温室小气候对滴灌管材化合物迁移的干扰效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滴灌系统一般由干管、支管、毛管这三级管网组成,管网主要以聚乙烯和聚氯乙烯塑料管材为主,它们与水接触的距离长、时间久、面积大,管材加工过程中的添加剂以及它们的分解产物向灌溉水中迁移,会改变水质成分、影响植物生长,在食物链的放大作用下,对人类健康存在潜在威胁。本文结合吉林省科技发展计划项目“温室小气候对灌溉水质受滴灌材料干扰效应的影响研究”(编号:20090169),从滴灌生产实际出发,以聚氯乙烯和聚乙烯常用滴灌管材为研究对象,开展温室小气候条件对滴灌管材化学物质迁移的干扰效应研究。本文的主要研究内容和结论如下:
     1)为更好研究环境因素对UPVC滴灌管化学物质迁移影响,选择4种不同产地滴灌管为试验管材,研究在标准环境、实际温室环境以及温度变化对UPVC滴灌管向水中迁移重金属和有机化合物的影响进行分析,主要试验结果表明:
     ①标准环境下,UPVC滴灌管12天TOC迁移总量已超过饮用水标准限制,但农田灌溉水标准中未规定TOC含量限定值;Pb元素最大迁移量是饮用水标准的289.9倍,是农田灌溉水标准的2.9倍,滴灌管向水中迁移Pb元素含量随时间的延长而递减;Fe和Al元素迁移量最大值均超过饮用水标准规定值,但农田灌溉水标准未对其加以限制;Ba和Zn元素迁移量均未超过饮用水标准和农田灌溉水标准限定值;
     ②实际温室环境下,埋地40cm环境对UPVC滴灌管TOC和Ca元素迁移量的影响明显大于地表环境影响;埋地40cm环境和地表环境对Pb元素迁移规律没有影响,均随时间延长而减少,但就Pb元素迁移量而言,地表环境更有利于滴灌干管向水中迁移Pb元素;埋地环境对Al和Zn元素迁移量影响明显小于地表环境;两种环境对Fe和Ba元素迁移量影响不大;
     ③温度影响:UPVC滴灌管TOC、Pb和Zn元素迁移量随温度升高而增大,高温环境对TOC和Pb元素迁移量增加影响明显;温度变化对Ca元素迁移量影响最大;
     ④综合因素影响:UPVC滴灌管TOC和Al元素向水中迁移影响因素中,温度>时间>品牌;Ca元素:时间>温度>品牌;Pb元素:温度>品牌>时间;Fe元素:品牌>时间>温度;Zn元素:时间>品牌>温度。
     2)为更好研究环境因素对HDPE滴灌管有机物迁移影响,选择3种品牌HDPE滴灌支管和5种品牌HDPE滴灌毛管为试验管材,研究标准环境、环境因素变化以及实际温室环境对HDPE滴灌管向水中迁移有机化合物影响进行分析,主要结论如下:
     ①标准环境下,HDPE滴灌管第一个72hTOC迁移量和TOC12天累积迁移量呈正向相关关系,且达到极显著水平;HDPE滴灌管随时间延长TOC迁移量呈先减后增趋势,并且滴灌毛管TOC迁移率在各个迁移周期内均明显小于滴灌支管。
     ②温室环境下:HDPE滴灌管温室环境下TOC迁移量远远大于标准环境下,在27天迁移动态规律分析中随时间延长呈单峰趋势,并且在第9天管材向水中迁移TOC含量达到峰值。
     ③环境因素影响:a.温度:从数值上看,HDPE滴灌管TOC迁移率随温度升高而增大;从增大幅度上看,并不是所有品牌HDPE滴灌管随温度升高其TOC迁移率大幅增长;b.空气相对湿度(RH):RH变化对HDPE滴灌管TOC迁移率影响因品牌差异而各不相同,受RH影响最大品牌是5#管,最小的是8#管;c.光照:滴灌支管TOC迁移率受光照影响比滴灌毛管大。
     ④综合因素影响:无论是HDPE滴灌支管还是HDPE滴灌毛管,除光照因素外因素主次顺序均为:时间>温度>品牌>湿度;在含光照因素试验中,透光率因素因HDPE滴灌管功能不同而影响力不同。
     3)为更好研究灌溉水质对HDPE滴灌毛管有机化合物迁移影响,选择3种品牌HDPE滴灌毛管为试验管材,研究5种不同灌溉水质以及番茄营养液不同pH值对滴灌毛管有机化合物迁移影响、在HDPE滴灌毛管作用下,番茄营养液(pH=6)特征变化情况、以及在番茄营养液作用下,温度和光照环境因子对HDPE滴灌毛管有机化合物迁移影响,结论如下:
     ①不同灌溉水质影响:标准环境下HDPE滴灌毛管向配制水和营养液中迁移TOC量远远高于向去离子水中迁移量,滴灌毛管向营养液中迁移TOC量表现为:番茄营养液>黄瓜营养液>非洲菊营养液;随着时间的延长,滴灌毛管向去离子水迁移TOC量越来越少,且减少趋势在一段时间内趋于平稳;向营养液中迁移有机物的趋势呈双峰曲线。滴灌毛管在不同灌溉水质作用下COD12天累积量为:配制水>番茄营养液>去离子水;
     ②营养液不同pH值影响:对于番茄营养液而言,当pH=4时,对滴灌毛管TOC迁移影响最大,pH=5时,影响最小,这是因为在强酸性环境下,管材有机物迁移量更大;
     ③HDPE滴灌毛管有机物迁移对营养液特性影响:营养液pH值随迁移周期延长而降低,但都高于初始pH值,HDPE滴灌毛管对EC值影响较小;
     ④番茄营养液作用下温度和光照影响:a.温度:TOC迁移率最大值出现在40℃温度下,最小值出现在20℃温度下;COD值均随温度升高而增大;b.光照:迁移周期内HDPE滴灌毛管TOC累积迁移量均为:85%透光率>50%透光率>15%透光率,与标准环境相比,HDPE滴灌毛管向营养液中迁移有机物的含量都有大幅增长;
     ⑤综合因素影响:在营养液作用下,影响HDPE滴灌毛管有机物迁移因素顺序为:时间>温度>品牌,时间>透光率>品牌,可见,迁移周期亦是非常重要的影响因素。
     4)为全面评价滴灌管材使用的安全性,对滴灌系统中干、支、毛三级管网在不同环境下72h浸泡液对种子萌发和根芽抑制效应及其发光细菌综合毒性进行研究,主要结论如下:
     ①发光细菌急性毒性试验:a.UPVC滴灌干管标准环境下72h浸泡液相对发光度较高,低毒性灌溉水居多;温室环境下UPVC滴灌干管浸泡液毒性级别都在Ⅱ级以上;低温对UPVC滴灌干管浸泡液发光细菌急性毒性影响最大;b.HDPE滴灌管浸泡液相对发光度均随温度升高而降低,温度变化对HDPE滴灌支管浸泡液毒性等级影响不大,对HDPE滴灌毛管浸泡液毒性影响较大,尤其高温作用;c.环境因素对滴灌管材生物毒性影响顺序为:光照>温度>湿度;
     ②滴灌管浸泡液种子发芽和根伸长的毒性试验:黑麦草和小麦分别是通过植物种子发芽和根伸长变化评价UPVC和HDPE滴灌管浸泡液更加理想的植物类型。
