卫星跟踪卫星任务的引力谱分析和状态估计方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从谱分析和非线性系统状态估计的角度对卫卫跟踪技术进行探索,所做的主要工作和创新有两部分:引力向量的谱分析理论和新型状态估计方法的提出。具体内容如下:
     在地球引力场量的表示中引入了直角坐标,建立了一套完整的引力位、引力向量和引力张量的公式体系,从而便于直接利用地心地固系中GPS对低轨卫星的跟踪数据。基于引力场量的直角坐标表示,推导出了这些引力场量的直接计算公式和具有更稳定数值计算性能的递推公式。此外还给出了引力场量在不同直角坐标系之间的转换关系。
     将引力位、引力向量纳入傅立叶谱分析的框架。借助于傅立叶分析理论,得到了引力位和引力向量在经纬线方向和沿卫星轨道方向的傅立叶级数表达式,并且针对低低卫星跟踪卫星的实际情况,推导出了进行低低跟踪的两颗卫星之间的引力向量之差的傅立叶级数表达式。根据这些表达式得到了集总系数与引力位系数之间的关系。
     根据卫卫跟踪观测的时间序列获得所需的引力向量是一个复杂的非线性系统状态估计问题,为此建立了卫卫跟踪观测系统的状态空间模型,对所研究系统的可观测性从解析法的角度进行了分析,从而为应用状态估计方法奠定了基础。
     为了满足轨道模拟计算和状态参数估计的需要,提出了改进的扩展卡尔曼滤波方法,包括Sigma点卡尔曼滤波(SPKF)方法、基于高斯-赫尔默特积分规则的滤波方法,推导了基于Stirling内插公式的中心差分卡尔曼滤波(CDKF)方法。这几种方法利用了统计意义上的线性化逼近模型方程,而EKF仅仅是通过泰勒级数展开式的一阶线性化逼近复杂的非线性模型。通过研究还发现了CDKF与SPKF方法在本质上的相似性,并且将它们从形式上统一起来,提出了利用矩阵分解技术的实现算法:平方根SPKF和平方根CDKF算法。实验结果表明,本文提出的改进型扩展卡尔曼滤波方法易于实现,因为它们不需要计算非线性系统模型方程的雅可比矩阵;它们还具有良好的稳定性,比扩展卡尔曼滤波高出一阶的精度,而计算量并没有显著的增长。
     模拟计算了GRACE两颗卫星35转的轨道弧段,利用本文提出的非线性系统状态估计方法计算出了轨道引力向量的时间序列,再根据引力谱分析理论对两颗卫星29转弧段的引力向量之差进行了分析,得到了关于引力信号的频谱,并从中选取了对整个信号功率贡献最大的频率。借助于傅立叶谱的解析表达式,确定了集总系数即傅立叶系数与引力位球谐系数之间的联系,所得到的结果可作为实际数据处理的参考。
In this dissertation there are mainly two problems discussed. One is the spectrum analysis theory of gravity vector of satellites in high-low or low-low mode, the other is the derivation of new state-estimation methods based on the Extended Kalman Filter. The main work and research are listed as follows.The aim of spectrum analysis is to determine the very parts of the Earth's gravitational field that have the strongest effect on the orbit of an artificial satellite. To attain this goal, this dissertation presents a spectrum analysis method which is based on an analytical Fourier series analysis of the commonly used spherical harmonic series expansion which is used for the representation of the Earth's gravitational field. By means of the spectrum expansion the connection between the gravity potential coefficients and the frequencies in the field's representation is determined.Within the Cartesian coordinates framework, recursive formulae for the computation of not only gravitational vector but also the gravitational tensor are derived which have more stable numerical performance than direct formulae. And the transformation of both gravitational vector and tensor is also discussed in detail.The computation of gravitational acceleration vectors of a satellite from its position and velocity observables, as well as its orbit determination, can be reduced to a state estimation problem for nonlinear systems. Firstly, a state-space model for satellite gravity observation system is set up and its observability is analyzed. Then, as far as state estimation of highly non-linear systems like the satellite gravity observation system is concerned, this dissertation is also dedicated to improve the existing Extended Kalman Filter. There are mainly two new state estimation methods put forward: Sigma Point Kalman Filter and Central Difference Kalman Filter. Although these two new methods are similar to the Extended Kalman Filter, they overcome its inherent defects through statistical linearization approximation, and thus gain higher accuracy, more stable numerical stability, while the computation cost can be kept low by means of efficient linear algebraic techniques. And the methods are essentially same and both can be called the Sigma Point Kalman Filter. Results of experiments show that the new methods can be used in place of the Extended Kalman Filter in most applications.Base on the above-mentioned spectrum analysis and state estimation methods, the dedicated gravitational field mission, GRACE, serves as an example with special conditions highlighted that arise for low earth orbit missions. The determination of the gravitational acceleration vectors acting on the GRACE satellites along the orbit from the observables position and velocity is performed by means of the Sigma Point Kalman Filter for filtering and parameter estimation for non-linear systems. The results can serve as reference for practical data processing.
引文
[1] 毕思文.地球系统科学导论[M].北京:科学出版社,2003.
