    [12]王若璞朱凯任红飞,当前空间碎片环境及其来源[C].全国测绘学科博士生学术论坛论文集,2009年5月,河南郑州
    [13]叶松,空间碎片演化模型建立、分析与仿真研究[D],哈尔滨工业大学硕士学位论文,2002
    [14]龚松波,空间碎片演化模型建立及其应用研究[D],哈尔滨工业大学硕士学位论文,2005
    [15]袁庆智,空间微小碎片探测器[D],中国科学院研究生院硕士学位论文,2005
    [16]张文祥,空间环境保护工程研究进展和进一步发展需求[J],空间碎片研究,2009年第2期
    [17]俞伟学,空间碎片与航天器碰撞风险评估研究[D],哈尔滨工业大学硕士学位论文,2003
    [18]程陶,编目空间碎片的碰撞概率方法研究及应用[D],中国科学院空间科学与应用研究中心硕士学位论文,2006
    [19]张平平,近地轨道空间碎片轨道参数分布规律研究[D],哈尔滨工业大学硕士学位论文,2007
    [20]李灿安庞宝君,空间碎片空间密度的统计算法[J],空间碎片研究,2008年第2期
    [21]郑世贵闫军,空间碎片/微流星体环境模型和风险评估结果比较[J],空间碎片研究,2008年第2期
    [22]许可庞宝君,空间碎片空间密度及通量算法研究[J],空间碎片研究,2008年第3期
    [23]王若璞郑勇王占统骆亚波,轨道碎片位置计算及望远镜观测[C],2008年大地测量年会论文集,河南郑州
    [24]王若璞郑勇鲁强,空间目标轨道预报及望远镜观测实现[J],海洋测绘,2010年第1期
    [25]王若璞张浚哲郑勇骆亚波,基于TLE的空间目标碰撞预警计算[J],测绘科学技术学报,2009年第4期
    [26]李灿安庞宝君,空间碎片的空间密度算法研究[J],空间科学学报,2008,28(6),522-530
    [27]祁先锋.空间碎片观测综述[J].中国航天,2005,(7)
    [28]余建慧苏增立谭谦.空间目标天基光学观测模式分析[J].量子电子学报,2006,23(6)
    [29]柳森兰胜威等,航天器解体模型研究综述[C],第五届全国空间碎片专题研讨会论文集,山东烟台,2009
    [30]董丹,爆炸解体空间碎片建模方法研究[D],哈尔滨工业大学硕士学位论文,2007
    [31]许尤楠施娟等,建立常规的卫星安全运行预警系统[C],第五届全国空间碎片专题研讨会论文集,山东烟台,2009
    [32]朱毅麟,空间碎片的观测、模型与缓减[J],863航天技术通讯,1998年第6期
    [33]郑伟庞宝君,空间碎片超高速撞击航天器表面溅射物模型初步研究[C],第五届全国空间碎片专题研讨会论文集,山东烟台,2009
    [34]尤春艳,空间碎片环境模型SDPA的建模原理研究[D],哈尔滨工业大学硕士学位论文,2005
    [35]朱毅麟,空间碎片环境模型[J],国际太空,1999年3月
    [36]米要奇庞宝君许可,固体火箭发动机喷射物环境工程模式建模方法研究[C],第五届全国空间碎片专题研讨会论文集,山东烟台,2009
    [37]唐颀庞宝君张伟,空间碎片环境工程模式参数分析[J],中国空间科学技术,2004年第5期,22-27
    [38]朱毅麟,NASA空间碎片模型[J],上海航天,1999年第3期
    [39]魏龙涛,空间碎片模型比较与减缓策略分析[D],哈尔滨工业大学硕士学位论文,2006
    [40]尹玉海刘飞,俄罗斯减缓空间碎片的技术与法律措施[J],中国航天,2007年第8期。
    [41]王华唐国金李海洋,航天系统分析与仿真基础程序库AstroLib[J],系统仿真学报,第19卷第13期,2007.7
    [42]刘静王荣兰张宏博,空间碎片碰撞预警研究[J],空间科学学报,第24卷第6期,2004.11
    [43]朱毅麟,低轨道空间碎片环境建模与分析[J],上海航天,2000年第3期
    [44]韩蕾陈磊周伯昭,SGP4/SDP4模型用于空间碎片轨道预测的精度分析[J],中国空间科学技术,2004年8月第4期
    [45]程陶刘静王荣兰于有成,空间碎片预警中的碰撞概率方法研究[J],空间科学学报,2006年第6期,2006
    [46]朱毅麟,卫星遭空间碎片撞击的概率有多大[J],国际太空,2001年11月
    [47]吕洁吴季孙波,利用天基雷达观测低地轨道上的危险空间碎片[J],遥感技术与应用,第21卷第2期,2006年4月
    [48]何远航王萍,空间碎片环境的研究与控制方法[J],中国航天,2003年第7期
    [49]祁先锋郑娟,空间碎片观测技术研究[J],空间电子技术,2006年增刊