Water pipeline in drip irrigation system is composed mainly of mainline, sub-main lineand capillary line. The materials of its network mainly use polyethylene and polyvinylchloride plastic tubing. As they contact with water for a long time, long distance and largearea, the pipe processing additives and their breakdown products migrate to irrigation waterand change the water quality ingredient, which effect the growth of plants. Then, under theamplified action of the food chain, the human health will be threatened potentially.According to the project of Science and Technology Development Program of Jilin―Theeffect of Greenhouse microclimate on Compounds migrating from Drip irrigation pipes‖(number:20090169), the dissertation proceeds from the drip irrigation production reality, bychoosing polyvinyl chloride and polyethylene as the research objects, carry out theinterference effects study of greenhouse microclimate on compounds migrating from dripirrigation pipes. The main research activities and results are as follows:
     1) In order to preferably study the environment effects on chemical substancesmigrating from UPVC drip irrigation pipe, four different brands of drip irrigation pipes arechosen as the test tube. In a standard environment, the greenhouse environment andtemperature variation influences on heavy metal migration and organic compounds areanalyzed. The main experimental results are shown as follow:
     ①As12days experimental results in standard environment shows, the TOC migrationamount in mainline exceeds the limitation of drinking water quality standard; the biggest Pbcontent in tube is289.9times of drinking water quality standard and2.9times of farmlandirrigation water standard, the Pb migrating from mainline to water decreases with time; themaximums of Fe and Al migration exceed the limitation of drinking water quality standardas well(no irrigation water standard); the maximums of Ba and Zn are within the limitationof drinking water quality standard and irrigation water standard;
     ②In the greenhouse environment, the TOC and Ca influences of undergroundmainline (-40cm) are obviously greater than ground-surface conditions. Different placementshave no effect on Pb migration, which decreases with time; the ground-surface environmentis benefit for Pb migration; Buried treatment has a less effects on Al and Zn migration thanground-surface environment; Two different placements have little effects on Fe and Bamigration;
     ③Temperature influence: mainline TOC migration rate and Pb/Zn migration amount increases with rising temperature; higher temperature will clearly increase TOC and Pbmigration; the temperature variation has the biggest influence on Ca migration;
     ④Analysis of comprehensive elements: for the influence factors to mainline TOC andAl element migration, temperature> time> brand; Ca: time> temperature> brand; Pb:temperature> brand> time; Fe: brand> time> temperature; Zn: time> temperature>brand.
