神经病理性疼痛的背根神经节炎性机制和交感机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:背根神经节(dorsal root ganglia, DRG)的炎症反应在病理性疼痛的发生和维持中发挥重要作用。在大鼠脊神经结扎模型(spinal nerve tight ligation, SNL)全身应用糖皮质激素氟羟强的松龙(triamcinolone acetonide, TA)能够抑制机械性疼痛行为,减少DRG内交感神经芽生,降低细胞因子和神经生长因子的生成,降低自发放电的频率。而DRG局部炎症模型却和糖皮质激素的作用恰恰相反。因此我们假设并试图验证全身应用糖皮质激素的镇痛机制主要来源于其在DRG水平的作用。
     交感神经活动能加剧多种慢性疼痛例如复杂区域性疼痛综合症。在动物模型中,交感神经纤维在外周神经损伤后芽生入DRG内,与感觉神经元建立起异常联系。本研究旨在研究切断发入腰DRG的交感神经灰交通支对神经病理性疼痛模型机械性痛觉过敏的镇痛作用。
     方法:成年雄性Sprague-Dawley大鼠根据术前平均基础痛阈值随机分为4组:SNL组、SNL+TA组、Normal+TA组和Normal对照组。在SNL+TA组和Normal+TA组,在SNL手术或假手术同时局部注射20μ1TA悬浮注射液于L5DRG表面和周围区域。于术后第1,3,5和7天测量机械性痛阈。运用免疫组化手段检测DRG酪氨酸羟化酶(TH),胶质细胞原纤维酸性蛋白(GFAP),神经生长因子(NGF),脊髓CD11B抗体(OX-42)水平。
     Sprague-Dawley大鼠予以L5脊神经腹支结扎术。部分实验大鼠在脊神经结扎术前三周或同时,离断交感神经灰交通支。运用免疫组化手段检测DRG酪氨酸羟化酶(TH)水平。测量大鼠机械性痛阈。
     结果:在脊神经损伤的同时在腰DRG附近注射糖皮质激素TA能改善机械疼痛过敏,减少DRG交感神经篮状结构形成,降低DRG卫星胶质细胞激活水平和脊髓小胶质细胞激活水平,降低DRG内NGF表达水平。
     在脊神经腹支结扎术前三周离断发入L5DRG的灰支,显著降低了手术后3天损伤DRG的交感神经芽生。在脊神经切断术同时离断灰支也能降低机械性疼痛。
     结论:本试验证实单剂量局部注射糖皮质激素TA于DRG表面及附近组织的临床应用能够模拟全身应用TA在SNL模型中的镇痛效果。这进一步为临床局部应用糖皮质激素治疗某些临床疾病提供了合理的基础。进一步证明DRG水平的局部炎症是脊神经结扎疼痛模型的重要机制,尽管其归类为神经病理性疼痛。本研究也为疼痛行为与DRG和脊髓胶质细胞激活之间的相关性提供了证据。本试验证实单剂量局部注射糖皮质激素TA能降低SNL模型术后第3天DRG内NGF表达水平,可能是糖皮质激素镇痛的机制之一。这与糖皮质激素减少交感神经芽生和胶质细胞激活的结果相吻合,为糖皮质激素临床疼痛治疗提供了进一步理论基础。
     在普遍使用的脊神经结扎模型早期,脊神经背支是DRG交感神经芽生的主要来源。提前离断发入L5DRG的灰支手术,比外科或化学性交感神经切断术更少损伤,能显著降低脊神经结扎术导致的机械性疼痛。脊神经结扎同时离断发入L5DRG的灰支手术也能降低脊神经结扎术导致的机械性疼痛,效果有延迟,但对临床更有意义。
BACKGROUND:Inflammatory responses in the lumbar dorsal root ganglion (DRG) play a key role in the development of a variety of pathologic pain states. Systemic administration of a commonly used anti-inflammatory corticosteroid, triamcinolone acetonide (TA), reduces sympathetic sprouting, mechanical pain behavior, cytokine and nerve growth factor production in the DRG, and incidence of spontaneous bursting activity. We hypothesize that the observed effects of systemic TA are primarily due to local effects at the level of the DRG.
     Many chronic pain conditions including complex regional pain syndrome are exacerbated by sympathetic activity. In animal models, sympathetic fibers sprout into the dorsal root ganglia (DRG) after peripheral nerve injury, forming abnormal connections with sensory neurons. We hypothesize that cutting the grey ramus to the L5 DRG reduces mechanical pain behaviors in the SNL model.
     METHODS:Male Sprague-Dawley rats were used for all experiments. Rats were randomly divided into 4 groups:SNL (tight ligation of spinal nerves), SNL+TA, Normal+TA, and Normal. In normal rats (Normal+TA) and in SNL rats (SNL+TA), a single dose of 20μ1 TA injectable suspension (10mg/ml) was slowly injected onto the surface of DRG and and surrounding region at the time of SNL or sham surgery. Cutaneous sensitivity to mechanical stimulation was tested on postoperative days 1,3,5, and 7. Immunohistochemical staining was performed to examine tyrosine hydroxylase (TH), glial fibrillary acidic protein (GFAP) and nerve growth factor (NGF) in DRG, and CD11B antibody (OX-42) in spinal cord.
     Male Sprague-Dawley rats received a unilateral ligation of the ventral ramus of the L5 spinal nerve following the original description by Kim and Chung. In some experiments, the grey ramus located in close proximity to the DRG was isolated and cut, either at the time of, or three weeks before, the spinal nerve ligation surgery. Immunohistochemical staining was performed to examine tyrosine hydroxylase (TH) in DRG. Cutaneous sensitivity to mechanical stimulation was tested.
     RESULTS:Local TA treatment attenuated mechanical sensitivity, reduced sympathetic sprouting in the DRG, and decreased satellite glia activation, NGF expression level in the DRG and microglia activation in the spinal cord after SNL. Cutting the grey ramus to the L5 DRG reduces mechanical sensitivity in the SNL model.