    [50]马志昊陈磊周伯昭,空间碎片环境与碰撞预警仿真系统设计[J],空间科学学报,第25卷第4期,2005年
    [51]徐春凤,空间碎片减缓标准研究[J],航天标准化,2005年第5期
    [52]龚松波徐敏强崔平远李爽,空间碎片减缓策略效果仿真[J],上海航天,2006年第2期
    [53]罗刚桥,空间碎片减缓措施及其研究对策[J],中国空间科学技术,2001年12月
    [54]朱毅麟,IADC空间碎片减缓指南(草案)[J],国际太空,2002年第3期
    [55]李春来欧阳自远都享,空间碎片与空间环境[J],第四纪研所,第22卷第6期,2002年11月
    [56]叶松徐敏强崔平远李爽,空间碎片质量分布模型建模方法研究[J],飞行力学,第21卷第1期,2003年3月
    [57]韩增尧郑世贵闫军等,空间碎片撞击概率分析软件开发、校验与应用[J],宇航学报,第26卷第2期,2005年3月
    [58]朱毅麟,地球静止轨道空间碎片的处置[J],上海航天,2001年第1期
    [59]王志刚陈士橹袁建平,电推进在静止轨道空间碎片减缓中的应用[J],飞行力学,2000年第2期
    [60]朱毅麟,离子推进及其关键技术[J],上海航天,2000年第1期
    [61]肖业伦陈少龙,一种高效计算卫星轨道寿命的方法[J],中国空间科学技术,2002年第2期
    [62] IADC Steering Group and Working Group 4, IADC Space Debris Mitigation Guidelines, revision 1 September 2007.
    [63] Heiner Klinkrad, Space Debris–Models and Risk Analysis [M], Praxis Publishing Ltd, Chichester, UK, 2006.
    [64] Ross Theodore mcnutt, Orbiting Space Debris: Dangers, Measurement and Mitigation [D], Massachusetts Institute of Technology, 1992.
    [65] Orbital Debris Program Office, History of On-Orbit Satellite Fragmentations 13th Edition[R], Houston, Texas, May 2004.
    [66] Orbital Debris Program Office, History of On-Orbit Satellite Fragmentations 14th Edition[R], Houston, Texas, 2008.
    [67] NASA, Handbook for Limiting Orbital Debris, Washington, DC 2008.
    [68] Meshishnek. M. J. 1995, "Overview of the Space Debris Environment", Aerospace ReportNo. TR-95(5231)-3, Aerospace Corp., Technology Operations, El Segundo,CA, 90245
    [69] Gene Stansbery, Orbital Debris Research at NASA, US-China Space Surveillance Technical Interchange, Shanghai Astronomical Observatory, 1-5 June 2009.
    [70] Zengyao Han, China Protection Activities against Space Debris, US-China Space Surveillance Technical Interchange, Shanghai Astronomical Observatory, 1-5 June 2009
    [71] Li Ming, Progress of Sapce Debris Research in China [J], Spacecraft Engineering, Vol.16, No.5, September 2009
    [72] Phillip D. Anz-Meador, International Guidelines for the Preservation of Space as a Unique Resource.