    [2] 蔡洪.Unscented Kalman滤波用于再入飞行器跟踪[J].飞行器测控学报,2003,22(3):12-16.
    [3] 陈芳允,贾乃华.卫星测控手册[M].北京:科学出版社,1992.
    [4] 陈俊勇.GPS应用的最新进展——国际大地测量协会(IAG) 2001年科学大会综述[J].2001,26(6):6-7.
    [5] 陈俊勇等.迈入新千年的大地测量学——第22届IUGG大会有关大地测量部分的技术总结[J].测绘学报,2000,29(1):1-11.
    [6] 陈俊勇等.23届IUGG大会有关大地测量的最新进展[J].测绘学报,2004,33(1):12-21.
    [7] 方俊.重力测量与地球形状学(上册).北京:科学出版社,1965.
    [8] 方俊.重力测量与地球形状学(下册).北京:科学出版社,1975.
    [9] 方开泰,实用多元统计分析[M].上海:华东师范大学出版社,1989.
    [10] 封建湖,车刚明,聂玉峰.数值分析原理[M].北京:科学出版社,2001.
    [11] 冯康,数值计算方法[M].北京:国防工业出版社,1978.
    [12] 国家自然科学基金委员会.自然科学学科发展战略调研报告:大地测量学[M].1994.
    [13] 郭俊义.物理大地测量学基础[M].武汉:武汉测绘科技大学出版社,1994.
    [14] 胡明城.空间大地测量的最新进展(一)[J].测绘科学,2001,26(3):52-55.
    [15] 胡明城.空间大地测量的最新进展(二)[J].测绘科学,2001,26(4):53-56.
    [16] 胡明城.空间大地测量的最新进展(三)[J].测绘科学,2002,27(1):59-60(转7).
    [17] 胡明城.空间大地测量的最新进展(四)[J].测绘科学,2002,27(2):49-51.
    [18] 胡明城.空间大地测量的最新进展(五)[J].测绘科学,2002,27(3):57-59.
    [19] 胡明城.空间大地测量的最新进展(六)[J].测绘科学,2002,27(4):64-66.
    [20] 胡明城,鲁福.现代大地测量学(下册)LM].北京:测绘出版社,1994.
    [21] 胡建国,杨元喜,李建成等.IAG2001年科学大会与大地测量学的最新进展[J].大地测量与地球动力学,2002,22(4):112-119.
    [22] 华仲春,陆仲连.中国中西部重力场谱分析[J].地球物理学报,1991,34(2):195-202.
    [23] 黄维彬,近代平差理论及其应用[M].北京:解放军出版社,1992.
    [24] 季善标,朱文耀,熊永清.星载GPS精密测轨研究及应用[J].天文学进展,2000,18(1):17-28.
    [25] 贾沛璋,朱征兆.最优估计及其应用[M].北京:科学出版社,1984.
    [26] 蒋虎,黄珹,严豪键.无线电掩星反演大气参数误差分析及应用进展[J].地球物理学进展,2001,16(1):82-88.
    [27] 李济生.人造卫星精密轨道确定[M].北京:解放军出版社,1995.
    [28] 梁泽环.卡尔曼滤波在卫星遥感影像大地校正中的应用[J].环境遥感,1990,5(4):297-307.
    [29] 李建成.物理大地测量中的谱方法[D].武汉:武汉测绘科技大学,1993.
    [30] 刘斌.低轨飞行器利用GPS定轨的算法研究[J].中国空间科学技术,1995,4:22-31.
    [31] 刘大杰,陶本藻实用测量数据处理方法[M].北京:测绘出版社,2000.
    [32] 刘基余.GPS卫星导航定位原理与方法[M].北京:科学出版社,2003.
    [33] 刘经南,罗佳.武汉CHAMP站的建立以CHAMP任务的应用[J].武汉大学学报信息科学版,2002,27(6):551-554.
    [34] 刘林.人造地球卫星轨道力学[M].北京:高等教育出版社,1992.
    [35] 刘林.航天器轨道理论[M].北京:国防工业出版社,2000.
    [36] 刘林.天体力学方法[M].南京:南京大学出版社,1998.
    [37] 刘林,廖新浩.人卫长弧定轨中的摄动计算问题[J].天文学报,1993,34(4):411-422.
    [38] 柳林涛.小波基本理论及其在大地测量等领域中的应用[D].武汉:中国科学院测量与地球物理研究所,1999.
    [39] 刘迎春,刘林.月球卫星的精密定轨[J].空间科学学报.2002,22(3):249-255.
    [40] 刘振兴.地球空间双星探测计划[J].地球物理学报,2001,44(4):573-580.
    [41] 陆仲连.地球重力场理论与方法[M].北京:解放军出版社,1996.
    [42] 陆仲连.球谐函数[M].北京:解放军出版社,1988.
    
    [43] 陆仲连,吴晓平.人造地球卫星与地球重力场[M].北京:测绘出版社,1994.
    [44] 罗佳.利用卫星跟踪卫星确定地球重力场的理论和方法[D].武汉:武汉大学,2003.