     CONCLUSION:This study demonstrates that a single injection of in the vicinity of the axotomized DRG can mimic many of the effects of systemic TA in mitigating the behavioral and cellular abnormalities induced by spinal nerve ligation. This provides a further rational basis for the clinical use of localized steroid injections in some clinical conditions, and provides further support for the idea that localized inflammation at the level of the DRG is an important component of the spinal nerve ligation model even though this is commonly classified as neuropathic pain model. And the study provides further evidence of a correlation between pain behaviors and activation of glia in the DRG and spinal cord. This study demonstrates that a single injection of in the vicinity of the axotomized DRG can decrease NGF expression level in the DRG and likely one of mechanisms of local TA treatment attenuate mechanical sensitivity. This is consistent with the result that TA can reduce sympathetic sprouting and decrease satellite glia activation. And provides further theory basis of corticosteroid clinical application for pain treatment.
     This study presented evidence that the dorsal ramus of the spinal nerve is a source of sympathetic fibers that sprout into the DRG during early phases of the commonly used spinal nerve ligation model. Pre-cutting the grey ramus to the L5 DRG, a much less invasive procedure than surgical or chemical sympathectomy, markedly reduces the mechanical pain induced by spinal nerve ligation. More relevant to clinical situations, cutting the grey ramus also reduced mechanical pain (albeit with a delay) when done at the time of spinal nerve ligation.
引文
[1]Merskey H Bogduk N. Classification of chronic pain:descriptions of chronic pain syndromes and definitions of pain terms. IASP Press,1994,
    [2]Max M. B. Clarifying the definition of neuropathic pain. Pain,2002,96(3): 406-407; author reply 407-408.
    [3]Merskey H. Clarifying definition of neuropathic pain. Pain,2002,96(3):408-409.
    [4]Bennett G. J., Xie Y. K. A PERIPHERAL MONONEUROPATHY IN RAT THAT PRODUCES DISORDERS OF PAIN SENSATION LIKE THOSE SEEN IN MAN. Pain,1988, 33(1):87-107.
    [5]Chung J. M., Kim H. K., Chung K. Segmental spinal nerve ligation model of neuropathic pain. Methods Mol Med,2004,99(35-45.
    [6]Kim S. H., Chung J. M. An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain,1992,50(3):355-363.
    [7]Seltzer Z., Dubner R., Shir Y. A novel behavioral model of neuropathic pain disorders produced in rats by partial sciatic nerve injury. Pain,1990,43(2):205-218.
    [8]Moalem G., Tracey D. J. Immune and inflammatory mechanisms in neuropathic pain. Brain Res Rev,2006,51(2):240-264.
    [9]Morgan R., King D. Shingles:a review of diagnosis and management. Hospital Medicine (London),1998,59(10):770-776.
    [10]Schon F., Mayer M. L., Kelly J. S. Pathogenesis of post-herpetic neuralgia. Lancet,1987, 2(8555):366-368.
    [11]Kawaguchi S., Yamashita T., Yokogushi K., et al. Immunophenotypic analysis of the inflammatory infiltrates in herniated intervertebral discs. Spine,2001,26(11):1209-1214.
    [12]Satoh K., Konno S., Nishiyama K., et al. Presence and distribution of antigen-antibody complexes in the herniated nucleus pulposus. Spine,1999,24(19):1980-1984.
    [13]Gertzbein S. D., Tait J. H., Devlin S. R. The stimulation of lymphocytes by nucleus pulposus in patients with degenerative disk disease of the lumbar spine. Clinical Orthopaedics & Related Research,1977,123):149-154.
    [14]Olmarker K., Myers R.R. Pathogenesis of sciatic pain:role of herniated nucleus pulposus and deformation of spinal nerve root and dorsal root ganglion. Pain,1998,78(99-105.
    [15]Kawakami M., Tamaki T., Weinstein J. N., et al. Pathomechanism of pain-related behavior produced by allografts of intervertebral disc in the rat. Spine,1996,21(18):2101-2107.
    [16]Hu P., Mclachlan E. M. Macrophage and lymphocyte invasion of dorsal root ganglia after peripheral nerve lesions in the rat. Neuroscience,2002,112(1):23-38.
    [17]Lu X., Richardson P. M. Responses of macrophages in rat dorsal root ganglia following peripheral nerve injury. Journal of Neurocytology,1993,22(5):334-341.
    [18]Eckert A., Segond Von Banchet G., Sopper S., et al. Spatio-temporal pattern of induction of bradykinin receptors and inflammation in rat dorsal root ganglia after unilateral nerve ligation. Pain,1999,83(3):487-497.
    [19]Zhang J.-M., Song X. J., Lamotte R. H. Enhanced excitability of sensory neurons in rats with cutaneous hyperalgesia produced by chronic compression of the dorsal root ganglion. Journal of Neurophysiology,1999,82(6):3359-3366.
    [20]Beuche W., Friede R. L. The role of non-resident cells in Wallerian degeneration. Journal of Neurocytology,1984,13(5):767-796.
    [21]Brown M. C., Perry V. H., Lunn E. R., et al. Macrophage dependence of peripheral sensory nerve regeneration:possible involvement of nerve growth factor. Neuron,1991,6(3):359-370.
    [22]Perry V. H., Brown M. C. Role of macrophages in peripheral nerve degeneration and repair. Bioessays,1992,14(6):401-406.
    [23]Barron K. D., Marciano F. F., Amundson R., et al. Perineuronal glial responses after axotomy of central and peripheral axons. A comparison. Brain Research,1990,523(2):219-229.
    [24]Gehrmann J., Monaco S., Kreutzberg G. W. Spinal cord microglial cells and DRG satellite cells rapidly respond to transection of the rat sciatic nerve. Restorative Neurology & Neuroscience,1991,2(181-198.
    [25]Lu X., Richardson P. M. Inflammation near the nerve cell body enhances axonal regeneration. Journal of Neuroscience,1991,11(4):972-978.
    [26]Woodham P., Anderson P. N., Nadim W., et al. Satellite cells surrounding axotomised rat dorsal root ganglion cells increase expression of a GFAP-like protein. Neuroscience Letters,1989, 98(1):8-12.
    [27]Xie W. R., Deng H., Li H., et al. Robust increase of cutaneous sensitivity, cytokine production and sympathetic sprouting in rats with localized inflammatory irritation of the spinal ganglia. Neuroscience,2006,142(3):809-822.
    [28]Li H., Xie W., Strong J. A., et al. Systemic antiinflammatory corticosteroid reduces mechanical pain behavior, sympathetic sprouting, and elevation of proinflammatory cytokines in a rat model of neuropathic pain. Anesthesiology,2007,107(3):469-477.
    [29]Sheen K., Chung J. M. Signs of neuropathic pain depend on signals from injured nerve fibers in a rat model. Brain Res,1993,610(1):62-68.