    [73] Orbital debris: A Technical Assessment, National Academy Press, Washington, DC. http://www.nap.edu/catalog/4765.html
    [74] Michael Oswald, Sebastian Stabroth, Carsten Wiedemann, Peter Wegener, Clare Martin, Upgrade of the MASTER Model (Final Report), April 26, 2006.
    [75] Portree, D. and Loftus, J. Orbital Debris and Near-Earth Environmental Management: A Chronology. Technical Report 1320, NASA Reference Publication. 1993.
    [76] NASA, Satellite Situation Report. http://www.space-track.org/
    [77] NASA Orbital Debris Program Office, Orbital Debris Quarterly News [J], Volume 12, Issue 2, April 2008.
    [78] C. STOKELY, M. MATNEY, Haystack Radar Observations of Debris from the Fengyun-1C Antisatellite Test, Orbital Debris Quarterly News [J], Volume 12, Issue 3, July 2008.
    [79] J-C. Liou, An Update on Recent Major Breakup Fragments, Orbital Debris Quarterly News [J], Volume 13, Issue 3, July 2009.
    [80] Klinkrad H, Alby F, Crowther R, te al. Space Debris Activities in Europe. 5th Ruropean Conference on Space Debris. March 30-April 2, 2009, Darmstadt, Germany.
    [81] Monthly Number of Objects in Earth Orbit by Object Type, Orbital Debris Quarterly News [J], Volume 14, Issue 1, January 2010.
    [82] Current Debris Environment in Low Earth Orbit, Orbital Debris Quarterly News [J], Volume 13, Issue 3, July 2009.
    [83] KESSLER D., JOHNSON N., STANSBERY E., et al., The Importance of the Non-Fragmentation Sources of Debris to the Environment, 32nd COSPAR Scientific Assembly, Nagoya, Japan, 12–19 July 1998
    [84] P. KRISKO, Risk to LEO Spacecraft Due to Small Particle Impacts, Orbital Debris Quarterly News [J], Volume 11, Issue 1, January 2007.
    [85] Thierry Senechal, Orbital Debris: Negotiating, Implementing a Convention [D], Massachusetts Institute of Technology, 2007.
    [86] Technical Report on Space Debris. United Nations Publications, NewYork, USA, 1999.
    [87] McDonnell, J. et al. Meteoroid and Debris Flux and Ejecta Models. Technical Report (final report) ESA contract 1887/96/NL/JG, Unispace Kent, Canterbury, UK. 1999.
    [88] John N L. Space debris modeling at NASA. ESASP-473-259J.2001
    [89] MATNEY, M., KESSLER, D.,‘Observations of RORSAT Debris Using the Haystack Radar’, Space Forum, 1996, Vol. 1
    [90] MESHCHERYAKOV, S.,‘Physical Characteristics of Alkaline Metals and Behaviour of Liquid Metal Coolant Droplets Occurring in Near-Earth Orbits’, Proceedings of the Second European Conference on Space Debris, ESOC, Darmstadt, Germany, March 17-19, 1997
    [91] Jonas F, Yates K, Evans R. Comparisons of debris environment model-breakup models. AIAA 93-0166
    [92] John N L, Krisko P H, Liou J-C, et-al. NASA’s new breakup model of EVOLVE 4.0[J]. Advances in Space Research. 2001,25(9)
    [93] FOSTER, J., KRISKO, P., MATNEY, M., STANSBERY, E,‘NaK Droplet Source Modeling’, International Astronautical Congress, 2003, section IAC-03-IAA.5.2.02.
    [94] M.RIVAL and J.C. Mandeville. Modeling of ejecta produced upon hypervelocity impacts. Space Debris, 1999, 1:45-57
    [95] WIEDEMANN, C., BENDISCH, J., KLINKRAD, H., WEGENER, P., REX, D.,‘Debris Modeling of Liquid Metal Droplets Released by RORSATs’, Space Safety and Rescue, Science and Technology Series, 1998, Vol. 99
    [96] Bendisch, J., Bunte, K., Sdunnus, H., Wegener, P., Walker, R., and Wiedemann, C (2002). Upgrade of ESA’s MASTER Model. Technical Report (final report) ESA contract 14710/00/D/HK, ILR/TUBS, Braunschweig.