     2) In order to preferably study the environment effects on organics migrations fromHDPE pipe, three different HDPE sub-main pipe brands and five different HDPE capillarypipe brands are chosen as the test objects. In standard environment, the greenhouseenvironment and environment variation influences on organic compounds migration areanalyzed. The main results are shown as follow:
     ①In the standard environment, the first72h TOC release quantity from HDPE dripirrigation pipes is positively related to the12days TOC cumulative release quantity;Then,the TOC release amount initially decreases, but turns to increase with time;The mobility ofcapillary line TOC are less than sub-main pipe TOC mobility in various migration periods;
     ②In the greenhouse environment: TOC migration from HDPE pipe is much greaterthan the standard environment; The dynamic analysis during27days shows a unimodaltrend, and the TOC migration in the9th day reaches the peak;
     ③Environmental factors influences: a. Temperature: the TOC mobility from HDPEincreases with the temperature, and not all TOC migration increases with the temperaturesignificantly; b. Humidity: RH changes effects are different for TOC migration with differentbrands of HDPE pipes; RH has the greatest affects on No.5#tube, and the least effects onNo.8#tube; c. Lighting: the lighting effects on sub-main pipe TOC migrating is bigger thancapillary pipe;
     ④Analysis of comprehensive factors: For HDPE sub-main pipe and HDPE capillarypipe, except the light factor: time> temperature> brand> humidity; including the lightfactor, the light transmittance influence are varied for HDPE pipe function.
     3) In order to study the effects of irrigation water quality impact on HDPE dripirrigation pipe better, three different HDPE capillary are chosen as the test objects, fivedifferent kinds of tested water and TOC migration effects of different tomato nutrientsolution pH values are studied. In the role of HDPE capillary pipe, tomato nutrient solution(pH=6) characteristics, as well as the temperature and light intensity influences on organicsmigration with their functions are discussed; the conclusions are as follows:
     ①Impacts of different tested water: in standard environment, the TOC migrationsfrom irrigation pipe to water and tomato nutrient irrigation are much higher than themigration quantity to distilled water; The TOC migration performance to the nutrientsolutions: tomato nutrient solution> cucumber nutrient solution> Gerbera nutrition liquid;With the extension of time, the capillary TOC migration to distilled water are less and less,and the reduction tends to stable over a period; the organics migrations to the nutrientsolution shows bimodal curves; For COD in12days, the accumulated amount of nutrientsolution under different irrigation water quality in capillary pipe: preparing water> thetomato nutrient solution> distilled water;
     ②Different pH value effects of Nutrient solution: For tomato nutrient solution, whenpH=4, it has the biggest influence on capillary TOC migration, when pH=5, it has theminimal impact, this is because in the strong acidic conditions, the pipe organic have abigger migration quantity;
     ③The organics migrating effects from HDPE capillary pipe on nutrient solutionfeatures: nutrient solution pH value decreased with the extension of the migration period.However, they are higher than the initial pH value; the tube stocks have less influence on ECvalue;
     ④Temperature and light effects with the action of tomato nutrient solution: a.Temperature: the maximum migration rate of TOC was appeared on the temperature of40℃,the minimum value occurred at20℃; COD value increases with temperature; b. Lighting:Capillary TOC accumulation migration amount in migration period are as follows:85%lighttransmittance>50%light transmittance>15%light transmittance, compared with thestandard environment, the organics migration from pipe to nutrient solution has asignificantly increase;
     ⑤The analysis of comprehensive elements: Under the effect of nutrient solution, theorder of the factors affecting the tubing organics migration: time> temperature> brand,time> light transmittance> brand, visible, the influence factors of migration cycle is alsovery important.