    [30]Choi Y., Yoon Y. W., Na H. S., et al. Behavioral signs of ongoing pain and cold allodynia in a rat model of neuropathic pain. Pain,1994,59(3):369-376.
    [31]Martin W. J., Stewart L. S., Tarpley J. W. Animal models of neuropathic pain. Methods Mol Med,2003,84(233-242.
    [32]Zhang J. M., Li H., Brull S. J. Perfusion of the mechanically compressed lumbar ganglion with lidocaine reduces mechanical hyperalgesia and allodynia in the rat. J Neurophysiol,2000, 84(2):798-805.
    [33]Song X. J., Hu S. J., Greenquist K. W., et al. Mechanical and thermal hyperalgesia and ectopic neuronal discharge after chronic compression of dorsal root ganglia. J Neurophysiol, 1999,82(6):3347-3358.
    [34]Ramer M. S., Bisby M. A. Differences in sympathetic innervation of mouse DRG following proximal or distal nerve lesions. Exp Neurol,1998,152(2):197-207.
    [35]Chung K., Lee B. H., Yoon Y. W., et al. Sympathetic sprouting in the dorsal root ganglia of the injured peripheral nerve in a rat neuropathic pain model. J Comp Neurol,1996,376(2): 241-252.
    [36]Ramer M. S., Thompson S. W., Mcmahon S. B. Causes and consequences of sympathetic basket formation in dorsal root ganglia. Pain,1999, Suppl 6(S111-120.
    [37]Xie W., Strong J. A., Zhang J. M. Early blockade of injured primary sensory afferents reduces glial cell activation in two rat neuropathic pain models. Neuroscience,2009,160(4): 847-857.
    [38]Mcmahon S. B., Cafferty W. B., Marchand F. Immune and glial cell factors as pain mediators and modulators. Exp Neurol,2005,192(2):444-462.
    [39]Gracely R. H., Lynch S. A., Bennett G. J. Painful neuropathy: altered central processing maintained dynamically by peripheral input. Pain,1992,51(2):175-194.
    [40]Torebjork H. E., Lundberg L. E., Lamotte R. H. Central changes in processing of mechanoreceptive input in capsaicin-induced secondary hyperalgesia in humans. J Physiol,1992, 448(765-780.
    [41]Liu C. N., Wall P. D., Ben-Dor E., et al. Tactile allodynia in the absence of C-fiber activation: altered firing properties of DRG neurons following spinal nerve injury. Pain,2000,85(3): 503-521.
    [42]Yoon Y. W., Na H. S., Chung J. M. Contributions of injured and intact afferents to neuropathic pain in an experimental rat model. Pain,1996,64(1):27-36.
    [43]Li Y., Dorsi M. J., Meyer R. A., et al. Mechanical hyperalgesia after an L5 spinal nerve lesion in the rat is not dependent on input from injured nerve fibers. Pain,2000,85(3):493-502.
    [44]Ali Z., Ringkamp M., Hartke T. V., et al. Uninjured C-fiber nociceptors develop spontaneous activity and alpha-adrenergic sensitivity following L6 spinal nerve ligation in monkey. J Neurophysiol,1999,81(2):455-466.
    [45]Fukuoka T., Tokunaga A., Kondo E., et al. Change in mRNAs for neuropeptides and the GABA(A) receptor in dorsal root ganglion neurons in a rat experimental neuropathic pain model. Pain,1998,78(1):13-26.
    [46]Szallasi A., Blumberg P. M. Vanilloid receptors:new insights enhance potential as a therapeutic target. Pain,1996,68(2-3):195-208.
    [47]Szallasi A., Joo F., Blumberg P. M. Duration of desensitization and ultrastructural changes in dorsal root ganglia in rats treated with resiniferatoxin, an ultrapotent capsaicin analog. Brain Res,1989,503(1):68-72.
    [48]Xu X. J., Farkas-Szallasi T., Lundberg J. M., et al. Effects of the capsaicin analogue resiniferatoxin on spinal nociceptive mechanisms in the rat: behavioral, electrophysiological and in situ hybridization studies. Brain Res,1997,752(1-2):52-60.
    [49]Ossipov M. H., Bian D., Malan T. P., Jr., et al. Lack of involvement of capsaicin-sensitive primary afferents in nerve-Iigation injury induced tactile allodynia in rats. Pain,1999,79(2-3): 127-133.
    [50]Lekan H. A., Carlton S. M., Coggeshall R. E. Sprouting of A beta fibers into lamina II of the rat dorsal horn in peripheral neuropathy. Neurosci Lett,1996,208(3):147-150.
    [51]Doubell T. P., Mannion R. J., Woolf C. J. Intact sciatic myelinated primary afferent terminals collaterally sprout in the adult rat dorsal horn following section of a neighbouring peripheral nerve. J Comp Neurol,1997,380(1):95-104.
    [52]Johansson A., Bennett G. J. Effect of local methylprednisolone on pain in a nerve injury model. A pilot study. Reg Anesth,1997,22(1):59-65.
    [53]Kingery W. S., Agashe G. S., Sawamura S., et al. Glucocorticoid inhibition of neuropathic hyperalgesia and spinal Fos expression. Anesth Analg,2001,92(2):476-482.
    [54]Hashizume H., Rutkowski M. D., Weinstein J. N., et al. Central administration of methotrexate reduces mechanical allodynia in an animal model of radiculopathy/sciatica. Pain, 2000,87(2):159-169.
    [55]Kingery W. S., Castellote J. M., Maze M. Methylprednisolone prevents the development of autotomy and neuropathic edema in rats, but has no effect on nociceptive thresholds. Pain,1999, 80(3):555-566.
    [56]Xie W., Liu X., Xuan H., et al. Effect of betamethasone on neuropathic pain and cerebral expression of NF-kappaB and cytokines. Neurosci Lett,2006,393(2-3):255-259.
    [57]Li H., Xie W., Strong J. A., et al. Systemic antiinflammatory corticosteroid reduces mechanical pain behavior, sympathetic sprouting, and elevation of proinflammatory cytokines in a rat model of neuropathic pain. Anesthesiology,2007,107(3):469-477.
    [58]Takeda K., Sawamura S., Sekiyama H., et al. Effect of methylprednisolone on neuropathic pain and spinal glial activation in rats. Anesthesiology,2004,100(5):1249-1257.