    [97] J.M. Siguier and J.C. Mandeville. Test procedures to evaluate spacecraft materials ejecta upon hypervelocity impacts. JAERO 236 IMechE vol.221 part G, 2007
    [98] M. Bariteau and J.C. Mandeville. Modeling of ejecta as a space debris source. Space Debris, 2002, 2:97-107
    [99] N. HILL AND A. STEVENS, Measurement of Satellite Impact Fragments, Orbital Debris Quarterly News [J], Volume 12, Issue 1, January 2008.
    [100] William P, Schonberg. Characterizing secondary debris impact ejecta. International Journal of Impact Engineering 26(2001)
    [101] N. Divine, E. Grun, and P. Staubach. Modeling the meteoroid distributions in interplanetary space and near Earth. In Proceedings ESA SD-01, 1st European Conference on Space Debris, pages 245-250, Darmstadt, Germany, Apr 1993.
    [102] H. Klinkrad, J. Bendisch, K. D. Bunte, H. Sdunnus, and P. Wegener. The MASTER-99 space debris and meteoroid environment model. B0.1-PE-001 7, 33rd COSPAR Scientific Assembly, Warsaw, Poland, July 2000.
    [103] LEFEBVRE, A., Atomization and Sprays, 1989, Hemishpere Publishing Corporation.
    [104] D. J. Kessler et al. A computer-based orbital debris environment model for spacecraft design and observations in low-earth orbit. NASA Technical Memorandum 104825, 1996.
    [105] P. Wegener, H. Krag, D. Rex, J. Bendisch, and H. Klindrad. Distribution and dynamics of solid rocket motor particle clouds for an implementation into the MASTER debris model. In Proceeding of the 32nd COSPAR Congress, Advances in Space Research, Vol. 23, No. 1, 1998.
    [106] A. Jackson et al. The historical contribution of solid rocket motors to the one centimeter debris population. Proc. of the 2nd European Conference on Space Debris, (ESA SP-393), page 279 ff, 1997.
    [107] MUELLER A.C., KESSLER, D.J., The Effect of Particulates from Solid Rocket Motors fired in Space, Advances in Space Research, Vol. 5, 1985.
    [108] C. Wiedemann, J. Bendisch, H. klindrad, H. Krag, P. Wegener, and D. Rex. Debris modeling of liquid metal droplets released by RORSATs. Space Safety and Rescue (IAA98-6.3.03), 99, 1998.
    [109] M. Bariteau and J. C. Mandeville. A modeling of ejecta as a space debris source. In Proceedings of the 3rd European Conference on Space Debris (ESA SP-473), ESOC Darmstadt, Germany, 2001.
    [110] B. J. Anderson and R. E. Smith. Natural Orbital Environment Guidelines for Use in Aerospace Vehicle Development. NASA TM 4527, June 1994.
    [111] H. Klindrad. Collesion risk analysis for low Earth orbits. In Adv. Spac e res., Vol.13, No.8, 1993.
    [112] BARITEAU M., MANDEVILLE J.C., Modelling of Ejecta as a Space Debris Source, Space Debris, Vol. 2, No. 2, 2002
    [113] D. J. Kessler. Collision cascading: The limits of population growth in low Earth orbit. Advances in Space Research, 11 (12): 63-66, 1991.
    [114] P. Eichler and D. Rex. Debris chain reactions AIAA-90-1365. AIAA/NASA/DOD Orbital Debris Confrence: Technical Issues & Future Directions, Baltimore MD, USA, April 1990.
    [115] P. Krisko. EVOLVE 4.0 sensitivity study results. Orbital Debris Quarterly news, Orbital Debris Program Office , NASA Johnson Space Center, Vol.5, Issue 1, January 2000.
    [116] L. Anselmo, A. Rossi, and C. pardini. Updated results on the long-term evolution of the space debris environment. Advances in Space Research, 23 (1): 201-211, 1999.
    [117] H. Klindrad, editor. ESA Space Debris Mitigation Handbook. European Space Agency, first edition, April 1999.
