2450MHz微波辐照所致小鼠脑组织细胞凋亡及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微波是一种频率范围在300MHz~300GHz之间的非电离辐射,广泛应用于雷达、航空、通讯、工业及医学等领域。近些年,随着频率为2450MHz家用微波炉的应用,及频率范围为800~1800MHz移动电话的普及,人们暴露于微波辐射的机会明显增加,公众已经开始关注暴露于微波辐射可能产生的生物效应及其对健康的影响。
     微波的生物学效应主要有两种:热效应和非热效应。文献报道较多的是关于比吸收率(specific absorption rate,SAR)较高时微波辐射产生的热效应,而对非热效应报道相对较少。热和热效应的产生和微波的频率、功率密度、脉冲调制有关。一些流行病学及动物实验研究提示,微波辐射可能具有致癌、协同致癌或促进肿瘤发生的作用。有关2450MHz微波辐射的潜在基因毒性,尽管报道较多的是阴性结果,但确实也有一些阳性发现,例如:双着丝点染色体、无着丝点片段、微核数目的增加及DNA片段重排和基因表达改变等。
    
     第四军医大学硕士学位论文
     本实验旨在通过研究不同辐照强度和辐照时问的微波作川后,小鼠外
    周血.和脑组织中分于和蛋白水平的变化,来探讨微波所致小鼠脑组织细胞
    凋亡及其作用机制,以期为微波辐照的合理应用与防护提供一定的理论依
    %。
     研究内容与结果:
     1.凋亡过程中的细胞,其染色质DNA的断裂多数情况下是单链断
    裂,当DNA两条链上的切口相距不足12hp时就会发生双链断裂。根扼
    此原理采用 DNA聚合酶一 IKlenow大片段介导的生物素标记的dATP缺
    日木端标记方法(KLENOW法)和末端脱氧核昔酸转移酶介导的dUTP
    缺口末端标记方法(TWEL法)分别检测小鼠脑组织DNA单链和双链
    的损伤情况,(从而可以特异性的检测出小鼠脑组织中的凋亡细胞)。结果
    显示小鼠脑组织中 KLENOW和 TU’NEL阳性细胞数明显增加。
     2.在诸种细胞凋亡的诱因中,体内代谢或外源性因素产生的活性氧
    自山基被证实可诱导细胞凋亡。超氧化物歧化酶(SOD)是清除氧自由基
    最重要的酶之一,它的活性反映了机体清除氧自山基的能力。谷脱甘肽
     (GSH)是细胞内主要的非蛋白琉基,具有多种重要生理功能,事实上是
    一种氧化还原反应缓冲剂,能够通过亲核反应预防氧化损伤,清除射线所
    产生的活性氧自山基。活性氧自由基可引起脂质过氧化反应损伤细胞膜,
    并进而导致细胞死亡,其终产物丙二醛(MDA)的含量办间接反映了机
    体细胞被自由基损伤的程度。本实验对脑组织中SOD活性采用NBT羟胆
    法,GSH含量采用DTNB显色法,MDA含量采用TBA比色法测定。结
    果微波辐照后 SOD活性和 GSH含量显著降低,MDA含量显著增高,并
    且在小脑和大脑组织中自山基的变化水平和趋势不是完全一致。
     3,细胞凋亡具有复杂的分子调控机制,许多基因都参与凋亡的发生。
    c-fos心Ciun作为凋亡促进基因与DNA结合具有直接调节转录活性的作用,
     -3-
    
     第四军医大学硕士学位论文
    其本身的活性和表达受到自山基、Cay离于、蛋白激酶等许多分子的调控。
    本实验采用V七stern印迹方法和免疫组织化学方法检测小鼠海马和小脑组
    织c-fos、叫un即早基回表达水平。发现微波辐照后其蛋白印迹明显增粗,
    免疫阳性细胞明显增多。
     4回 次黄嘿吟鸟嘿吟磷酸核移酶(**RT)基回是一种辐射敏感基囚,
    当受到一定强度的电离辐射后会发生基因位点突变,且这种突变是不可逆
    的,并在体内长期存在。本实验采用多核细胞法检测小鼠外周血淋巴细胞
    受到非电离辐射后其HPRT基因突变情况。随着辐照时间的延长和辐照强
    度的增大,HPRT基因的突变频率呈上升趋势,30 mw儿m‘辐照 7d组与
    对照组相比突变频率有显著差异。
    结论:
     1.微波辐照可致小鼠脑组织细胞凋亡。
     2.微波辐照可导致小鼠脑组织内自山基的产生与清除失衡;C-FOS和
    C-J:fl蛋白表达增加:DNA链断裂增加。
     3.自由基在小脑和大脑组织中的变化水平和趋势不是完全一致,其原
    因可能与不同组织对辐射的敏感性不同有关。
     4.微波辐照可致小鼠外周血淋巳细胞HPRT基因的突变频率增加,且
    与辐照强度和辐照时间呈正相关。
     5.*PRT基因可能是一种凋亡相关基因。
Microwave in the frequency range 300MHz ~ SOOGHz, has long been used in radar, space research, telecommunications, industrial processing and medicine. In recent years, a large increase in the number of people who are potentially exposed to microwave radiation occurred with the introduction of household microwave ovens (2450 MHz) and mobile communications devices (800 ~ 1800 MHz). Public attention has been drawn to the possible biological effects and health hazards from exposure to microwave radiation.
    The biological effects of microwave are divided into two types: thermal and non-thermal effects. Thermal effects are associated with heat generated during microwave radiation when the specific absorption rate (SAR) is high. Lower intensity exposures that do not invoke thermoregulation are referred to as non-thermal which was less reported. Thermal and thermal induced
    -5-
    