    [59]Takasaki I., Kurihara T., Saegusa H., et al. Effects of glucocorticoid receptor antagonists on allodynia and hyperalgesia in mouse model of neuropathic pain. Eur J Pharmacol,2005,524(1-3): 80-83.
    [60]Wang S., Lim G., Zeng Q., et al. Expression of central glucocorticoid receptors after peripheral nerve injury contributes to neuropathic pain behaviors in rats. J Neurosci,2004, 24(39):8595-8605.
    [61]Rhen T., Cidlowski J. A. Antiinflammatory action of glucocorticoids--new mechanisms for old drugs. N Engl J Med,2005,353(16):1711-1723.
    [62]Xie W., Luo S., Xuan H., et al. Betamethasone Affects Cerebral Expressions of NF-{kappa}B and Cytokines that Correlate with Pain Behavior in a Rat Model of Neuropathy. Ann Clin Lab Sci,2006,36(1):39-46.
    [63]Ferreira S. H., Cunha F. Q., Lorenzetti B. B., et al. Role of lipocortin-1 in the anti-hyperalgesic actions of dexamethasone. Br J Pharmacol,1997,121(5):883-888.
    [64]O'banion M. K., Winn V. D., Young D. A. cDNA cloning and functional activity of a glucocorticoid-regulated inflammatory cyclooxygenase. Proc Natl Acad Sci U S A,1992,89(11): 4888-4892.
    [65]Xie W., Luo S., Xuan H., et al. Betamethasone affects cerebral expressions of NF-kappaB and cytokines that correlate with pain behavior in a rat model of neuropathy. Ann Clin Lab Sci, 2006,36(1):39-46.
    [66]Devor M., Govrin-Lippmann R., Raber P. Corticosteroids suppress ectopic neural discharge originating in experimental neuromas. Pain,1985,22(2):127-137.
    [67]Johansson A., Hao J., Sjolund B. Local corticosteroid application blocks transmission in normal nociceptive C-fibres. Acta Anaesthesiol Scand,1990,34(5):335-338.
    [68]Yates J. M., Smith K. G., Robinson P. P. The effect of triamcinolone hexacetonide on the spontaneous and mechanically-induced ectopic discharge following lingual nerve injury in the ferret. Pain,2004,111(3):261-269.
    [69]Graham W. P.,3rd, Pataky P. E., Calabretta A. M., et al. Enhancement of peripheral nerve regeneration with triamcinolone after neurorrhaphy. Surg Forum,1973,24(457-459.
    [70]Lipton R., Mccaffrey T. V., Ellis J. The beneficial effect of triamcinolone acetonide on nerve repair with autogenous grafts. Otolaryngol Head Neck Surg,1986,94(3):310-315.
    [71]He L. M., Zhang C. G., Zhou Z., et al. Rapid inhibitory effects of corticosterone on calcium influx in rat dorsal root ganglion neurons. Neuroscience,2003,116(2):325-333.
    [72]Roach J. T., Sufka K. J. Characterization of the chick carrageenan response. Brain Res,2003, 994(2):216-225.
    [73]Stubhaug A., Romundstad L., Kaasa T., et al. Methylprednisolone and ketorolac rapidly reduce hyperalgesia around a skin burn injury and increase pressure pain thresholds. Acta Anaesthesiol Scand,2007,51(9):1138-1146.
    [74]Falkenstein E., Tillmann H. C., Christ M., et al. Multiple actions of steroid hormones--a focus on rapid, nongenomic effects. Pharmacol Rev,2000,52(4):513-556.
    [75]Di S., Malcher-Lopes R., Marcheselli V. L., et al. Rapid glucocorticoid-mediated endocannabinoid release and opposing regulation of glutamate and gamma-aminobutyric acid inputs to hypothalamic magnocellular neurons. Endocrinology,2005,146(10):4292-4301.
    [76]Di S., Malcher-Lopes R., Halmos K. C., et al. Nongenomic glucocorticoid inhibition via endocannabinoid release in the hypothalamus:a fast feedback mechanism. J Neurosci,2003, 23(12):4850-4857.
    [77]Murphy P. G., Grondin J., Altares M., et al. Induction of interleukin-6 in axotomized sensory neurons. J Neurosci,1995,15(7 Pt 2):5130-5138.
    [78]Dubovy P., Klusakova I., Svizenska I., et al. Satellite glial cells express IL-6 and corresponding signal-transducing receptors in the dorsal root ganglia of rat neuropathic pain model. Neuron Glia Biol,6(1):73-83.
    [79]Zhou X. F., Deng Y. S., Chie E., et al. Satellite-cell-derived nerve growth factor and neurotrophin-3 are involved in noradrenergic sprouting in the dorsal root ganglia following peripheral nerve injury in the rat. European Journal of Neuroscience,1999,11(5):1711-1722.
    [80]Hanani M. Satellite glial cells in sensory ganglia:from form to function. Brain Res Brain Res Rev,2005,48(3):457-476.
    [81]Lee S. E., Shen H., Taglialatela G., et al. Expression of nerve growth factor in the dorsal root ganglion after peripheral nerve injury. Brain Research,1998,796(1-2):99-106.
    [82]Hammarberg H., Piehl F., Cullheim S., et al. GDNF mRNA in Schwann cells and DRG satellite cells after chronic sciatic nerve injury. NeuroReport,1996,7(4):857-860.
    [83]Ha S. O., Kim J. K., Hong H. S., et al. Expression of brain-derived neurotrophic factor in rat dorsal root ganglia, spinal cord and gracile nuclei in experimental models of neuropathic pain. Neuroscience,2001,107(2):301-309.
    [84]Deng Y. S., Zhong J. H., Zhou X. F. Effects of endogenous neurotrophins on sympathetic sprouting in the dorsal root ganglia and allodynia following spinal nerve injury. Exp Neurol,2000, 164(2):344-350.
    [85]Aoki E., Takeuchi I. K., Shoji R., et al. Localization of nitric oxide-related substances in the peripheral nervous tissues. Brain Res,1993,620(1):142-145.
    [86]Thippeswamy T., Morris R. The roles of nitric oxide in dorsal root ganglion neurons. Ann N Y Acad Sci,2002,962(103-110.
    [87]Khodorova A., Fareed M. U., Gokin A., et al. Local injection of a selective endothelin-B receptor agonist inhibits endothelin-1-induced pain-like behavior and excitation of nociceptors in a naloxone-sensitive manner. J Neurosci,2002,22(17):7788-7796.