    [45] 罗志才.利用卫星重力梯度数据确定地球重力场的理论与方法[D].武汉:武汉测绘科技大学,1996.
    [46] 孟嘉春,蔡喜楣.卫星重力梯度测量及其应用前景探讨[J].地球物理学报,34(3):369-376.
    [47] 孟嘉春,刘尚佘.卫星重力梯度测量与地球引力场的精度研究[J].地球物理学报,1993,No 6,Vol 36,725-739.
    [48] 宁津生,邱卫根,陶本藻.地球重力场模型理论[M].武汉:武汉测绘科技大学出版社,1990.
    [49] 宁津生.卫星重力探测技术与地球重力场研究[J].大地测量与地球动力学,2002,22(1):1-5.
    [50] 宁津生,李建成,晁定波等.WDM94 360阶地球重力场模型研究[J].武汉测绘科技大学学报,1994,19(4):283-291.
    [51] 沈云中.利用CHAMP卫星星历精化地球重力场模型的研究[D].武汉:中国科学院测量与地球物理研究所,2000.
    [52] 史忠科,最优估计的计算方法[M].北京:科学出版社,2001.
    [53] 宋文尧,张牙.卡尔曼滤波[M].北京:科学出版社,1991.
    [54] 孙文科.低轨道人造卫星(CHAMP、GRACE、GOCE)与高精度地球重力场—卫星重力大地测量的最新发展及其对地球科学的重大影响[J].大地测量与地球动力学,2002,22(1):92-100.
    [55] 王淑一,程杨,杨涤,崔祜涛.UKF方法及其在方位跟踪问题中的应用[J].飞行力学,21(2):59-62.
    [56] 王威,郗晓宁,韩龙.利用星间伪距观测进行编队星座相对状态测量[J].国防科技大学学报,2002,24(1):25-29.
    [57] 武延鹏,尤政,任大海.采样Kalman滤波器在天文卫星定姿滤波中的应用[J].清华大学学报(自然科学版),2003,43(8):1013-1016.
    [58] 奚锐锋.平面复测网的自适应卡尔曼滤波方法[J].测绘学报,1990,19(2):139-147.
    [59] 许厚泽,陆仲连.中国地球重力场与大地水准面[M].北京:解放军出版社,1997.
    [60] 许厚泽.卫星重力研究:21世纪大地测量研究的新热点[J].测绘科学,2001,26(3):1-3.
    [61] 许厚泽,沈云中.利用CHAMP卫星星历恢复引力位模型的模拟研究[J].武汉大学学报信息科学版,2001,26(6):483-486.
    [62] 许其凤.GPS卫星导航与精密定位[M].北京:解放军出版社,1994.
    [63] 徐绍铨,张华海,杨志强等.GPS测量原理及应用[M].武汉:武汉测绘科技大学出版社,1998.
    [64] 徐树方.矩阵计算的理论与方法[M].北京:北京大学出版社,1995.
    [65] 杨强文.地球重力场球面小波展开及其应用[D].郑州:信息工程大学测绘学院,2001.
    [66] 章传银,高永泉.浅论现代测绘科学基本问题与科学思维[J].测绘科学,2002,27(1):15-23.
    [67] 张传定.卫星重力测量——基础、模型化方法与数据处理算法[D].郑州:信息工程大学测绘学院,2000.
    [68] 张大海,郭鹏等.GPS掩星技术低轨卫星计划的现状及进展[J].天文学进展,2002,20(2):114-121.
    [69] 周概容.概率论与数理统计[M].北京:高等教育出版社,1984.
    [70] 周建华.序贯处理与成批处理在定轨应用中的一些问题[J].测绘学报,1993,22(2):142-148.
    [71] 周建华,刘林,朱文耀.长弧定轨结果的比较与力学模型的修正[J].天文学报,1993,34(2):209-218.
    [72] 周桃庚,郝群,沙定国.U-卡尔曼滤波在状态估计中的应用[J].仪器仪表学报,2003,24(4):410-412.
    [73] 周忠谟.易杰军,周琪.GPS卫星测量原理与应用[M],1992.
    [74] 朱长青.计算方法及其在测绘中的应用[M].北京:测绘出版社,1997.
    [75] 朱文耀,冯初刚,张华等.中国SLR网独立测定ERP和定轨的精度估计[J].测绘学报,1989,18(4):305-312.
    [76] Edward WK, Bonnie SH.应用Web和Matlab的信号与系统基础[M].北京:电子工业出版社,2002.
    [77] Kumar M.1984世界大地测量系统[J].测绘科技通讯,61(17):40-42.
    [78] Lambeck K.地球物理大地测量学:地球的慢形变[M].北京:地震出版社,1998.
    [79] Michael TH.科学计算导论[M].北京:清华大学出版社,2001.
    [80] Press WH, Saul AT, Vetterling WT, et al. C++数值算法(第二版)[M].北京:电子工业出版社,2003.
    [81] Seeber G.卫星大地测量学[M].地震出版社,1998.
    [82] Steven MK.统计信号处理基础——估计与检测理论[M].北京:电子工业出版社,2003.