    
    
    
    bio-effects correlated with some parameters of microwave such as frequencies, power densities, and pulsed modulations. Some epidemiological studies and in vivo experiments suggested an association between the incidence of cancer and exposure to microwave radiation. About the genotoxic effects of 2450 MHz microwave radiation, the majority data reported were negative. For the positive data, showed increasing the incidence of dicentric chromosomes, acentric fragments and micronuclei, DNA fragment rearrangement and gene expression alteration.
    In order to provide some evidences for health hazards from exposure to microwave radiation, in this study, HPRT gene mutation, free radicals level, protein expression and DNA breakage were investigated after the mice exposured to different intensity and time microwave radiation. RESEARCH CONTENTS AND RESULTS:
    1. When cells go through apoptosis, usually DNA single-strand breakage occurs. DNA double-strand breakage take place when the distance between two nicks of double strands is less than 12bp. According to this principle, we observed DNA single and double-strand breaks in brain tissue of mice, using the klenow fragment of DNA polymerase I -mediated nick end labeling method (KLENOW method), and terminal deoxynucleotidy I transferas?mediated dUTP nick end labeling (TUNEL method) . The result showed that the damage of DNA single and double-strand breaks in brain tissue of mice increased significantly.
    2. Reactive oxygen species (ROS) is one of the factors which induce apoptosis. ROS was generated during internal metabolism or stimulated by external factors. Superoxide dismutase (SOD) is one of the most important
    -6-
    
    
    
    enzymes that remove oxygen free radicals. The activity of SOD reflects the ability of the body removing oxygen free radicals. Glutathione (GSH, T-i -glutamyl-1 -cysteinylglycine) is an introcelluler non-protein thiol, which has various physiological functions, for example to preventing oxidative damage by nucleophilic reactions as a redox buffer, and removing reactive oxygen species produced under pathological conditions. ROS may damage cell membrane by lipid peroxidation. The essential metabolite MDA, reflects the level of cell damage. In this study, SOD activity, contents of GSH and MDA in brain tissue were determined by NBT method, DTNB method and TBA methods respectively. We found the activity of SOD and the content of GSH significant decreased, while the content of MDA in brain tissue significant increased after exposured to microwave radiation compared with that of control. The level of free radical was not completely the same in tissue of cerebellum and cerebrum.
    3. Apoptosis was mediated by many genes and proteins, were expressed in cells nucleus and promote the production of apoptosis. It was also reported that Fos/Jun could modulate DNA in transcription level. The activity and expression of Fos and Jun proteins were regulated by free radical, Ca2+ ion, protein kinase and so on. Western bloting and immunohistochemistry were used to assess the expression of the immediate early genes, c-fos and c-jun, in hippocampals and cerebellum of mice. Significant i
引文
[1] Erica JB, Chris EW, Mike D, et al. Mechanisms of delayed cell death following hypoxic-ischemic injury in the immature rat: evidence for apoptosis during selective neuronal loss. Molecular Brain Research, 1995, 29(1): 1-14.
    [2] Emil A, Jean PV and Ralph AN. DNA strand breaks in Alzheimer's disease. Brain Research, 1999, 849(1-2): 67-77.
    [3] Kumaran R, Ronald KG, Alma A, et al. A fluorescence based assay for DNA damage induced by radiation, chemical mutagens and enzymes. Current Applied Physics, 2003,3(2-3): 99-106.
    [4] 成军.程序性死亡与疾病.北京:北京医科大学和协和医科大学联合出版社,1997:13.
    [5] Gavrieli Y, Sherman Y and Ben-Sasson SA. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol, 1992, 119: 493-501.
    [6] Negoescu A, Lorimier P, Labat MF, et al. In situ apoptotic cell labeling by the TUNEL method improvement and evaluation on edll Preparations. J Histochem, 1996, 44: 959.
    [7] Jin K, Chen J, Nagayama T, et al. In situ detection of neuronal DNA strand breaks using the Klenow fragment of DNA polymerase I reveals different mechanisms of neuron death after global cerebral ischemia[J]. J Neurochem, 1999, 72(3):1204-1214.
    [8] Adriana FP, Bianca LS, Marcia CVA, et al. Microwave-assisted free radical bulk-polyaddition reactions in a domestic microwave oven. Polymer Testing, 2002, 21(2):145-148.
    [9] Holt JA. Some characteristics of the glutathione cycle revealed by ionising and non-ionising electromagnetic radiation. Med Hypotheses, 1995, 45(4): 345-368.
    [10] 孙淑芬.脂质过氧化物的测定.第四军医大学学报,1985,6(3):261-268.
    [11] Hazelton GA and Lang CA. Glutathione contents of tissues in the aging mouse. Biochem J, 1980, 188(1): 25-30.
    [12] Spitz DR and Oberley LW. An assay for superoxide dismutase activity in mammalian tissue homogenates. Anal Biochem, 1989, 179(1): 8-18.
    [13] Brennan PA, Thomas GJ and Langdon JD. The role of nitric oxide in oral diseases. Archives of Oral Biology, 2003, 48(2):93-100.
    [14] George P, Akihiko N, Keisuke H, et al. Is oxidative damage the fundamental pathogenic mechanism of Alzheimer's and other neurodegenerative diseases? Free Radical Biology and Medicine, 2002, 33(11): 1475-1479.
    [15] Barry H. Oxidative stress in cell culture: an under-appreciated problem? FEBS Letters, 2003, 540(1-3): 3-6.
    