    [88]England S., Heblich F., James I. F., et al. Bradykinin evokes a Ca2+-activated chloride current in non-neuronal cells isolated from neonatal rat dorsal root ganglia. J Physiol,2001, 530(Pt 3):395-403.
    [89]Heblich F., England S., Docherty R. J. Indirect actions of bradykinin on neonatal rat dorsal root ganglion neurones:a role for non-neuronal cells as nociceptors. J Physiol,2001,536(Pt 1): 111-121.
    [90]Dublin P., Hanani M. Satellite glial cells in sensory ganglia:their possible contribution to inflammatory pain. Brain Behav Immun,2007,21(5):592-598.
    [91]Weick M., Cherkas P. S., Hartig W., et al. P2 receptors in satellite glial cells in trigeminal ganglia of mice. Neuroscience,2003,120(4):969-977.
    [92]Braun N., Sevigny J., Robson S. C., et al. Association of the ecto-ATPase NTPDase2 with glial cells of the peripheral nervous system. Glia,2004,45(2):124-132.
    [93]Hanani M., Maudlej N., Hartig W. Morphology and intercellular communication in glial cells of intramural ganglia from the guinea-pig urinary bladder. J Auton Nerv Syst,1999,76(1): 62-67.
    [94]Stephenson J. L., Byers M. R. GFAP immunoreactivity in trigeminal ganglion satellite cells after tooth injury in rats. Exp Neurol,1995,131(1):11-22.
    [95]Elson K., Simmons A., Speck P. Satellite cell proliferation in murine sensory ganglia in response to scarification of the skin. GLIA,2004,45(1):105-109.
    [96]Watkins L. R., Hutchinson M. R., Milligan E. D., et al. "Listening" and "talking" to neurons: implications of immune activation for pain control and increasing the efficacy of opioids. Brain Res Rev,2007,56(1):148-169.
    [97]Zhang X., Chen Y., Wang C., et al. Neuronal somatic ATP release triggers neuron-satellite glial cell communication in dorsal root ganglia. Proc Natl Acad Sci U S A,2007,104(23): 9864-9869.
    [98]Sun Q., Tu H., Xing G. G., et al. Ectopic discharges from injured nerve fibers are highly correlated with tactile allodynia only in early, but not late, stage in rats with spinal nerve ligation. Exp Neurol,2005,191(1):128-136.
    [99]Xie W., Strong J. A., Li H., et al. Sympathetic sprouting near sensory neurons after nerve injury occurs preferentially on spontaneously active cells and is reduced by early nerve block. J Neurophysiol,2007,97(1):492-502.
    [100]Cao H., Zhang Y. Q. Spinal glial activation contributes to pathological pain states. Neurosci Biobehav Rev,2008,32(5):972-983.
    [101]Deleo J. A., Tanga F. Y., Tawfik V. L. Neuroimmune activation and neuroinflammation in chronic pain and opioid tolerance/hyperalgesia. Neuroscientist,2004,10(1):40-52.
    [102]Ji R. R., Kawasaki Y., Zhuang Z. Y., et al. Possible role of spinal astrocytes in maintaining chronic pain sensitization:review of current evidence with focus on bFGF/JNK pathway. Neuron Glia Biol,2006,2(4):259-269.
    [103]Chacur M., Gutierrez J. M., Milligan E. D., et al. Snake venom components enhance pain upon subcutaneous injection:an initial examination of spinal cord mediators. Pain,2004, 111(1-2):65-76.
    [104]Chacur M., Milligan E. D., Sloan E. M., et al. Snake venom phospholipase A2s (Asp49 and Lys49) induce mechanical allodynia upon peri-sciatic administration:involvement of spinal cord glia, proinflammatory cytokines and nitric oxide. Pain,2004,108(1-2):180-191.
    [105]Schafers M., Svensson C. I., Sommer C., et al. Tumor necrosis factor-alpha induces mechanical allodynia after spinal nerve ligation by activation of p38 MAPK in primary sensory neurons. J Neurosci,2003,23(7):2517-2521.
    [106]Bezzi P., Carmignoto G., Pasti L., et al. Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature,1998,391(6664):281-285.
    [107]Jones M. G., Munson J. B., Thompson S. W. A role for nerve growth factor in sympathetic sprouting in rat dorsal root ganglia. Pain,1999,79(1):21-29.
    [108]Walsh G. S., Kawaja M. D. Sympathetic axons surround nerve growth factor-immunoreactive trigeminal neurons:observations in mice overexpressing nerve growth factor. J Neurobiol,1998,34(4):347-360.
    [109]Ramer M. S., Bisby M. A. Adrenergic innervation of rat sensory ganglia following proximal or distal painful sciatic neuropathy: distinct mechanisms revealed by anti-NGF treatment. Eur J Neurosci,1999,11(3):837-846.
    [110]Zhou X. F., Deng Y. S., Chie E., et al. Satellite-cell-derived nerve growth factor and neurotrophin-3 are involved in noradrenergic sprouting in the dorsal root ganglia following peripheral nerve injury in the rat. Eur J Neurosci,1999,11(5):1711-1722.
    [111]Li L., Xian C. J., Zhong J. H., et al. Lumbar 5 ventral root transection-induced upregulation of nerve growth factor in sensory neurons and their target tissues:a mechanism in neuropathic pain. Mol Cell Neurosci,2003,23(2):232-250.
    [112]Pezet S., Malcangio M., Mcmahon S. B. BDNF: a neuromodulator in nociceptive pathways? Brain Res Brain Res Rev,2002,40(1-3):240-249.
    [113]Sebert M. E., Shooter E. M. Expression of mRNA for neurotrophic factors and their receptors in the rat dorsal root ganglion and sciatic nerve following nerve injury. J Neurosci Res, 1993,36(4):357-367.
    [114]Mclachlan E. M., Jang W., Devor M., et al. Peripheral nerve injury triggers noradrenergic sprouting within dorsal root ganglia. Nature,1993,363(6429):543-546.
    [115]Chung K., Kim H.J., Na H.S., et al. Abnormalities of sympathetic innervation in the area of an injured peripheral nerve in a rat model of neuropathic pain. Neurosic Lett,1993,162(85-88.
    [116]Lee B. H., Yoon Y. W., Chung K., et al. Comparison of sympathetic sprouting in sensory ganglia in three animal models of neuropathic pain. Experimental Brain Research,1998,120(4): 432-438.