     4) For comprehensive evaluation of the drip irrigation pipe safety, the dissertation hasstudied the soaking liquids influences in mainline, sub-main line and capillary line within72h on seed germination, radical bud inhibition effect and luminescent bacteriacomprehensive toxicity, the main conclusions are as follows:
     ①Luminescent bacteria acute toxicity test: a. In the standard environment,72h UPVCmainline soaking liquid has a high luminous intensity, low toxicity mostly in the irrigation water; the level of mainline soaking liquid in the greenhouse environment are over Ⅱmagnitude. Low temperature has the greatest impact on luminescent bacteria acute toxicityin mainline; b. the relative luminosity of HDPE pipe soaking liquid decreases withtemperature rise, and the temperature change have little influence on toxicity of dripirrigation pipe soaking liquid; the temperature has a large influence on capillary pipeimmersion toxicity, especially at the high temperature; c. Environment factors influences onthe tubing biological toxicity: light> temperature> humidity;
     ②Seed germination and root elongation toxicity test of soaking liquids in dripirrigation pipe: through the plant seed germination and root elongation change evaluation,ryegrass and wheat, which is the ideal plant for UPVC and HDPE drip irrigation pipesoaking liquid is identified.
引文
[1]山仑,黄占斌,张岁岐.节水农业[M].北京:清华大学出版社;广州:暨南大学出版社,2009:1-26.
    [2]吴文荣,丁培峰,忻龙祚,等.我国节水灌溉技术的现状及发展趋势[J].节水灌溉,2008,(4):50-54.
    [3]徐建海,吴兴旺.滴管技术与滴灌管(带)生产技术现状与发展前景[J].塑料科技,2001,(2):38-41.
    [4]陈雅静.设施农业节水灌溉微灌技术在温室中的应用[J].农业科技,2007,10:121.
    [5]鲁会玲,尤海波,王喜庆.滴灌技术在农业设施化生产中的应用[J].黑龙江水利科技,2006,34(2):142-143.
    [6]刘汉良.我国塑料管道行业如何突破发展瓶颈[J].供热制冷,2009,60-61.
    [7] Timothy H. Heim, Andrea M. Dietrich. Sensory aspects and water quality impacts ofchlorinated and chloraminated drinking water in contact with HDPE and cPVC pipe[J].Water Research,2007,41(4):757-764.
    [8]张红丽,方文熙.滴灌管网优化研究现状[J].福建农机,2004增刊,31-33.
    [9]李原园,曾肇京,许新宜,等.面向可持续发展的西北水利发展战略问题[J].水利规划设计,2000,(2):6-10.
    [10] Wei Zhengying, Tang Yiping, Zhao Wanhua, et al. Rapid structural design of dripirrigation emitters based on RP technology[J].Rapid Prototyping Journal,2007,13(5):268-275.
    [11] M. A. Badr, S. D. Abou Hussein, W. A. El-Tohamy, et al. Efficiency of Subsurface DripIrrigation for Potato Production Under Different Dry Stress Conditions[J].GesundePflanzen,2010,62(2):63-70.
    [12] N. Da delen, H. Ba al, E. Yιlmaz, et al. Different drip irrigation regimes affect cottonyield, water use efficiency and fiber quality in western Turkey[J].Agricultural WaterManagement,2009,96:111-120.
    [13]汪丽,章明秋,阮文红.塑料给水管材中有机物迁移率的分析研究[J].中国塑料,2009,23(6):101-103.
    [14]罗振奎,梁旭霞,李少霞,等.广东省常见PVC-U给水管材15种金属溶出含量的测定与分析[J].中国卫生检验杂志,2008,18(3):501-503.
    [15]周志祥.新型建筑给水管材的进展及卫生学评价[J].中国卫生工程学,2002,1(3):183-184.
    [16]王成涛.塑料食品包装材料的化学物迁移与危害[J].北京工商大学学报,2011,29(5):8-9.
    [17]曾祥玲,曹成有,高菲菲,等.镉、铅对沙打旺种子萌发及早期生长发育的毒性效应[J].草业学报,2008,17(4):71-77.
    [18] GB/T17219-1998.生活饮用水输配水设备及防护材料安全性评价标准[S].
    [19] GB/T10002.1-2006.给水用硬聚氯乙烯(PVC-U)管材[S].
    [20] Nightingale H.I., G.J.Hoffman, D.E.Rolston, et al. Trickle irrigation rates and soilsalinity distribution in an almond (Prunus Amygdalus) orchard[J].Agric.WaterManage.,1991,19:271-283.
    [21] Moreshet S., M.Fuchs, Y.Cohezkel, et al. Water transport characteristics of cotton asaffected by drip irrigation layout[J].Agron.J.,1996,88:717-722.