    
    [16] Lorne J, Hofseth S, Perwez H, et al. Nitric oxide in cancer and chemoprevention. Free Radical Biology and Medicine, 2003, 34(8): 955-968.
    [17] Laszlo V, Eva S, Pal G, et al. Peroxynitrite-induced cytotoxicity: mechanism and opportunities for intervention. Toxicology Letters, 2003, 140(11):113-124.
    [18] James FC, Maryanne D and Thomas G. Cotter Regulation and measurement of oxidative stress in apoptosis. Journal of Immunological Methods, 2002, 265(1-2): 49-72.
    [19] Yavuz O, Turkozkan N, Bilgihan A, et al. The effect of 2-chloroadenosine on lipid peroxide level during experimental cerebral ischemia-reperfusion in gerbils. Free Radic Biol Med, 1997, 22(1-2): 337-341.
    [20] Moustafa YM, Moustafa RM, Belacy A, et al. Effects of acute exposure to the radiofrequency fields of cellular phones on plasma lipid peroxide and antioxidase activities in human erythrocytes. J Pharm Biomed Anal, 2001, 26(4): 605-608.
    [21] Ozgur AK and Necati B. Evaluation of the use of microwave power for the control of postharvest diseases of peaches. Postharvest Biology and Technology, 2002, 26(2):237-240.
    [22] Anon. Guidelines for limiting exposure to time varying electric, magnetic and electromagnetic fields (up to 300 GHz). Health Phys, 1998, 74: 494-522.
    [23] Hyland GJ. Physics and biology of mobile telephony. The Lancet, 2000, 356(25):1833-1836.
    [24] Cochrane CG. Cellular injury by oxidants. Am J Med. 1991 Sep 30;91(3C):23S-30S. Review.
    [25] Osaki N, Tsukazaki T, Yonekura A, et al. Regulation of c-fos gene induction and mitogenic effect of transforming growth factor-betal in rat articular chondrocyte. Endocr J, 1999, 46(2): 253-261.
    [26] Backett SR, Duxon MS, Aspley S, et al. Central c-fos xepression following 20KHz ultrasound induced defence behaviour in the rat. Brain Res Bull, 1997, 42(6):421-469.
    [27] 于廷和,王智彪,江森.超声与分子生物学.中国超声医学杂志,2000,16(4):307-9.
    [28] 谢锦玉.现代细胞化学技术及其在中西医药中的应用.北京,中医古籍出版社,1998:192-198.
    [29] Brill A, Torchinsky A and Carp H. The role of apoptosis in normal and abnormal embryonic development. J Assist Reprod Genet, 1999, 16(10): 512-519.
    [30] Nackley AG, Suplita ILL and Hohmann AG. A peripheral cannabinoid mechanism suppresses spinal los protein expression and pain behavior in a rat model of inflammation. Neuroscience, 2003, 117(3): 659-670.
    [31] Boris SS, David WM, Zane R, et al. Hollingsworth,Differential D_1 and D_2 receptor-mediated effects on immediate early gene induction in a transgenic mouse model of Huntington's disease. Molecular Brain Research, 2002, 102(1-2): 118-128.
    