    [118] R. A. Madler and R. D. Culp. The impact of satellite breakup parameters on long-term orbital debris environment evolution. SPIE Vol.2481, 1995.
    [119] D. Kessler, N. Johnson, E. Stansbery, R. Reynolds, K. Siebold, M. Matney, and A. Jackson. The importance of non-fragmentation sources of debris to the environment. Advances in Space Research, 23:149-160, 1999.
    [120] M. Caceres. Spotting trends in satellite and launch markets. Aerosp ace America, March 2000.
    [121] N. Johnson. The complexities and challenges of space traffic modeling. IAA-98-IAA.6.3.05, 49th International Astronautical Congress, Melbourne, Australia, Sept/Oct 1998.
    [122] R. Walker, R. Crowther, P. H. Stokes j. Wilkinson, and G. G. Swinerd. Orbital debris collision risks to satellite constellation. In J. C. van der Ha, editor, Mission Design and Implementation of Satellite Constellations. Kluwer Academic Publishers, 1998.
    [123] A. Rossi, L. Anselmo, C. Pardini, P. Farinella, and A. Cordelli. Interaction of the satellite constellations with the low Earth orbit debris environment. In J. C. van der Ha, editor, Mission Design and Implem entation of Satellite Constellations. Kluwer Academic Publishers, 1998.
    [124] P. Krisko, J. N. Opiela, R. C. Reynolds, and J. R. Theall. CONSTELL: NASA’s satellite model. IAA-99-IAA.6.6.05, 50th International Astronautical Congress, Amsterdam, Netherlands, October 1999.
    [125] E. Y. Robinson et al. The concept of a‘nano-satellite’for revolutionary low cost space systems. 44th Congrress of the International Astronautical Federation, Graz, Austria, 1993.
    [126] MONTENBRUCK O., GILL E., Satellite Orbits– Models, Methods, and Applications, Springer-Verlag Berlin Heidelberg New York, ISBN 3-540-67280-X, 2000
    [127] M. Caceres. The emerging nanosatellite market. Aerospace America, February 2001.
    [128] Springmann, P. and de Weck, O. (2004). Parametric Scaling Model for Non-Geosynchronous Communication Satellites. Journal of Spacecraft and Rockets, vol.41, no.3:472–477.
    [129] M. V. Yakoblev, S. V. kulik, and B. Agapov. Small spacecraft and space debris issues. In Third European Confference on Space Debris, ESOC, Darmstadt, Germany, March 2001.
    [130] http://www.iadc-online.org/
    [131] http://www.orbitaldebris.jsc.nasa.gov/
    [132] http://www.space-track.org/
    [133] http://www.celestrak.com/NORAD/documentation/
    [134] http://www.gov.cn/ztzl/2005-10/14/content_77635.htm
    [135] J. Bendisch and P. Wegener. Analysis of debris mitigation scenarios in terms of cost and benefit. In Third European Conf erence on Space Debris, ESOC, Darmstadt, Germany, March 2001.
    [136] P. H. Krisko, N. L. Johnson, and J. N. Opiela. EVOLVE 4.0 orbital debris mitigation studies. B0.1-PE-0020, 33rd CaSPAR Scientific Assembly, Warsaw, Poland, July 2000.
    [137] L. Anselmo, A. Rossi, C. Pardini, A. Cordelli, and R. Jehn. Effect of mitigation measures on the long-term evolution of the debris population. BO.I-PE-0023, 33rd COSPAR Scientific Assembly, Warsaw, Poland, July 2000.
    [138] R. Walker, C. E. Martin, P. H. Stokes, J. Wilkinson, and H. Klinkrad. Analysis of the effectiveness of space debris mitigation measures using the DELTA model. BO.1-PE-0024, 33rd CaSPAR Scientific Assembly, Warsaw, Poland, July 2000.
    [139] R. Jehn. Collision avoidance during de-orbiting of satellites at end-of-life. Acta Astronautica, Vol.51, 2002.