    [22] Khumoetsile Mmolawa, Dani Or. Root zone solute dynamics under drip irrigation:Areview[J].Plant and Soil,2000,222(1-2):163-190.
    [23]周荣敏,雷延峰.不同灌溉制度下的灌溉管网优化设计研究[J].西北水资源与水工程,2002,13(2):1-5.
    [24]常文.温室蔬菜大棚中的滴灌技术[J].水利规划与设计,2005,2:77-79.
    [25]高艳.滴灌管专用树脂的研发[D].兰州:兰州大学化学化工学院,2007.
    [26] P.Najafi, S.H.Tabatabaei. EFFECT OF USING SUBSURFACE DRIP IRRIGATIONAND ET-HS MODEL TO INCREASE WUE IN IRRIGATION OF SOME CROPS[J].IRRIGATION AND DRAINAGE,2007,56:477-486.
    [27] Taisheng Du, Shaozhong Kang, Jianhua Zhang, et al. Water use and yield responses ofcotton to alternate partial root-zone drip irrigation in the arid area of north-westChina[J].Irrig Sci,2008,26:147-159.
    [28] Walsh, Kerri. Plastic Additives Experience Strong Demand, But CostsSoar[J].Chemical Week,2010,172(25):40.
    [29] Huijun Xie, Yijing Shi, Jian Zhang, et al. Degradation of phthalate esters (PAEs) in soiland the effects of PAEs on soil microcosm activity[J].Journal of Chemical Technologyand Biotechnology,2010,85(8):1108-1116.
    [30] Giuseppe Latini. Monitoring phthalate exposure in humans[J].Clinica ChimicaActa,2005,361(1):20-29.
    [31] Babich Michael A, Chen Shing-Bong, Greene Michael A, et al. Risk assessment of oralexposure to diisononyl phthalate from children’s products[J].Regulatory Toxicologyand Pharmacology,2004,40(2):151-167.
    [32] GB5749-2006,生活饮用水卫生标准[S].
    [33]王晓红,蔡祖根.江苏省二次供水卫生现状及改善措施的探讨[J].环境与健康杂志,1994,11(4):184-185.
    [34]承明华,陈晓东,周明浩.60起管网及二次供水污染事故分析[J].环境与健康杂志,2002,19(1):91-93.
    [35]陈昌杰,张岚,鄂学礼.我国生活饮用水水质卫生问题[C].全国政协饮用水与健康研讨会,2000,6.
    [36] I.Meyer, J.Heinrich, M.J.Trepka, et al. The effect of lead in tap water on blood lead inchildren in a smelter town[J].Science of the Total Environment,1998,209(2):255-271.
    [37] Bj rn Zietz, Julia Dassel de Vergara, Sebastian Kevekordes, et al. Lead contaminationin tap water of households with children in Lower Saxony, Germany[J].Science of theTotal Environment,2001,275(1):19-26.
    [38] Maas Richard P, Patch Steven C, Parker Andrew F. An assessment of lead exposurepotential from residential cutoff valves[J].Journal of Environmental Health,2002,65(1):9-14.
    [39] C.Anselme, K.N’Guyen, A.Bruchet, et al. Can polyethylene pipes impart odors indrinking water?[J].Environmental Technology,1985,6(1-11):477-488.
    [40] Lucia Calvosa, Germana Chiodini, Walter Coretti, et al. Taste and odour developmentin water in polyethylene containers exposed to direct sunlight[J].Water Research,1994,28(7):1595-1600.
    [41] Angulo F J, Tippen S, Sharp D J, et al. A community waterborne outbreak ofsalmonellosis and the effectiveness of a boil water order[J].American Journal of PublicHealth,1997,87(4):580-584.
    [42]乔英杰,张宝杰,韩洪军,等.塑料给水管中化学成分对水质的影响[J].哈尔滨理工大学学报,2000,5(2):41-43.
    [43] Gullick Richard W, Le Chevallier Mark W. Occurrence of MTBE in drinking watersources[J].Journal of American Water Works Association,2000,92(1):100-113.
    [44] Muhammad H Al-Malack. Migration of lead from unplasticzed polyvinyl chloridepipes[J].Journal of Hazardous Materials,2001,8(3):263-274.
    [45] Brocca D., Arvin E., Mosb k H. Identification of organic compounds migrating frompolyethylene pipelines into drinking water[J].Water Research,2002,36(15):3675-3680.
    [46] Ingun Skjevrak, Anne Due, Karl Olav Gjerstad, et al. Volatile organic componentsmigrating from plastic pipes (HDPE, PEX and PVC) into drinking water[J].WaterResearch,2003,37(8):1912-1920.