    
    [32] Jorgensen MB. Delayed c-fos proto-oncogene expression in the rat hippocampus induced by transient global ischemia: in situ by bridi zation Study. Brain Res, 1989, 484: 393.
    [33] Morgan JI and Curran T. Stimulus-transcription coupling in the nervous system: involvement of the inducible proto-oncogenes fos and jun. Annu Rev Neurosci, 1991, 14:421-451.
    [34] Wenzel A, Grimm C, Marti A, et al. c-fos controls the 'private pathway" of light-induced apoptosis of retinal photoreceptors. J Neurosci, 2000, 20(1): 81-88.
    [35] Stewart BW. Mechanisms of apoptosis:integration of genetic, biochemical and cellular indicator. J Natl Cancer Inst, 1994, 86:1286-1296.
    [36] Rivera VM and Greenberg ME. Growth factor-induced gene expression: the ups and downs of c-fos regulation. New Biol, 1990, 2:751-758.
    [37] Casini A, Galli G, Salzano R, et al. Acetaldehyde induces c-fos and c-jun proto-oncogenes in fat-storing cell cultures through protein kinase C activation. Alcohol-Alcohol, 1994, 29: 303-14.
    [38] Dutcher SA, Underwood BD, Walker PD, et al. Patterns of immediate early gene mRNA expression following rodent and human traumatic brain injury. Neurol-Res, 1999.21: 234-242.
    [39] Sheng M and Greenberg ME.The regulation and fuction of c-fos and other immediate early genes in the nervous system. Neurn, 1990, 4: 477-485.
    [40] Angel P and Karin M.The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochem Biophys Acta, 1991, 1072:129-157.
    [41] Morgan JI and Curran T. Stimulus transcription coupling in the nervous system, Involvement of the inducible protooncogenes fos and jun. Ann Rev Neurosci, 1991, 14:421-451.
    [42] Svantlana B. Induction of AP-1 by chemical agents mediates activation of gluthine S-transferase and quinone reductase gene expression. Oncogene, 1994, 9: 565-571.
    [43] Knight RJ. Stimulation of c-jun and mitogen-Activated Protein kinase by Ischemia and Reperfusion in the Perfused Rat Heart. Biochemical and Biophysical Medical Pharmacology, 1996, 218: 83-88.
    [44] Yvonne YC. Reactive oxygen Species Mediate Cytosine Activation of c-JUN NH-terminal kinases. The Jounal of Biochemistry, 1996, 271:15703.
    [45] Chi SI, Levine JD and Basbaum AI. Effects of injury discharge on the persistent expression of spinal cord fos-like immunoreactivity produced by sciatic nerve transection in the rat. Brain-Res, 1993, 617:220-224.
    [46] Hsu CY, An G, Liu JS, et al. Expression of immediate early gene and growth factor mRNAs in a focal cerebral ischemia model in the rat [J]. Stroke, 1993, 24(12): 178-181.
    [47] Iwata A, Masago A and Yamada K. Expression of basic fibroblast growth factor
    
    mRNA after transient focal ischemia, comparsion with expression of c-fos c-jun and hsp70 mRNA [J]. J Neurotruma, 1997, 14:201-210.
    [48] Norman A, Mitchell JC and Iwamoto KS. A sensitive assay for 6-thioguanine resistant lymphocytes. Mutat Res, 1988, 208:17-19.
    [49] Tachibana A, Tatsumi K, Furuno FI, et al. High Frequency of Deletions at the Hypoxanthine-guanine Phosphoribosyltransferase Locus in an Ataxia-telangiectasia Lymphoblastoid Cell Line Irradiated with gamma-Rays. Jpn J Cancer Res, 2001, 92(11):1190-1198.
    [50] Falck G, Catalan J and Norppa H. Influence of culture time on the frequency and contents of human lymphocyte micronuclei with and without cytochalasin B. Mutat Res. 1997, 392(1-2): 71-79.
    [51] Kreja L and Seidel HJ. Evaluation of the genotoxic potential of some microbial volatile organic compounds (MVOC) with the comet assay, the micronucleus assay and the HPRT gene mutation assay. Mutat Res, 2002, 513(1-2): 143-150.
    [52] Noori P and Hou SM. Mutational spectrum induced by acetaldehyde in the HPRT gene of human T lymphocytes resembles that in the p53 gene of esophageal cancers. Carcinogenesis, 2001, 22(11): 1825-1830.
    [53] Cariello NF and Skopek TR. Analysis of mutations occurring at the human hprt locus. J Mol Biol, 1993, 231(1): 41-57.
    [54] Szmigielski S, Szudzinski A and Pletraszek A, et al. Accelerated development of spontaneous and venzopyrene-induced skin cancer in mice ewposed to 2450 MHz microwave radiation. Bioelectromagnetics, 1982, 3:179-191.
    [55] Kerbacher JJ, Meltz ML and Erwin DN. Influence of radiofrequency radiation on chromosome aberrations in CHO cells and its interaction with DNA-damaging agents. Radiat Res, 1990, 123(3): 311-319.
    [56] Maes A, Verschaeve L, Arroyo A, et al. In vitro cytogenetic effects of 2450 MHz waves on human peripheral blood lymphocytes. Bioelectromagnetics, 1993, 14:495-501.
    [57] Malyapa R, Ahem EW, Straube WL, et al. Measurement of DNA damage after exposure to electromagnetic radiation in the cellular phone communication frequency band (835.62-847.74MHz). Radiat Res, 1997, 148:618-627.
    [58] Ehling UH. Germ cell mutation in mice: Standards for protecting the human genome. Murat Res, 1989, 212: 43-53.
    [59] Kiefer J, Schreiber A, Gutermuth F, et al. Mutation induction by different types of radiation at the Hprt locus. Mutat Res, 1999, 431: 429-448.
    [60] Verschaeve L and Maes A. Genetic, carcinogenic and teratogenic effects of radiofrequency fields. Mutation Research/Reviews in Mutation Research, 1998, 410(2):141-165.
    [61] Banik S, Bandyopadhyay S and Ganguly S. Bioeffects of microwave - a brief
    