    [83] Arabelos D, Tscherning CC. Improvements in height datum transfer expected from the GOCE mission[J]. Journal of Geodesy, 2001, 75: 308-312.
    [84] Ardalan AA. Spheroidal co-ordinates and spheroidal eigenspace of the Earth gravity field[D]. MSc thesis, GIS, Stuttgart, 1996.
    [85] Abramowitz A. (Stegun IA eds)Handbook of Mathematical Functions[M]. Dover Publications Inc, New York 1965.
    
    [86] Albertella A, Migliaccio F, Sans6 F. Direct and local comparison between differem satellite missions for the gravity field on-the-fly[A]. (Schwarz ed) Geodesy Beyond 2000 - The Challenges of the First Decade[C]. International Association of Geodesy Symposia 121, Springer, Berlin, 2000.
    [87] Alspace DL, Sorenson HW. Nonlinear Bayesian Estimation using Gaussian Sum Approximation[J]. IEEE Transactions on Automatic Control, 1972, 17(4): 439-448.
    [88] Austen G, Grafarend EW, Reubelt Austen TG, Reubelt T. RSumliche Schwerefeldanalyse aus semi-kontinuierlichen Ephemeriden niedrigfliegender GPS-vermessener Satelliten von Typ CHAMP, GRACE und GOCE[D]. Geodetic Institute, University of Stuttgart, 2000.
    [89] Austen G, Grafarend EW, Reubelt T. Analysis of the Earth's Gravitational Field from Semi-Continuous Ephemeris of a Low Earth Orbiting GPS-Tracked Satellite of Type CHAMP, GRACE or GOCE[A]. Geodetic Institute, University of Stuttgart, 2002.
    [90] Balmino G. Orbit Choice and the Theory of Radial Orbit Error for Altimetry[A]. (R Rummel & F Sanso eds)SateIlite Altimetry in Geodesy and Oceanography, Lecture notes in Earth Sciences, Vol 50. Springer-Verlag, Berlin, 1993.
    [91] Balmino G, Schrama E, Sneeuw NJ. Compatibility of first-order circular orbit perturbations theories; consequences for cross-track inclination functions[J]. Journal of Geodesy, 1996,70: 554-561. [92] Barriot JP, Vales N, Balmino G. A 180th degree and order model of the Venus gravity field from Magellan line of sight residual Doppler data[J]. GEOPHYSICAL RESEARCH LETTERS, 25(19): 3,743-3,746.
    [93] Belikov MV, Taybatorov K A. An efficient algorithm for computing the Earth's gravitational potential and its derivatives at satellite altitudes[J]. Manuscripta Geodetica, 1992, 17: 104-116.
    [94] BettadpurSV. Hotines's geopotential formulation: revisted[J]. Bull. Geod. 1995, 69: 135-142.
    [95] Bettadpur SV, Schutz BE, Lundberg JB. Spherical harmonic synthesis and least squares computations in satellite gravity gradiometry[J]. Bulletin geodesique, 1992,66.
    [96] Biancale R, Balmino G, Jean-Michel Lemoine, et al. A new global Earth's gravity field model from satellite orbit perturbations: GRIM5-S1[J]. GEOPHYSICAL RESEARCH LETTERS, 2000, 27(22): 3,611-3,614.
    [97] Blais JAR, Provins DA. Spherical harmonic analysis and synthesis for global multi-resolution applications[J]. Journal of Geodesy, 2002, 76: 29-35.
    [98] Blaha G . Refinement of the satellite-to-satellite line-of-sight acceleration model in a residual gravity field[J]. Manuscripta Geodaetica, 1992,17: 321-333.
    [99] Bojanczyk A, Higham N J, Patel H . Solving the indefinite least squares problem by hyperbolic QR factorization[J]. SIAMJ. MATRIX ANAL. APPL. 2003, 24(4): 914-931.
    [100] Bontayeb M, Rafarlaky H, Daonack M. Convergence analysis of the extended Kalman filter used as an observer for nonlinear discrete-time systems[J]. IEEE Trans. Autom. Contr, 1997, AC-42: 581-586. [101] Bouman J. A survey of global gravity models, DEOS Report 97-l[R]. Delft Institute for Earth Orientation Space Research, 1997.
    [102] Brockwell PJ, Rechard AD. Timeseries: Theory and Methods[M]. Springer-Verlag New York Inc, 1997. [103] Chen JL, Wilson CR, Eanes R J, et al. A new assessment of long-wavelength gravitational variations[J]. Journal of Geophysical Resaearch, 2000, 15(B7): 16,271 -16,277. [104] Chui Ch. Satellite orbit integration based on canonical transformations with special regard to the resonance and coupling effects[D]. DGK A Heft Nr. 112, Munchen, 1997. [105] Cui Ch, Lelgemann D. On non-linear low-low SST observation equations for the determination of the geopotential based on an analytical solution[J]. Journal of Geodesy, 2000,74: 431-440. [106] Cui Ch, Lelgemann D. Analytical dynamic orbit improvement for the evaluation of geodetic-geodynamic satellite data[J]. Journal of Geodesy, 1995, 70: 83-97.