    [47]秦帆,王红雨.GC-MS监测生活饮用水输配水管材及防护材料中溶出的挥发性有机物[J].分析测试学报,2004,23:202-205.
    [48]胡昌军,陈允喜,宁琳琪,等.室内饮用水管滞留水的铅污染[J].环境与健康杂志,2005,22(3):198-199.
    [49]孟平蕊,康智慧,李良波,等.塑料水管中挥发性有机物的迁移研究[J].中国塑料,2008,22(3):82-85.
    [50]袁洪斌,邱鹏芳,刘素意,等.龙岩市食品中重金属污染检测与评价[J].预防医学情报杂志,2008,24(12)1005-1006.
    [51]王岙,白梅,张冠英,等.2001年-2008年吉林省食品中重金属污染状况检测分析[J].中国卫生检验杂志,2011,21(8):2027-2032.
    [52] E.Duffy, A.P.Hearty, S.McCarthy, et al. Estimation of exposure to food packagingmaterials.3:Development of consumption factors and food-type distribution factorsfrom data collected on Irish children[J].Food Additives&Contaminations,2007,21(1):63-74.
    [53] Preeti Singh, Sven Saengerlaub, Ali Abas Wani, et al. Role of plastics additives forfood packaging[J].Pigment&Resin Technology,2012,41(6):368-379.
    [54] D.Scholler, J.M.Vergnaud, J.Bouquant, et al.Safety and quality of plastic food contactmaterials. Optimization of extraction time and extraction yield,based on arithmeticrules derived from mathematical description of diffusion.Application to controlstrategies[J].Packaging Technology and Science,2003,16(5):209-220.
    [55] GB9685-2003,食品容器、包装材料用助剂使用卫生标准[S].
    [56]应英,沈向红,汤鋆,等.杭州地区部分食品重金属污染状况监测研究[J].中国卫生检验杂志,2006,16(12):1498-1500.
    [57]孙鹂,赵正言,李荣,等.环境铅暴露对学龄前儿童免疫系统的影响[J].环境与健康杂志,2002,19(2):99-101.
    [58] Begley Timothy H., Hollifield Henry C. Recycled polymers in food packaging.Migration considerations[J].Food Technology,1993,76(11)109-112.
    [59] Badeka A B, Kontominas M G. Effect of microwave heating on the migration ofdioctyladipate and acetyltributylcitrate plasticizers from food-grade PVC andPVDC/PVC films into olive oil and water[J].Zeitschrift für Lebensmittel-Untersuchung und-Forschung,1996,202(4):313-317.
    [60] Feigenbaum A., Laoubi S., Vergnaud J. M. Kinetics of diffusion of a pollutant from arecycled polymer through a functional barrier: Recycling plastics for foodpackaging[J].JOURNAL OF APPLIED POLYMER SCIENCE,1997,(66):597-607.
    [61] A.E. Goulas, K.I. Anifantaki, D.G. Kolioulis, et al. Migration of di-(2-ethylhexylexyl)Adipate Plasticizer from Food-Grade Polyvinyl Chloride Film into Hard and SoftCheeses[J].Journal of Dairy Science,2000,83(8):1712-1718.
    [62] Koichi Inoue, Sachiko Kondo, Yuriko Yoshie, et al. Migration of4-nonylphenol frompolyvinyl chloride food packaging films into food simulants and foods[J].FoodAdditives&Contaminants,2001,18(2):157-164.
    [63] Hurst Christopher H, Waxman David J. Activation of PPARalpha and PPARgamma byenvironmental phthalate monoesters[J].Toxicological Sciences,2003,74(2):297-308.
    [64] J. López-Cervantes, D.I. Sánchez-Machado, J. Simal-Lozano, et al. Migration ofEthylene Terephthalate Oligomers from Roasting Bags into Olive Oil[J].Chromatographia,2003,58(5):321-326.
    [65]孙彬青.食品包装材料化合物的迁移分析[D].无锡:江南大学食品学院,2006.
    [66]龚丽雯,王成云,李京会,等.PVC包装膜中己二酸酯类增塑剂在水中的迁移行为研究[J].聚氯乙烯,2006,9:31-35.
    [67]王丽霞,王明林.高效液相色谱法测定塑料袋装食品中的邻苯二甲酸酯[J].分析实验室,2007,26(9):13-16.
    [68]王文枝,国伟,孙利,等.食品包装材料中DEHP的危害及其在食品中的暴露评估[J].食品安全与检测,2008,(4):166-168.