    [117]Ramer M. S., Bisby M. A. Rapid sprouting of sympathetic axons in dorsal root ganglia of rats with a chronic constriction injury. Pain,1997,70(2-3):237-244.
    [118]Pertin M., Allchorne A. J., Beggah A. T., et al. Delayed sympathetic dependence in the spared nerve injury (SNI) model of neuropathic pain. Mol Pain,2007,3(21.
    [119]Shinder V., Govrin-Lippmann R., Cohen S., et al. Structural basis of sympathetic-sensory coupling in rat and human dorsal root ganglia following peripheral nerve injury. J Neurocytol, 1999,28(9):743-761.
    [120]Chung K., Chung J. M. Sympathetic sprouting in the dorsal root ganglion after spinal nerve ligation:evidence of regenerative collateral sprouting. Brain Research,2001,895(1-2): 204-212.
    [121]Ma W., Bisby M. A. Partial sciatic nerve transection induced tyrosine hydroxidase immunoreactive axon sprouting around both injured and spared dorsal root ganglion neurons which project to the gracile nucleus in middle-aged rats. Neuroscience Letters,1999,275(2): 117-120.
    [122]Xie W. R., Deng H., Li H., et al. Robust increase of cutaneous sensitivity, cytokine production and sympathetic sprouting in rats with localized inflammatory irritation of the spinal ganglia. Neuroscience,2006,142(3):809-822.
    [123]Chien S.Q., Li C-L, Li H., et al. Sympathetic fiber sprouting in chronically compressed dorsal root ganglia without peripheral axotomy. J Neuropathic Pain & Symptom Palliation,2005, 1(1):19-23.
    [124]Roberts W. J. A hypothesis on the physiological basis for causalgia and related pains. Pain, 1986,24(3):297-311.
    [125]Aburahma A. R, Robinson P. A., Powell M., et al. Sympathectomy for reflex sympathetic dystrophy: factors affecting outcome. Ann Vase Surg,1994,8(4):372-379.
    [126]Burchiel K. J. Spontaneous impulse generation in normal and denervated dorsal root ganglia:sensitivity to alpha-adrenergic stimulation and hypoxia. Experimental Neurology,1984, 85(2):257-272.
    [127]Devor M., Janig W., Michaelis M. Modulation of activity in dorsal root ganglion neurons by sympathetic activation in nerve-injured rats. Journal of Neurophysiology,1994,71(38-47.
    [128]Sihvonen T., Lindgren K. A., Airaksinen O., et al. Dorsal ramus irritation associated with recurrent low back pain and its relief with local anesthetic or training therapy. J Spinal Disord, 1995,8(1):8-14.
    [129]Blenk K. H., Habler H. J., Janig W. Neomycin and gadolinium applied to an L5 spinal nerve lesion prevent mechanical allodynia-like behaviour in rats. Pain,1997,70(2-3):155-165.
    [130]Xie W., Strong J. A., Zhang J-M. Sympathetic nerve sprouting is closely related to the pattern of spontaneous activity in axotomized DRG neurons. Soc Neurosci Abstr,2008,759(2.
    [131]Vega J. A. Presence of catecholamine-related enzymes in a subpopulation of primary sensory neurons in dorsal root ganglia of the rat. Cellular & Molecular Biology,1991,37(5): 519-530.
    [132]Price J., Mudge A. W. A subpopulation of rat dorsal root ganglion neurones is catecholaminergic. Nature,1983,301(5897):241-243.
    [133]Price J. An immunohistochemical and quantitative examination of dorsal root ganglion neuronal subpopulations. J Neurosci,1985,5(8):2051-2059.
    [134]Baron R., Janig W., Kollmann W. Sympathetic and afferent somata projecting in hindlimb nerves and the anatomical organization of the lumbar sympathetic nervous system of the rat. J Comp Neurol,1988,275(3):460-468.
    [135]Takahashi Y., Nakajima Y. Dermatomes in the rat limbs as determined by antidromic stimulation of sensory C-fibers in spinal nerves. Pain,1996,67(1):197-202.
    [136]Chung K., Lee B. H., Yoon Y. W., et al. Sympathetic sprouting in the dorsal root ganglia of the injured peripheral nerve in a rat neuropathic pain model. Journal of Comparative Neurology, 1996,376(2):241-252.
    [137]Chung K., Kim H. J., Na H. S., et al. Abnormalities of sympathetic innervation in the area of an injured peripheral nerve in a rat model of neuropathic pain. Neurosci Lett,1993,162(1-2): 85-88.
    [138]Helke C. J., Rabchevsky A. Axotomy alters putative neurotransmitters in visceral sensory neurons of the nodose and petrosal ganglia. Brain Res,1991,551(1-2):44-51.
    [139]Katz D. M. Expression of catecholaminergic characteristics by primary sensory neurons in the normal adult rat in vivo. Proceedings of the National Academy of Sciences of the United States of America,1983,80(11):3526-3530.
    [140]Xie W., Strong J. A., Li H., et al. Sympathetic sprouting near sensory neurons after nerve injury occurs preferentially on spontaneously active cells and is reduced by early nerve block. J Neurophysiol,2007,97(1):492-502.
    [141]Kinnman E., Levine J. D. Sensory and sympathetic contributions to nerve injury-induced sensory abnormalities in the rat. Neuroscience,1995,64(3):751-767.
    [142]Wiesenfeld-Hallin Z. Partially overlapping territories of nerves to hindlimb foot skin demonstrated by plasma extravasation to antidromic C-fiber stimulation in the rat. Neurosci Lett, 1988,84(3):261-265.
    [143]Takahashi Y., Chiba T., Kurokawa M., et al. Stereoscopic structure of sensory nerve fibers in the lumbar spine and related tissues. Spine (Phila Pa 1976),2003,28(9):871-880.
    [144]Amir R., Devor M. Axonal cross-excitation in nerve-end neuromas:comparison of A- and C-fibers. J Neurophysiol,1992,68(4):1160-1166.
    [145]Bonica J. J. The management of Pain. Lea and Febiger,1990,
    [146]Wahren L. K., Torebjork E., Nystrom B. Quantitative sensory testing before and after regional guanethidine block in patients with neuralgia in the hand. Pain,1991,46(1):23-30.