    review. Bioresource Technology, 2003, 87(2): 155-159.
    [62]李缉熙,牛中奇主编.生物电磁学概论.西安电子科技大学出版社,1990.
    [63] Mild KH, Sandstom G, Wilen J. Use of mobile phones and subjective disorders, a Swedish-Norwegian epidemiological study, background and development of the questionnaire. In: The Bioelectromagnetics Society, Abstract Book, Twentieth Annual Meeting, Trade Winds Resort, St Pete Beach, Florida, 1998, 98.
    [64] Sandstrom M, Offedal G, Mild KH, el al. Subjective symptoms among mobile phones users in Sweden and Norway. A Swedish-Norwegian epidemiological study. In: The Bioelectromagnetics Society, Abstract Book, Twentieth Annual Meeting, Trade Winds Resort, St Pete Beach, Florida, 1998, 99.
    [65]龙云芳,李昌吉,詹承烈等.低强度微波和噪声对作业人员神经行为功能的影响.中国公共卫生,1998,14(2):94-95.
    [66] Braune S, Wrocklage C, Raczek J, et al. Resting blood pressure increase during exposure to a radio-frequency electromagnetic field. Lancet, 1998, 351: 1857-1858.
    [67]王晖,李卓敏,王兵等.微波作业人员88名心电图分析.现代康复,1999,3(4):483.
    [68] Michaeleson SM. Microwave and radiofrequency radition. European Series No. 10. Copenhagen; WHO Regional Publication 1982, 92-174.
    [69]周以勤.舰艇雷达对眼的影响.眼外伤职业性眼病,1991,2:71-73.
    [70] Bhatt N, Peyman GA, Khoobehi B, et al. Microwave induced retina destruction with sparing of sclera and choriocapillaris. Opthalmic surgery, 1993, 24(2):125.
    [71]刘学东,龚书明,杨瑞华等.微波对体外培养视网膜神经细胞损伤的光镜与电镜观察.工业卫生与职业病,2000,26(3):129-131.
    [72] Nerg Z, Akda Z, Cel S, et al. The effect of microwave radiation on morphology of rat testis, Progress in Biophysics and Molecular Biology, 1996, 65(1): 210.
    [73]胡佩瑶.微波节育对人睾丸内分泌功能的影响.生殖与避孕,1985,5(2):32.
    [74]黄宗之.微波节育对男性生殖内分泌功能的影响.生殖与避孕,1992,12(4):74-75.
    [75] Mild KH, Mattsson MO, Hardell L. Magnetic fields in incubators as risk factors in artificial insemination? Lakartidningen, 2002, 99(34): 3328.
    [76]周从容.电磁波辐射对人体遗传效应的研究.贵阳医学院学报,1991,19(2):104-106.
    [77]严雁翎.微波作业劳动条件的卫生学评价.铁道劳动卫生通讯,1983,(1):77.
    [78]许素华.微波辐射对女工生殖功能的影响.中国公共卫生,1993,9(8):363.
    [79] Oconnor ME. Prenatal microwave exposure and behavior. Prog-clin-Biol-Res, 1988,257-265.
    [80] Maes A, Collier M, Gorp UV, et al. Cytogenetic effects of 935.2-MHz (GSM) microwaves alone and in combination with mitomycin C, Mutation Research/Genetic
    