    [107] Cheng MK. Gravitational perturbation theory for intersatellite tracking[J]. Journal of Geodesy, 2002, 76: 169-185.
    [108] Christof Shaefer. Space gravity spectroscopy: The sensitivity analysis of GPS-tracked satellite missions(case study CHAMP)[D]. Geodaetisches Institut der Universitaet Stuttgart, 2001. [109] Colombo OL . The Dynamics Of Global Positioning System Orbits And The Determination Of Precise Ephemerides[J]. Journal of Geophysical Research, 1989, 94(B7): 9,167-9,182. [110] Colombo OL. Numerical methods for harmonic analysis on the sphere[R]. OSU-DGS Report No 310, Columbus, 1981.
    [111] Demianov G, Maiorov A. Comparison and evaluation of the new Russian global geopotential model to degree 360[A]. (Schwarz ed)Geodesy Beyond 2000 - The Challenges of the First Decade[C]. International Association of Geodesy Symposia 121, Springer, Berlin, 2000.
    [112] Dong D, Herring TA, King RW. Estimating regional deformation from a combination of space and terrestrial geodetic data[J]. Journal Geodesy, 1998,72: 200-214.
    
    [113] Ditmar P, Klees R, Kostenko F. Fast and accurate computation of spherical harmonic coefficients from satellite gravity gradiometry data[J]. Journal of Geodesy, 2003, 76: 690-705.
    [114] Emeljanov NV, Kanter AA. A method to compute inclination functions and their derivatives[J]. Manuscripts Geodaetica, 1989, 14: 77-83.
    [115] Engelis T. On the simultaneous improvement of a satellite orbit and determination of sea surface topography using altimeter data[J]. Manuscripts Geodaetica, 1988,13: 180-190.
    [116] EscobalPR. Methods of Orbit Determination[M]. Robert E, Krieger Publishing Comp, Malabar (Florida), 1975.
    [117] Exertier P, Bonnefond P. Analytical solution of perturbed circular motion: application to satellite geodesy[J]. Journal of Geodesy, 1997, 71: 149-159.
    [118] FreedenW. Multiscale modelling of spaceborne geo-data[A]. Stuttgart, 1999.
    [119] Freeden W, Pereverzev S. Spherical Tikhonov regularization wavelets in satellite gradiometry with random noise[J]. Journal of Geodesy, 2001, 74: 730-736.
    [120] FreedenW, SchreinerM. New wavelet methods for approximating harmonic functions[A]. (Sanso F ed)IAG Symposia, Springer, Berlin-Heidelberg-New York, 1995, 114.
    [121] Freeden W, Windheuser U. Combined spherical harmonic and wavelet expansion -a future concept in Earth's graviational determination[C]. Appl. Comp. Harmon. Anal. 1997,4: 1-37.
    [122] FrobergCE. Introduction to Numerical Analysis. Addison-Wesley, Reading, 1972. Second edition.
    [123] Georges B. Refinement of the satellite-to-satellite acceleration model in a residual gravity field[J]. Manuscripta Geodaetica, 1992,17: 321-333.
    [124] Gelderen MV, Rummel R. The solution of the general geodetic boundary value problem by least squares[J]. Journal of Geodesy, 2001,75: 1-11.
    [125] Grewal MS, Andews AP. Kalman filtering - Theory and practice[M]. Prentice Hall, Inc , Englewood Cliffs, 1993.
    [126] Grueber T, Reigber C, Schwintzer P. The 1999 GFZ pre-CHAMP high resolution gravity model[A]. (Schwarz ed) Geodesy Beyond 2000 - The Challenges of the First Decade[C]. International Association of Geodesy Symposia 121,Springer, Berlin, 2000.
    [127] Hofsommer DJ, Potters ML. Table of Fourier coefficients of associated Legendre functions[A]. In Proceedings of the KNAWseries A[C]. Mathematical Sciences, Amsterdam, 1960, 63(5).
    [128] Holmes SA, Featherstone WE. A unified approach to the Clenshaw summation and the recursive computation of very high degree and order normalized associated Legendre functions[J]. Journal of Geodesy, 2002, 76: 279-299.
    [129] Hwang C. Gravity recovery using COSMIC GPS data: application of orbital perturbation theory[J]. Journal of Geodesy,2001,75: 117-136.
    [130] Ilk KH, Kusche J, Rudolph S . A contribution to data combination in ill-posed downward continuation problems[J]. Journal of Geodynamics, 2002, 33: 75-99.
    [131] Jazwinski AH. Stochastic processes and filtering theory[M]. Academic Press, New York-London, 1970.
    [132] Jekeli C, Upadhyay TN. Gravity Estimation From STAGE, a Satellite-to-Satellite Tracking Mission[J]. Journal of Geophysical Research, 1990, 95(B7): 10,973-10,985.
    [133] Jekeli C. The determination of gravitational potential differences from satellite-to-satellite tracking[J]. Celestial Mechanics and Dynamical Astronomy, 1999, 75: 85-101.
    [134] Jekeli C. Calibration/validation methods for GRACE[A]. (Schwarz ed) Geodesy Beyond 2000 - The Challenges of the First Decade[C]. International Association of Geodesy Symposia 121, Springer, Berlin, 2000.