    [69] Votavova Lenka, Dobias Jaroslav, Voldrich Michal, et al. Migration of Nonylphenolsfrom Polymer Packaging Materials into Food Simulants[J].CZECH JOURNAL OFFOOD SCIENCES,2009,27(4):293-299.
    [70]蒋小良,曾铭,郝雨,等.食品包装材料中双酚A在食品模拟物中迁移规律的研究[J].分析测试技术与仪器,2013,19(3):133-137.
    [71]宋晓峰,魏光辉.医用塑料增塑剂DEHP安全性研究及对策[J].国外医学(卫生学分册),2005,32(6):358-361.
    [72]庾晋,郑苏江,胡斌,等.塑料制品在医疗领域的应用[J].天津橡胶,2003,3(4):39-42.
    [73]孙德明,赵月秀,张殿尧.塑料注射器取血对血气分析的影响[J].第二军医大学学报,1993,14(5):493-494.
    [74] C Beitz, T Bertsch, D Hannak, et al. Compatibility of plastics with cytotoxic drugsolutions-comparison of polyethylene with other container materials[J].InternationalJournal of Pharmaceutics,1999,185(1):113-121.
    [75]王丽,遇永矫.一次性塑料输液器对莪术油的吸附[J]中国医院药学杂志,2000,(11):697-698.
    [76] Sharpe R M, Walker M, Millar M R, et al. Effect of neonatal gonadotropin-releasinghormone antagonist administration on sertoli cell number and testicular developmentin the marmoset: comparison with the rat[J].Biology of Reproduction,2000,62(6):1685-1693.
    [77]黄小萍,顾嘉钦.塑料输液袋和输液管对硝酸异山梨酯的吸附性及温度对吸附的影响[J].药学服务与研究,2002,2(2):106-108.
    [78]张恩娟,刘同华,江敏,等.输液用塑料制品对药物的吸附[J].中国药房,2003,(11):694-695.
    [79]张毅兰,杨敏,俞春伟.聚氯乙烯输液袋增塑剂的释出和对药物的吸附[J].中国医药工业杂志,2008,39(1):52-55.
    [80]孙成均,杉田和俊,後藤纯雄,等.气相色谱-质谱法测定空气悬浮颗粒物中35种多环芳烃化合物[J].华西医大学报,2001,32(3):467-470.
    [81] Wilkinson Chris F, Lamb James C. The potential health effects of phthalate esters inchildren’s toys: a review and risk assessment[J].Regulatory toxicology andpharmacology,1999,30(2):140-145.
    [82]孙多志,左莹,禄春强,等.气相色谱-质谱法测定塑料玩具中多环芳烃[J].理化检验(化学分册),2012,48:793-796.
    [83]王成云,刘彩明,施钦元,等.超声萃取/气相色谱-串联质谱法同时测定皮革制品中20种邻苯二甲酸酯类增塑剂[J].分析测试学报,2012,31(12):1550-1555.
    [84]杨书君,高本虎,任晓力.农用聚乙烯塑料老化试验方法概述[J].橡塑资源利用,2006,(5):19-22.
    [85] Gerald Scott. Initiation processes in polymer degradation[J].Polymer Degradation andStability,1995,48(3):315-324.
    [86] B.B.Troitskii, L.S.Troitskaya. Mathematical models of the initial stage of the thermaldegradation of poly(vinyl chloride)-3.The thermal degradation of poly(vinyl chloride)in the presence of HCl[J].European Polymer Journal,1995,31(6):533-539.
    [87] E.Govorcin Bajsic, V.Rek, A.Sendijarevic, V.Sendijarevic, et al. The effect of differentmolecular weight of soft segments in polyurethanes on photooxidative stability[J].Polymer Degradation and Stability,1996,52(3):223-233.
    [88]朱福海.高分子材料光降解和稳定[J].合成材料老化与应用,1999,(1):24-26.
    [89] Branka Andri i, Tonka Kova i, Ivka Klari. Kinetic analysis of the thermo-oxidativedegradation of poly (vinyl chloride) in poly (vinyl chloride)/methyl methacrylate-butadiene-styrene blends1Isothermal degradation[J].Polymer Degradation andStability,2002,78(3):459-465.
    [90]陈晓峰,曹大为,雷景新.增塑剂对聚氯乙烯紫外光老化性能影响的研究[J].塑料工业,2007,35(2):57-59.
    [91]周勇.高分子材料的老化研究[J].国外塑料,2012,(1):35-41.