    Toxicology and Environmental Mutagenesis, 1997, 393(1-2): 151-156.
    [81] Maes A. Mobile phones and the chromosomes. Food and Chemical Toxicology, 1996,34(12): 1195.
    [82] Garaj VV, Horvat D and Koren Z. The relationship between colony-forming ability, chromosome aberrations and incidence of micronuclei in V79 Chinese hamster cells exposed to microwave radiation. Mutat Ras, 1991, 263: 143-149.
    [83] Garaj VV, Horvat D and Koren Z. The correlation between the frequency of micronuclei and soecific choromosome aberrations in human lymphocytes exposed to microwave radiation in vitro. Mutat Ras, 1992, 281(3): 181-186.
    [84] Garaj VV. Micronucleus assay and lymphocyte mitotic activity in risk assessment of occupational exposyre to microwave radiation. Chemosphere, 1999, 39(13): 2301~2312.
    [85] Maes A, Verschaeve L and Arroyo A. In vitro cytogenetic effects of 2450 MHz waves on human peripheral vlood lymphocytes. Bioelectronagnetics, 1993,14: 495-501.
    [86] Garson OM, McRobert TL, Campbell LJ, et al. A chromosomal study of workers with long-term exposure to radio-frequency radiation. Med J Aust, 1991, 155(5):289-292.
    [87] Wang K and Hiruki C. The molecular stability of genomic DNA of phytoplasma in the witches'-broom-affected paulownia tissues after microwave heat treatment, Journal of Microbiological Methods, 1998, 33(3):263-268.
    [88] Balcer KEK and Harrison GH. Inductionof neoplastic transformation in C3H/10T1/2 cells by 2.45GHz microwaves and phorbol ester. Radiat Res, 1989, 117:531-537.
    [89] Balcer KEK and Harrison GH. Neoplastic transformation in C3H/10T1/2 cells following exposure to 120-Hzmodulated 2.45-GHz microwaves and phorbol ester tumor promoter. Radiat Res, 1991, 126: 65-72.
    [90] Ciaravino V. Meltz ML and Erwin DN. Absence of a synergistic effect between moderate-power radio-frequency electromagnetic radiation and adriamycin on cell-cycle progression and sister-chromatid exchange. Bioelectromagnetics. 1991, 12: 289-298.
    [91] Meltz ML, Eagan P and Erwin DN. Proflavin and microwave radiation: absence of a mutagenic interaction. Bioelectromagnetics, 1990, 11(2):149-157.
    [92] Maes A, Collier M, and Verschaeve L. Cytogenetic Effects of 900 MHz(GSM) Microwaves on Human Lymphocytes. Bioelectromagnetics, 2001, 22:91-96.
    [93] Maes A, Collier M and Gorp VU. Cytogenetic effects of 935.2-MHz (GSM) microwaves alone and in combination with mitomycin C. Mutat Res, 1997, 393(1-2):151-156.
    [94] Verschaeve L. Some consederations on the genotoxicity of radiofrequency radiation. In:Carlo GL, editor. Wireless phones and health. Boston/Dordrecht/London:Kuwer Academic Publishers, 1998, 99-103.
    [95] Verschaeve L and Maes A. Genetic carcinogenic and teratogenic effects of
    
    radiofrequency fields. Mutat Res, 1998, 410: 141-165.
    [96] Maes A, Collier M and Verschaeve L. Cytogenetic effects of 900 MHz (GSM) microwaves on human lymphocytes. Bioelectromagnetics, 2001, 22(2): 91-96.
    [97] Sarkar S, Ali S and Behari J. Effect of low power microwave on the mouse genome: A direct DNA analysis. Murat Res, 1994,320:141-147.
    [98] Henry L and Narendra PS. Acute Low-Intensity Microwave Exposure Increases DNA Single-Strand Breaks in Rat Brain Cells. Bioelectromahnetics, 1995, 16: 207-210.
    [99] Malyapa RS, Ahem EW, Straube WL, et al. DNA damage in rat brain cells after in vivo exposure to 2450 MHz electromagnetic radiation and various methods of euthanasia. Radiat Res, 1998, 149(6): 637-645.
    [100] Gary MW. Cmment on "A cute Low-Intensity Microwave Exposure Increases DNA Single-Strand Breaks in Rat Brain Cells" by Henry Lai and Narendra P. Singh. Bioelectromagnetics, 1996, 17(2):165.
    [101] Lai H and Singh NP. Melatonin and a Spin-Trap Compoud Block Radiofrequency Electromagnetic Radiation-Induced DNA Strand Breaks in Rat Brain Cells. 1997, 18(6):446-454.
    [102] Malyapa R, Ahern EW, Straube WL, et al. Measurement of DNA damage after exposure to 2450MHz electromagnetic radiation. Radiat Res, 1997, 148:608-617.
    [103] Malyapa R, Ahern EW, Straube WL, et al. Measurement of DNA damage after exposure to electromagnetic radiation in the cellular phone communication frequency band (835.62-847.74MHz). Radiat Res, 1997, 148: 618-627.
    [104] Vijayalaxmi, Leal BZ and Szilagyi M, et al. Primary DNA damage in human blood lymphocytes exposed in vitro to 2450 MHz radiofrequency radiation. Radiat Res, 2000,153(4): 479-486.
    [105] Phillips JL, Iraschuk O and Ishida Jones T, et al. DNA damage in Molt-4T-lymphoblastoid cells exposed to cellular telephone radiofrequency fields in vitro. Bioelectrochemistry and Bioenergetics, 1998, 45:103-110.
    [106]王保义,唐敬贤,江汉保等.电磁场在生物医学中的应用.北京:国防工业出版,1990,1-48.
    [107] Omura Y and Losco M. Electro-magnetic fields in the home environment (color TV, computer monitor, microwave oven, cellular phone, etc) as potential contributing factors for the induction of oncogen C-fos Abl, oncogen C-fos Ab2, integrin alpha 5 beta 1 and development of cancer, as well as effects of microwave on amino acid composition of food and living human brain. Acupunct Electrother Res. 1993,18(1): 33-73
    [108] Saffer JD snd Profenno LA. Microwave-specific heating affects gene expression. Bioelectromagnetics, 1992, 13(1): 75-78.
    [109] Verma M and Drtta SK. Microwave induced alteration in the neuron specific enolase gene expression. Cancer Biochem Biophys. 1993, 13(4):239-244.
    