    [135] Johannsen B. Berechnung des Einflusses der Erdalbedo auf eine Satellitenbahn[R]. GIS, Stuttgart, 1998.
    [136] Jones GC. New solutions for the geodetic coordinate transformation[J]. Journal of Geodesy, 2002, 76: 437-446.
    [137] Julier S, Uhlmann JK . A general method for approximating non-linear transformations of probability distributions[M]. WWW-Publication, 1994.
    [138] Julier S, Uhlmann J K. A new extension of the Kalman filter to nonlinear systems[A]. In The Proceedings ofAeroSense:The 11 th International Symposium on Aerospace/Defense Sensing, Simulation and Controls[C], Orlando (Florida).
    [139] Julier S, Uhlmann JK, Durrant-Whyte H. A new approach for filtering nonlinear systems[A]. In Proceedings of the American Control Conference[C], 1995: 1,628-1,632.
    [140] Julier S, Uhlmann JK . A General Method for Approximating Nonlinear Transformations of Probability Distributions[R]. RRG, Dept of Engineering Science, University of Oxford, 1996.
    [141] Julier S, Uhlmann JK. A New Extension of the Kalman Filter to Nonlinear Systems[A]. In Proc ofAeroSense: The 11th Int Symp on Aerospace/Defence Sensing, Simulation and Controls[C]. 1997.
    
    [142] Kalman RE. A New Approach to Linear Filtering and Prediction Problems[J]. Transactions ASME, Journal of Basic Engineering, 1960, D82: 35-45.
    [143] Kaula W. Theory of satellite geodesy[M]. Blaisdell Publishing Company, Waltham (Mass), 1966.
    [144] Kaula WM. Inference of Variations in the Gravity Field From Satellite-to-Satellite Range Rate[J]. Journal of Geophysical Research, 1983, 88(B10): 8,345-8,349.
    [145] Kazufumi Ito, Kaiqi Xiong. Gaussian Filters for Nonlinear Filtering Problems[J]. IEEE Transactions on Automatic Control, 2000, 45(5): 910-927.
    [146] Khan SA, Tscherning CC. Determination of semi-diurnal ocean tide loading constituents^]. Geophysical Research Letters, 2001, 28(11): 2,249-2,252.
    [147] Klees R, Koop R, Visser P, et al. Efficient gravity field recovery from GOCE gravity gradient observations[J]. Journal of Geodesy, 2000, 74: 561 -571.
    [148] Klees R, Ditmar P, Broersen P. How to handle colored observation in large least-squares problems[J]. Journal of Geodesy, 2003, 76: 629-640.
    [149] Klees R, Koop R, et al. Data analysis for the GOCE mission[A]. (Schwarz ed) Geodesy Beyond 2000 - The Challenges of the First Decade[C]. International Association of Geodesy Symposia 121, Springer, Berlin, 2000.
    [150] Klokocnik J. A review of methods of comparison of 'resonant' lumped geo-potential coefficientsfJ]. Bull. Astron. Inst. Czechosl, 1982,33: 89-104.
    [151] Klokocnik J, Reighber C, Schwintzer P, et al. Evaluation of pre-CHAMP gravity models 'GRIMS5-S1' and 'GRIM5-C1' with satellite crossover altimetry[J]. Journal of Geodesy, 2002,76: 189-198.
    [152] Klokocnik J, Wagner C A, Kostelecky. Spectral accuracy of JGM3 from satellite crossover altimetry[J]. Journal of Geodesy, 1999,73: 138-146.
    [153] Koop R, Stelpstra D . On the computation of the gravitational potential and its first and second order derivatives[J]. Manuscripta Geodetica, 1989, 14: 373-383.
    [154] Kotasakis C, Sideris MG. A modified Wiener-type filter for geodetic estimation problems with non-stationary noise[J]. Journal of Geodesy, 2001, 75: 647-660.
    [155] Kusche J. A Monte-Carlo technique for weight estimation in satellite geodesy[J]. Journal Of Geodesy, 2003, 76:641-652.
    [156] Kusche J, Rudolph S. The multigrid method for satellite gravity field recovery [A]. (Schwarz ed) Geodesy Beyond 2000- The Challenges of the First Decade[C]. International Association of Geodesy Symposia 121, Springer, Berlin, 2000.
    [157] Kusche J. Implementation of multigrid solvers for satellite gravity anomaly recovery[J]. Journal of Geodesy, 2001, 74:773-782.
    [158] Kusche J. On fast multigrid iteration techniques for the solution of normal equations in satellite gravity recovery[J]. Journal of Geodynamics, 2002, 33: 173-186.
    [159] Lefebvre T, Bruyninckx H, Schutter DJ. Comment on "A New Method for the Nonlinear Transformation of Means and Covariances in Filters and Estimators''[J]. IEEE Transactions on Automatic Control, 2002,47(8).
    [160] Lerch FJ, Wagner CA, Putney BG, et al. Gravitational field models GEM3 and 4[R].NASA GSFC Report X-592-72-476,1972.