    [147]Raja S. N., Treede R. D., Davis K. D., et al. Systemic alpha-adrenergic blockade with phentolamine: a diagnostic test for sympathetically maintained pain. Anesthesiology,1991,74(4): 691-698.
    [148]Holzer P. Peptidergic sensory neurons in the control of vascular functions:mechanisms and significance in the cutaneous and splanchnic vascular beds. Rev Physiol Biochem Pharmacol, 1992,121(49-146.
    [149]Ma W., Ramer M. S., Bisby M. A. Increased calcitonin gene-related peptide immunoreactivity in gracile nucleus after partial sciatic nerve injury: age-dependent and originating from spared sensory neurons. Exp Neurol,1999,159(2):459-473.
    [150]Aldskogius H., Kozlova E. N. Central neuron-glial and glial-glial interactions following axon injury. Prog Neurobiol,1998,55(1):1-26.
    [151]Hu P., Mclachlan E. M. Inflammation in sympathetic ganglia proximal to sciatic nerve transection in rats. Neurosci Lett,2004,365(1):39-42.
    [152]Mannion R. J., Woolf C. J. Pain mechanisms and management: a central perspective. Clin J Pain,2000,16(3 Suppl):S144-156.
    [153]Michaelis M., Blenk K. H., Janig W., et al. Development of spontaneous activity and mechanosensitivity in axotomized afferent nerve fibers during the first hours after nerve transection in rats. J Neurophysiol,1995,74(3):1020-1027.
    [154]Kajander K. C., Wakisaka S., Bennett G. J. Spontaneous discharge originates in the dorsal root ganglion at the onset of a painful peripheral neuropathy in the rat. Neurosci Lett,1992, 138(2):225-228.
    [155]Liu C. N., Michaelis M., Amir R., et al. Spinal nerve injury enhances subthreshold membrane potential oscillations in DRG neurons: relation to neuropathic pain. J Neurophysiol, 2000,84(1):205-215.
    [156]Michaelis M., Liu X., Janig W. Axotomized and intact muscle afferents but no skin afferents develop ongoing discharges of dorsal root ganglion origin after peripheral nerve lesion. J Neurosci,2000,20(7):2742-2748.
    [157]Mclachlan E. M., Janig W., Devor M., et al. Peripheral nerve injury triggers noradrenergic sprouting within dorsal root ganglia. Nature,1993,363(6429):543-546.
    [158]Albers K. M., Wright D. E., Davis B. M. Overexpression of nerve growth factor in epidermis of transgenic mice causes hypertrophy of the peripheral nervous system. J Neurosci, 1994,14(3 Pt 2):1422-1432.
    [159]Ramer M. S., Kawaja M. D., Henderson J. T., et al. Glial overexpression of NGF enhances neuropathic pain and adrenergic sprouting into DRG following chronic sciatic constriction in mice. Neurosci Lett,1998,251(1):53-56.
    [160]Ramer M., Bisby M. Reduced sympathetic sprouting occurs in dorsal root ganglia after axotomy in mice lacking low-affinity neurotrophin receptor. Neurosci Lett,1997,228(1):9-12.
    [161]Walsh G S., Krol K. M., Kawaja M. D. Absence of the p75 neurotrophin receptor alters the pattern of sympathosensory sprouting in the trigeminal ganglia of mice overexpressing nerve growth factor. J Neurosci,1999,19(1):258-273.
    [162]Thompson S. W., Majithia A. A. Leukemia inhibitory factor induces sympathetic sprouting in intact dorsal root ganglia in the adult rat in vivo. J Physiol,1998,506 (Pt 3)(809-816.
    [163]Thompson S. W., Vernallis A. B., Heath J. K., et al. Leukaemia inhibitory factor is retrogradely transported by a distinct population of adult rat sensory neurons:co-localization with trkA and other neurochemical markers. Eur J Neurosci,1997,9(6):1244-1251.
    [164]Kim H. J., Na H. S., Nam H. J., et al. Sprouting of sympathetic nerve fibers into the dorsal root ganglion following peripheral nerve injury depends on the injury site. Neurosci Lett,1996, 212(3):191-194.
    [165]Hu P., Mclachlan E. M. Long-term changes in the distribution of galanin in dorsal root ganglia after sciatic or spinal nerve transection in rats. Neuroscience,2001,103(4):1059-1071.
    [166]Ramer M. S., Bisby M. A. Normal and injury-induced sympathetic innervation of rat dorsal root ganglia increases with age. J Comp Neurol,1998,394(1):38-47.
    [167]Garcia-Poblete E., Fernandez-Garcia H., Moro-Rodriguez E., et al. Sympathetic sprouting in dorsal root ganglia (DRG):a recent histological finding? Histol Histopathol,2003,18(2): 575-586.
    [168]Kim H. J., Na H. S., Back S. K., et al. Sympathetic sprouting in sensory ganglia depends on the number of injured neurons. Neuroreport,2001,12(16):3529-3532.
    [169]Hu P., Mclachlan E. M. Selective reactions of cutaneous and muscle afferent neurons to peripheral nerve transection in rats. J Neurosci,2003,23(33):10559-10567.
    [170]Hu P., Mclachlan E. M. Distinct sprouting responses of sympathetic and peptidergic sensory axons proximal to a sciatic nerve transection in guinea pigs and rats. Neurosci Lett,2000, 295(1-2):59-63.
    [171]Shir Y., Seltzer Z. Effects of sympathectomy in a model of causalgiform pain produced by partial sciatic nerve injury in rats. Pain,1991,45(3):309-320.
    [172]Herzberg U., Eliav E., Dorsey J. M., et al. NGF involvement in pain induced by chronic constriction injury of the rat sciatic nerve. Neuroreport,1997,8(7):1613-1618.
    [173]Mclachlan E. M., Hu P. Axonal sprouts containing calcitonin gene-related peptide and substance P form pericellular baskets around large diameter neurons after sciatic nerve transection in the rat. Neuroscience,1998,84(4):961-965.
    [174]Li L., Zhou X. F. Pericellular Griffonia simplicifolia I isolectin B4-binding ring structures in the dorsal root ganglia following peripheral nerve injury in rats. J Comp Neurol,2001,439(3): 259-274.
    [175]Chung K., Yoon Y. W., Chung J. M. Sprouting sympathetic fibers form synaptic varicosities in the dorsal root ganglion of the rat with neuropathic injury. Brain Res,1997,751(2):275-280.