    
    [110] Fritze K, Wiessner C, Kuster N, et al. Effect of global system for mobile communication microwave exposure on the genomic response of the rat brain. Neuroscience, 1997, 81(3):627-639.
    [111] Adey WR. Bioeffects of mobile communication field: Possible mechanism for cumulative dose. In: Kuster N, Balzano, Lin JC (eds). Mobile Communication Safety. London: Chapman &Hall, 1996, 95-131.
    [112] Mickley GA, Cobb BL, Mason PA, et al. Disruption of a putative working memory task and selective expression of brain c-fos following microwave-induced hyperthermia. Physiol Behav, 1994, 55(6):1029-1038.
    [113] Morrissey JJ, Raney S and Heasley E. IRIDIUM Expression in the mouse vrain only at levels which likely result in tissue heating. Neuroscience, 1999, 92(4): 1539-1546.
    [114] Glaser R, Michalsky M and Schramek R. Is the Ca~(2+) transport of human erythrocytes influenced by ELF- and MF-electromagnetic fields?, Bioelectrochemistry and Bioenergetics, 1998, 47(2):311-318.
    [115] Vinci M and Hiroshi H. Microwave Fixation and Localization of Calcium in Synaptic Terminals Using X-Ray Microanalysis and Electron Energy Loss Spectroscopy Imaging, Brain Research Bulletin, 1997, 43(1): 53-58.
    [116] Anna CS, Maria B and Gerald B, Determination of elements in algae by different atomic spectroscopic methods, Microchemical Journal, 2000, 67(1-3): 39-42.
    [117] 王勇等.微波辐照对小鼠离体淋巴细胞Ca~(2+)、细胞内环磷酸腺苷及DNA合成的影响.中国公共卫生学报,1996,15(5):299-300.
    [118] Bugrim AE. Regulation of Ca~(2+)release by cAMP-dependent protein kinase A mechanism for agonist-specific calcium signaling? Cell Calcium, 1999, 25(3): 219-226.
    [119] Novoselova EG, Fesenko EE, Makar VR, et al. Microwaves and cellular immunity: Ⅱ. Immunostimulating effects of microwaves and naturally occurring antioxidant nutrients, Bioelectrochemistry and Bioenergetics, 1999, 49(1): 37-41.
    [120] Drygin AN, Nechaeva RV, Osipovich VK, et al. The pathogenesis of central nervous system functional disordersafter exposure to microwave radiation. Vopr Med Khim, 1992. 38(2): 38-40.
    [121] Miller JM, Richard SJ, Thomas NF, et al. Brain amino acid concentrations in rats killed by decapitation and microwave irradiation. Journal of Neuroscience Methods, 1990,31(3): 187-192.
    [122] Alice H and George S. Transition metal and organic radical components of carp liver tissue observed by electron paramagnetic resonance spectroscopy. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 1999, 123(4):407-415.
    [123] Kerr JER. Apoptosis: A basic biological phenomenon with wildranging implication in tissue kinetics. Br J Cancer, 1972, 26:239.
    