    [140] Protecting the Space Shuttle from Meteoroids and Orbital Debris, NATIONAL ACADEMY PRESS, Washington, D.C. 1997, http://www.nap.edu/catalog/5958.html
    [141] Protecting the Space Station from Meteoroids and Orbital Debris, NATIONAL ACADEMY PRESS, Washington, D.C. 1997, http://www.nap.edu/catalog/5532.html
    [142] P. KRISKO, Progress in Space Tether Sever Modeling. Orbital Debris Quarterly News [J], Volume 9, Issue 4, October 2005.
    [143] M. Dobrowolny. History of tether deployments. 16th IADC meeting, oulouse, Nov. 1998.
    [144] J. G. Walker. Some circular orbit patterns provding continuous whole Earth coverage. Journal of the British Interplannetary Society, 24: 369-384, 1971.
    [145] C. Uphoff, R. Forward, and R. Hoyt. The termination tether. Toulouse, 17-19 Nov. 1997.
    [146] L. Anselmo and C. Pardini. On the survivability of tethers in space, IAA-00-IAA.6.5.03. 51st IAF, Rio de Janeiro, Brazil, October 2000.
    [147] REICHHARDT, T,‘Needles in the Sky: The Strange History of Project West Ford’, Space World, July 1986.
    [148] FUCKE W., SDUNNUS H., Population Model of Small Size Space Debris, Final Report of ESOC contract no. 9266/90/D/MD, Battelle-Institut, Frankfurt am Main, Germany, June 1993
    [149] MCKNIGHT D., BRECHIN C., Debris Creation Via Hypervelocity Impact, AIAA 90-0084, 28th Aerospace Science Meeting, Reno, Nevada, January 8–11, 1990
    [150] SDUNNUS H., ROSSI A., WALKER R., BADE A., BENDISCH J., Comparison of Breakup Models, ESA/ESOC/MAS, Darmstadt, Germany, January 1996
    [151] Space Station Freedom Program Office, Space Station Natural Environment Definition for Design, Revision A, SSP 30425, Reston VA, June 1991
    [152] BADE A., JACKSON A.A., REYNOLDS R.C., et al. , Breakup Model Update at NASA/JSC, IAA-98-IAA.6.3.02, 49th International Astronautical Congress, Melbourne, Australia, Sept. 28–Oct. 2, 1998
    [153] REYNOLDS R.C., BADE A., EICHLER P., et al., NASA Standard Breakup Model 1998 Revision, LMSMSS-32532, Lockhead Martin Space Mission Systems and Services, September 1998
    [154] BENDISCH J., BUNTE K.D., KRAG H., et al., Upgrade of ESA’s MASTER Model– Final Report, ESA Contract No. 14710/00/D/HK, MAS-GEN-FR, Rev. 1.3.1, December, 2002
    [155] ANDERSON B.J., OJAKANGAS G.W., ANZ-MEADOR P.D, Solid-Rocket-Motor Contribution to Large-Particle Orbital Debris Population, Journal of Spacecraft and Rockets (ISSN 0022-4650), Vol. 33, No 4., July–August 1996
    [156] BERNSTEIN M.D., SHEEKS B.J., Field Observation of Medium-sized Debris from Postburnout Solid-fuel Rocket Motors, International Symposiumon Optical Science, Engineering, and Instrumentation (SPIE), paper 3116-32, San Diego, CA, July 27– August 1, 1997
    [157] DUMAS L., CHAUVOT J.F., SCHMEISSER K., Modeling of Slag Deposition in Solid Rocket Motors, AIAA Paper 95–2729, 31st Joint Propulsion Conference and Exhibit, San Diego, CA, July 10–12, 1995
    [158] FREDERICK R.A., NICHOLS, JS, ROGERSON, J., Slag Accumulation in a Strategic Solid Rocket Motor, AIAA Paper 96–2783, 32nd Joint Propulsion Conference and Exhibit, Lake Buena Vista, FL, July 1–3, 1996
    [159] Jehn, R., Hern′andez, C., Klinkrad, H., Flury, W., Agapov, V. Space Traffic Management in the Geostationary Ring. 55th IAF Congress, IAA-04-IAA.5.12.4.05. 2004.