    [176]Ramer M. S., Bisby M. A. Sympathetic axons surround neuropeptide-negative axotomized sensory neurons. Neuroreport,1998,9(13):3109-3113.
    [177]Wallace M. S., Ridgeway B. M., Leung A. Y., et al. Concentration-effect relationship of intravenous Iidocaine on the allodynia of complex regional pain syndrome types Ⅰ and Ⅱ. Anesthesiology,2000,92(1):75-83.
    [178]Zhang J. M., Li H., Munir M. A. Decreasing sympathetic sprouting in pathologic sensory ganglia:a new mechanism for treating neuropathic pain using Iidocaine. Pain,2004,109(1-2): 143-149.
    [179]Kelly M. E., Bulloch A. G., Lukowiak K., et al. Regeneration of frog sympathetic neurons is accompanied by sprouting and retraction of intraganglionic neurites. Brain Res,1989,477(1-2): 363-368.
    [180]Ma W., Bisby M. A. Increase of preprotachykinin mRNA and substance P immunoreactivity in spared dorsal root ganglion neurons following partial sciatic nerve injury. Eur J Neurosci, 1998,10(7):2388-2399.
    [181]Mearow K. M., Kril Y., Diamond J. Increased NGF mRNA expression in denervated rat skin. Neuroreport,1993,4(4):351-354.
    [182]Diamond J., Foerster A., Holmes M., et al. Sensory nerves in adult rats regenerate and restore sensory function to the skin independently of endogenous NGF. J Neurosci,1992,12(4): 1467-1476.
    [183]Ure D. R., Campenot R. B. Leukemia inhibitory factor and nerve growth factor are retrogradely transported and processed by cultured rat sympathetic neurons. Dev Biol,1994, 162(2):339-347.
    [184]Moalem G., Xu K., Yu L. T lymphocytes play a role in neuropathic pain following peripheral nerve injury in rats. Neuroscience,2004,129(3):767-777.
    [185]Deng Y. S., Zhong J. H., Zhou X. F. BDNF is involved in sympathetic sprouting in the dorsal root ganglia following peripheral nerve injury in rats. Neurotox Res,2000,1(4):311-322.
    [186]Gadient R. A., Otten U. Postnatal expression of interleukin-6 (IL-6) and IL-6 receptor (IL-6R) mRNAs in rat sympathetic and sensory ganglia. Brain Res,1996,724(1):41-46.
    [187]Zhong J., Dietzel I. D., Wahle P., et al. Sensory impairments and delayed regeneration of sensory axons in interleukin-6-deficient mice. J Neurosci,1999,19(11):4305-4313.
    [188]Sterneck E., Kaplan D. R., Johnson P. F. Interleukin-6 induces expression of peripherin and cooperates with Trk receptor signaling to promote neuronal differentiation in PC12 cells. J Neurochem,1996,67(4):1365-1374.
    [189]Lu X., Richardson P. M. Inflammation near the nerve cell body enhances axonal regeneration. J Neurosci,1991,11(4):972-978.
    [190]Zhou X. F., Rush R. A., Mclachlan E. M. Differential expression of the p75 nerve growth factor receptor in glia and neurons of the rat dorsal root ganglia after peripheral nerve transection. J Neurosci,1996,16(9):2901-2911.
    [191]Johnson E. M., Jr., Taniuchi M., Distefano P. S. Expression and possible function of nerve growth factor receptors on Schwann cells. Trends Neurosci,1988,11(7):299-304.
    [192]Zhang X., Meister B., Elde R., et al. Large calibre primary afferent neurons projecting to the gracile nucleus express neuropeptide Y after sciatic nerve lesions:an immunohistochemical and in situ hybridization study in rats. Eur J Neurosci,1993,5(11):1510-1519.
    [193]Noguchi K., Kawai Y., Fukuoka T., et al. Substance P induced by peripheral nerve injury in primary afferent sensory neurons and its effect on dorsal column nucleus neurons. J Neurosci, 1995,15(11):7633-7643.
    [194]Ma W., Bisby M. A. Differential expression of galanin immunoreactivities in the primary sensory neurons following partial and complete sciatic nerve injuries. Neuroscience,1997,79(4): 1183-1195.
    [195]Djouhri L., Lawson S. N. Abeta-fiber nociceptive primary afferent neurons:a review of incidence and properties in relation to other afferent A-fiber neurons in mammals. Brain Res Brain Res Rev,2004,46(2):131-145.
    [196]Fang X., Djouhri L., Mcmullan S., et al. trkA is expressed in nociceptive neurons and influences electrophysiological properties via Nav1.8 expression in rapidly conducting nociceptors. J Neurosci,2005,25(19):4868-4878.
    [197]Verge V. M., Riopelle R. J., Richardson P. M. Nerve growth factor receptors on normal and injured sensory neurons. J Neurosci,1989,9(3):914-922.
    [198]Li L., Deng Y. S., Zhou X. F. Downregulation of TrkA expression in primary sensory neurons after unilateral lumbar spinal nerve transection and some rescuing effects of nerve growth factor infusion. Neurosci Res,2000,38(2):183-191.
    [199]Birder L. A., Perl E. R. Expression of alpha2-adrenergic receptors in rat primary afferent neurones after peripheral nerve injury or inflammation. J Physiol,1999,515 (Pt 2)(533-542.
    [200]Segond Von Banchet G., Pastor A., Biskup C., et al. Localization of functional calcitonin gene-related peptide binding sites in a subpopulation of cultured dorsal root ganglion neurons. Neuroscience,2002,110(1):131-145.
    [201]Abdulla F. A., Stebbing M. J., Smith P. A. Effects of substance P on excitability and ionic currents of normal and axotomized rat dorsal root ganglion neurons. Eur J Neurosci,2001,13(3): 545-552.
    [202]Xu Z. Q., Zhang X., Grillner S., et al. Electrophysiological studies on rat dorsal root ganglion neurons after peripheral axotomy: changes in responses to neuropeptides. Proc Natl Acad Sci U S A,1997,94(24):13262-13266.
    [203]Burchiel K. J. Spontaneous impulse generation in normal and denervated dorsal root ganglia: sensitivity to alpha-adrenergic stimulation and hypoxia. Exp Neurol,1984,85(2): 257-272.
    [204]Rubin G., Kaspi T., Rappaport Z. H., et al. Adrenosensitivity of injured afferent neurons does not require the presence of postganglionic sympathetic terminals. Pain,1997,72(1-2): 183-191.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700