    [161] Liu J, Chen R. Sequential Monte Carlo Methods for Dynamic Systems[J]. Journal of the American Statistical Association, 1998, 93: 1,032-1,044.
    [162] Mackey M, Glass L. Oscillation and chaos in a physiological control system[J]. Science, 1977, 197(287).
    [163] Mackenzie R, Moore P. A geopotential error analysis for a non planar satellite to satellite tracking mission[J]. Journal of Geodesy, 1997,71: 262-272.
    [164] Mazanek DD, et al. GRACE Mission Design: Impact of Uncertainties in Disturbance Environment and Satellite Force ModelsfA]. AAS/AIAA Space Flight Mechanics Meeting, 2000.
    [165] Mazanek DD, et al. Aerothermal Analysis and Design of the Gravity Recovery and Climate Experiment (GRACE) Spacecraft[R]. NASA GSFC Report, 2000.
    [166] McCarthy DD. IERS Technical Note 2: IERS Conventions 2000[M]. U.S. Naval Observatory, 2000.
    [167] Merwe RVD and Wan E. Efficient Derivative-Free Kalman Filters for Online Learning[A]. In Proc of ESANN[C]. Bruges, April 2001.
    [168] Merwe RVD, Wan E. The square-root unscented kalman filter for state and parameter-estimation[A]. In Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP)[C]. Salt Lake City, Utah, 2001.
    
    [169] Migliaccio F, Sacerdote F, Sans6 F. An error analysis technique based on Hill's equations for GPS and accelerometric measurements performed on board a low orbiting satellite[J]. Manuscripta Geodaetica, 1992, 17: 257-269.
    [170] Migliaccio F, Sacerdote F, Sanso F. An error analysis technique based on Hill's equations for GPS and accelerometric measurements performed on board a low orbiting satellitefJ]. Journal of Geodesy, 1992,17: 257-269.
    [171] MoritzH. Advanced Physical Geodesy[M]. Wichmann, Karlsruhe, Germany, 1980.
    [172] MontenbruckO, Gill E. Satellite orbits: Models, Methods and Applications[M]. Springer-Verlag New York Inc, 2000.
    [173] Moore P, Rothwell DA . A study of gravitational and non-gravitational modeling errors in cross-over differences[J]. Manuscripta Geodaetica, 1990, 15: 187-206.
    [174] Norgaard M, Poulsen N, Ravn O. Advances in Derivative-Free State Estimation for Nonlinear Systems[R]. Technical Report IMM-REP-1998-15, Dept of Mathematical Modelling, Technical University of Denmark, 28 Lyngby, Denmark,April, 2000.
    [175] Nergaard M, Poulsen N, Ravn O. New Developments in State Estimation for Nonlinear Systems[J]. Automatica, 2000,36.
    [176] Oberndorfer H, Miiller. GOCE closed loop simulation[J]. Journal of Geodynamics, 2002,33: 53-63.
    [177] Pail R, Schuh WD. Effects of Inhomogeneous data coverage on spectral analysis[Z]. Upcoming Gravity Field Satellite Missions, Poster C: 209-213.
    [178] Pail R, Plank G. Assesment of three numerical solution strategies for gravity field recovery from GOCE satellite gravity gradiometry implemented on a parallel platform[J]. Journal of Geodesy, 2002, 76: 462-474.
    [179] Petrovskaya MS, Vershkov AN, Pavlis NK . New analytical and numerical approaches for geo-potential modeling[J]. Journal of Geodesy, 2001, 75: 661 -672.
    [180] Petrovskaya MS . Recovering the global gravitational field from satellite measurements of the full gravity gradient[A]. (Schwarz edJGeodesy Beyond 2000 - The Challenges of the First Decade[C]. International Association of Geodesy Symposia 121, Springer, Berlin, 2000.
    [181] Petrovskaya MS, Vershkov AN. Numerical realization of a new iteration procedure for the recovery of potential coefficients[A]. (Schwarz ed)Geodesy beyond 2000 - The Challenges of the First Decade[C]. International Association of Geodesy Symposia 121, Springer, Berlin, 2000.
    [182] Press WH, Teukolsky SA, Vetterling WT, etal. Numerical Recipes in C[M]. Cambridge University Press, Cambridge,1992.
    [183] Rebhan H, Johannessen J, Aguirre M, et al. The ESA Gravity Field and Steady-State Ocean Circulation Explorer Mission: Impact on Solid Earth Physics[Z]. Upcoming Gravity Field Satellite Missions, Poster C: 225-228.
    [184] Ricardi LJ, Burrows ML. A recurrence technique for expanding a function in spherical harmonics[J]. IEEE Transactions on Computers, 1972: 583-585.
    [185] Reigber C. Gravity field recovery from satellite tracking data[A]. (Sanso F, Rumntel R eds)Theory of satellite geodesy and gravity field determination[C]. Springer Verlag, Berlin-Heidelberg-New York 1989: 197-234.
    [186] Reigber C, Balmino G Moynot B, Mueller H. The GRIM3 Earth gravity field model[J]. Manuscripta Geodaetica, 1983,8: 93-138.