    
    [124] Julie CK and James PK. Acrolein-induced cell death: a caspase-influenced decision between apoptosis and oncosis/necrosis. Chemico-Biological Interactions, 2002, 139(1):79-95.
    [125] Emil A, Fusheng Y, Greg MC, et al. Multiple-label immunocytochemistry for the evaluation of nature of cell death in experimental models of neurodegeneration. Brain Research Protocols, 2001, 7(3):193-202.
    [126] Levin S. Apoptosis, Necrosis, or Oncosis: What Is Your Diagnosis? A Report from the Cell Death Nomenclature Committee of the Society of Toxicologic Pathologists. Toxicological Sciences, 1998, 41(2): 155-156.
    [127] Herve L, Luzia MOP and Marie LG. Multiparametric flow cytometric analysis of biochemical and functional events associated with apoptosis and oncosis using the 7-aminoactinomycin D assay. Journal of Immunological Methods, 2002, 265(1-2): 81-96.
    [128] Milita C, Bengt K, Johan T, et al. Cell death in human atherosclerotic plaques involves both oncosis and apoptosis. Atherosclerosis, 1997, 130(1-2): 17-27.
    [129] Patrick GS, Jeffrey NK, Wendy LB, et al. Cytochrome c release and caspase activation after traumatic brain injury. Brain Research, 2002, 949(1-2): 88-96.
    [130] Albrecht E, Keisuke S and Jutta S. Unresolved Issues Regarding the Role of Apoptosis in Cardiology, 2000, 32(5): 711-724.
    [131] 成军.程序性死亡与疾病.北京:北京医科大学和协和医科大学联合出版社,1997:13.
    [132] Bortner CD, Oldenberg N and Cidlowski JA. The role of DNA fragmentation in apoptosis. TICB, 1995, 5-21.
    [133] Kotaoko A, Kubota M, Wakazono Y, et al. Association of high molecular weight DNA fragmentation with apoptosis or non-apoptotic cell death induced by calcium ionophore. FEBS Lett, 1995, 364-264.
    [134] Dimos DM and Margarita SDR. Receptor systems mediating c-fos expression within trigeminal nucleus caudalis in animal models of migraine. Brain Research Reviews, 2001,35(1): 20-35.
    [135] Kiflu B and Vijayakumar B. Identification of a novel DNA regulatory element in the rabbit surfactant protein B (SP-B) promoter that is a target for ATF/CREB and AP-I transcription factors. Gene, 2001,268(1-2):141-151.
    [136] Ferrer I. Cell death in the normal developing brain and following ionizing radiation, methyl-a-zoxymethanol acetate, and hypoxia-ischaemia in the rat [J]. Neuropathol Appl Neurobiol, 1996, 22(6): 489-494.
    [137] Seung WO, Yong MA, Ung GK, et al. Differential activation of c-Jun N-terminal protein kinase and p38 in rat hippocampus and cerebellum after electroconvulsive shock. Neuroscience Letters, 1999, 271(2):101-104.
    [138] Akins PT, Liu PK, Hsu CY. Immediate early gene expression in response to cerebral
    
    ischemia Friend or Foe? Stroke, 1996, 27:1682-1687.
    [139] Kiessling M, Stumm G, Xie Y, et al. Differential transcription and translation of immediate early genes in the gerbil hippocampus after transient global ischemia. J Cereb Blood Metab, 1993, 13:914-920.
    [140] Smyne RJ, Vendrell M, Hayward M, et al. Continous c-fos expression precedes programmed cell death in vivo, Nature, 1993, 363:166-169.
    [141] Charriaut MC, Margaill I, Plotkine M, et al. Early endonuclease activation following reversible focal ischemia in the rat brain. J Cereb Blood Flow Metab, 1995, 15:385-388.
    [142] Lorget F, Kamel S, Mentaverri R, et al. High Extracellular Calcium Concentrations Directly Stimulate Osteoclast Apoptosis. Biochemical and Biophysical Research Communications, 2000, 268(3): 899-903.
    [143] Zsuzsa S. Methylprednisolone and 2-chloroadenosine induce DNA fragmentation at different stages of human T-lymphocyte development. Immunology Letters, 1997, 58(1):59-65.
    [144] Tenneti L, D'Emilia DM, Troy CM, et al. Role of caspases in N-methyl-D- aspartate-induced apoptosis in cerebrocortical neurons. J Neurochem, 1998 71(3): 946-59.
    [145] Jonas N and Elias SJA. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radical Biology and Medicine, 2001, 31 (11): 1287-1312.
    [146] James FC, Maryanne D and Thomas GC. Regulation and measurement of oxidative stress in apoptosis. Journal of Immunological Methods, 2002, 265(1-2):49-72.
    [147] Saltman P. Oxidative Stress: Aradicalview. Seminarsin Hematology, 1989, 26:249-256.
    [148] Forrest VJ, Kang YH, Mcclain DE. Oxidative stress-in-duced apoptosis prevented by Trolox. Free Radical Biology Med, 1994, 16:675-684.
    [149] Buttke TM, Sandstrom PA. Oxidative stress so samediator of apoptosis. Immunol Today, 1994, 15:7-10.
    [150] Greenspan HC, AruomaOI. Oxidative stress and apoptosis in HIV infection: aroleforplant-derived metabolites with synergisti cantioxidant activity, Immunol Today,1994, 15:209-213.
    [151] TroyCM, ShelanskiML. Down-regulation ofcopper/zincsuperoxidedis mutasecauses apoptotic deathin PC12neu-ronalcells. Proc Natl Acad Sci USA, 1994, 91:6384-6387.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700