    [160] HOPSON C.B., Space Shuttle Solid Rocket Motor Slag Expulsion Mechanisms, AIAA Paper 96–2725, 31st Joint Propulsion Conference and Exhibit, San Diego, CA, July 10–12, 1995
    [161] http://www.oosa.unvienna.org/isis/pub/sdtechrep1/index.html.
    [162] JACKSON A., EICHLER P. et al., The Historical Contribution of Solid Rocket Motors to the One Centimeter Debris Population, Proceedings of the Second European Conference on Space Debris (ESA SP-393), ESOC, Darmstadt, Germany, 17–19 March 1997
    [163] Jer-Chyi Liou, Mark J. Matney, Phillip D. AnzMeador, Donald Kessler, Mark Jansen and Jeffery R. Theall : The New NASA Orbital Debris Engineering Model ORDEM2000, NASA/TP-2002-210780
    [164] JACKSON A., BERNHARD R., Large Solid Rocket Motor Particle Impact on Shuttle Window, The Orbital Debris Quarterly News, Vol. 2, Issue 2, April–June, 1997
    [165] A. Kato. Space debris mitigation practices in the world major launch vehicles. 15th IADC, Johnson Space Centre, USA, 1997.
    [166] Kessler, D. J., Watts, A. J., Crowell, J. 1989, "Orbital Debris Environment for SpacecraftDesigned to Operate in Low Earth Orbit", NASA TM-100-471
    [167] Sebastian Stabroth, Peter Wegener, Heiner Klinkrad, Software User Manual MASTER-2005, 2006
    [168] FUKUSHIGE Shinya, AKAHOSHI Yasuhiro, et al., Comparison of Debris Environment Models: ORDEM2000, MASTER2001 and MASTER2005, IHI Engineering Review, Vol. 40 No.1 February 2007
    [169] C. Martin, J.-C. Liou, A. Rossi, Comparing the Long-term Evolution of the Space Debris Environment with DELTA, LEGEND and SDM, COSPAR, Beijing, China, July 2006
    [170] Nazarenko, A. and Menshikov, I. Engineering Model of the Space Debris Environment. In Proceedings of the Third European Conference on Space Debris, ESA SP-473, 2001.
    [171] Liou, J.-C., Hall, D., Krisko, P., and Opiela, J. LEGEND– A Three-Dimensional LEO-to-GEO Debris Evolutionary Model. Advances in Space Research, vol.34, no.5. 2004.
    [172] Rossi, A., Cordelli, A., Pardini, C., Anselmo, L., Farinella, P., Jehn, R. Long-Term Evolution of Earth Orbiting Objects. 47th IAF Congress, IAA-95-IAA.6.4.06. 1995.
    [173] Walker, R., Swinerd, G., Wilkinson, J., Martin, C. Long Term Space Debris Environment Prediction. Technical Report, DERA, Farnborough, UK. 2000.
    [174] Alby, F. SPOT-1 End of Life Disposal Manoeuvres. 35th COSPAR Scientific Assembly, PEDAS1/B1.6-0035-04. 2003.
    [175] Klinkrad, H. et al. ESA Space Debris Mitigation Handbook. ESA/ESOC, second edition. 2003.
    [176] Guo Baozhu,Achievements and Future Actions of Space Debris Research in China, Areospace China/Winter 2003
    [177] MM. Anselmo, Portelli, Crowther, Tremayne-Smith, Alby, Baccini, Bonnal, Alwes, Flury, Jehn, Klinkrad, European Code of Conduct for Space Debris Mitigation, Issue 1.0, 28 June 2004
    [178] C.A. Belk, J.H. Robinson et al., Meteoroids and Orbital Debris: Effects on Spacecraft, NASA Reference Publication, Marshall Space Flight Center (MSFC), August 1997
    [179] NASA Safety Standard:Guidelines and Assessment Procedures for Limiting Orbital Debris, Office of Safety and Mission Assurance Washington, D.C. August 1995
    [180] Nicholas L. Johnson, Debris Removal: An Opportunity for Cooperative Research, INMARSAT Headquarters, London, 25-26 October 2007
    [181] Alessandro Rossi, Orbit determination methods for space debris, 24th IADC Meeting Tsukuba, April 10-13, 2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700