    [187] Rowlands DD, Ray RD, Chinn DS, Lenoine FG. Short-arc analysis of inter-satellite tracking data in a gravity mapping mission[J]. Journal of Geodesy, 2002, 76: 307-316.
    [188] Rudolph S, Kusche J, Ilk KH. Investigations on the polar gap problem in ESA's gravity field and steady-state ocean circulation explorer mission(GOCE)[J]. Journal of Geodynamics, 2002, 33: 65-74.
    [189] Rummel R, M van Gelderen. Meissl scheme-spectral characteristics of physical of physical geodesy [J]. Manuscripta Geodaetica, 1995, 20: 379-385.
    [190] Rummel R, Mueller J, Oberndorfer H, Sneeuw N. Satellite Gravity Gradiometry with GOCE. Upcoming Gravity Field Satellite Missions[C]. Poster C, 2000.
    [191] Rummel R, et al. Dedicated gravity field missions-principles and aims[J]. Journal of Geodynamics, 2002, 33: 3-20.
    [192] Rummel R, Reigber C, Ilk KH. The use of satellite-to-satellite tracking for gravity parameter recovery[A]. In Proc EuropeanWorkshop onSpace Oceanography, Navigation and Geodynamics[C]. ESA SP-137, 1978, 153-161.
    [193] Rummel R, Colombo OL. Gravity field determination from satellite gradiometry[J]. Bull. G6od., 1985,59: 233-246.
    [194] Sayed AH, Kailath T. A State-Space Approach to Adaptive RLS Filtering[A]. IEEE Sig Proc Mag[C], 1994.
    [195] Schuh H, Ulrich M, et al. Prediction of Earth orientation parameters by artificial neural networks[J]. Journal of Geodesy, 2002,76: 247-258.
    [196] Schrama EJO. Gravity Field Error Analysis: Applications of Global Positioning System Receivers and Gradiometers on Low Orbiting Platforms[J]. Journal of Geophysical Research, 1991, 96(B12): 20,041 -20,051.
    
    [197] Sneeuw N, Ussel J, Koop R, et al. Validation of fast pre-mission error analysis of the GOCE gradiometry mission by a full gravity field recovery simulation[J]. Journal of Geodynamics, 2002, 33: 43-52.
    [198] Sneeuw NJ. A Semi-Analytical Approach to Gravity Field Analysis from Satellite o bservationsfD]. Technischen Universitat Munchen, 2000.
    [199] Sneeuw NJ. Global spherical harmonic analysis by least squares and numerical quadrature methods in historical perspective[J]. Geophys. J. Int, 1994, 118: 707-716.
    [200] Sneeuw N, Bun R. Global spherical harmonic computation by two dimensional Fourier methods[J]. Journal of Geodesy,1996,70: 224-232.
    [201] Sneeuw N. Representation coefficients and their use in satellite geodesy[J]. Manuscripta Geodaetica, 1992, 17: 117-123
    [202] Southall B, Buxton BF, Marchant JA. Controllability and observability: Tools for Kalman filter design[A]. British machine vision conference[C]. 1998, 164-173.
    [203] Sonnabend D, Me Eneaney WM. Gravity Gradient Measurements[A]. In Proceedings of the 27th Conference on Decision and Control[C]. Austin, Texas, 1988.
    [204] Tscherning CC. Computation of spherical harmonic coefficients and their error estimates using least-squares collocation[J]. 2001,75: 12-18.
    [205] Visser PNAM, Koop R, Klees R. Exploring gravity field determination from orbit perturbations of the European Gravity Mission GOCE[J]. Journal of Geodesy, 2001, 75: 89-98.
    [206] Wahr J, Wingham D, Bentley C. A method of combining ICESat and GRACE satellite data to constrain Antarctic mass balance[J]. Journal of Geophysical Research, 2000, 105(B7): 16,279-16,294.
    [207] Wan EA, Merwe RV. The Unscented Kalman Filter for Nonlinear Estimation[A]. In Proc of IEEE Symposium 2000 (AS-SPCC)[C]. Lake Louise, Alberta, Canada, 2000.
    [208] Wan EA, Merwe RV. Kalman Filtering and Neural Networks[M]. (Simon Haykin ed)hapter 7 - The Unscented Kalman Filter, Wiley, 2001.
    [209] Wagner CA. Direct Determination of Gravitational Harmonics From Low-Low GRAVSAT Data[J]. Journal of Geophysical Research, 1983, 88(B12): 10,309-10,321.
    [210] Welch G, Bishop G. An introduction to the Kalman filter[M]. WWW-Publication, Dept of Computer Science, University of North Carolina, Chapel Hill, 1996.
    [211] Wiejak W, Schrama EJO, Rummel R. Spectral representation of the satellite-to-satellite tracking observables[J]. ASR, 1991, 11(6): 197-224.
    [212] Xu PL, Rummel R. Generalized ridge regression with applications in determination of potential fields[J]. Manuscripta Geodaetica, 1994, 20: 8-20.
    [213] Xu PL. The value of minimum norm estimation of geopotential fields[J]. Geophysical Journal International, 1992, 111:170-178.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700