    [92]庞贞武.铝毒快速抑制水稻根伸长生长的生理机制研究[D].武汉:华中农业大学植物科学技术学院,2009.
    [93]于拴仓,刘立功.Cd、Pb及其相互作用对3种主要蔬菜胚根伸长的影响[J].种子,2005,24(1):61-63.
    [94]刘岭梅.PVC加工用热稳定剂概述[J].聚氯乙烯,2001,(2):43-48.
    [95]胡金朝.重金属污染对不同生境水生植物的毒害机理研究[D].南京:南京师范大学生命科学学院,2006.
    [96] G.Ouzounidou, M.Moustakas, E.P.Elftheriou. Physiological and Ultrastructural Effectsof Cadmium on Wheat (Triticum aestivum L.) Leaves[J].Archives of EnvironmentalContamination and Toxicology,1997,32(2):154-160.
    [97] Sun E J, Wu F Y. Along-vein necrosis as indicator symptom on water spinach causedby nickel in water culture[J].Botanical Bulletin of Academia Sinica,1998,39(4):255-259.
    [98]宋玉芳,许华夏,任丽萍,等.重金属对西红柿种子发芽与根伸长的抑制[J].中国环境科学,2001,21(5):390-394.
    [99] P.Bansal, P.Sharma, V. Goyal. Impact of Lead and Cadmium on Enzyme of Citric AcidCycle in Germinating Pea Seeds[J].Biologia Plantarum,2002,45(1):125-127.
    [100]Andres Schützendübel, Petia Nikolova, Claudia Rudolf, et al. Cadmium andH2O2-induced oxidative stress in Populus×canescens roots[J].Plant Physiology&Biochemistry,2002,40(6):577-584.
    [101]Chen Y X, He Y F, Yang Y, et al. Effect of cadmium on nodulation and N2-fixation ofsoybean in contaminated soils[J].Chemosphere,2003,50(6):781-787.
    [102]林匡飞,徐小清,郑利,等.Se对小麦种子发芽与根伸长抑制的生态毒理效应[J].农业环境科学学报,2004,23(5):885-889.
    [103]丁园,刘继东,陈炳存,等.重金属胁迫对黑麦草种子萌发的影响[J].江西畜牧兽药杂志,2005,(3):21-22.
    [104]汤照云,马维成.铝对番茄的毒性及若干生理指标的影响[J].安徽农业科学,2007,35(26):8122-8123.
    [105]HE Jun-yu, REN Yan-fang, ZHU Cheng, et al. Effects of Cadmium Stress on SeedGermination, Seedling Growth and Seed Amylase Activities in Rice (Oryza sativa)[J].Rice Science,2008,15(4):319-325.
    [106]刘大林,马晶晶,邱伟伟,等.Cu2+处理下20个引进多花黑麦草品种种子发芽特性的比较研究[J].上海畜牧兽医通讯,2010,(5):2-4.
    [107]王荷萍.浅谈塑料助剂-增塑剂的特点与性质[J].科技情报开发与经济,2009,19(4):216-217.
    [108]刁海燕.增塑剂安全问题备受关注[J].国际化工信息,2005,16-17.
    [109]蔡玉祺,汤国才,王珊龄,等.邻苯二甲酸酯对蔬菜幼苗的影响[J].农业环境保护,1994,13(4):163-166.
    [110]甘家安,王西奎,徐广通,等.酞酸酯在植物中的吸收和积累研究[J].环境科学,1996,17(5):87-88.
    [111]安琼,靳伟,李勇,等.酞酸酯类增塑剂对土壤-作物系统的影响[J].土壤学报,1999,36(1):118-126.
    [112]Yin R, Lin X G, Wang S G, et al. Effect of DBP/DEHP in vegetable planted soil on thequality of capsicum fruit[J].Chemosphere,2003,50(6):801-805.
    [113]曾巧云,莫测辉,蔡全英,等.菜心对邻苯二甲酸酯(PAEs)吸收途径的初步研究[J].农业工程学报,2005,21(8):137-141.
    [114]谢明吉,严重玲,叶菁.菲对黑麦草根系几种低分子量分泌物的影响[J].生态环境,2008,17(2):576-579.
    [115]苏君梅,王丹丹,张琪.土壤中蒽、菲、芘对小麦种子的生态毒性效应[J].山西化工,2008,28(1):13-15.
    [116]Quan-Ying Cai, Ce-Hui Mo, Qi-Tang Wu, et al. Polycyclic aromatic hydrocarbons andphthalic acid esters in the soil-radish (Raphanus sativus) system with sewage sludgeand compost application[J].Bioresource Technology,2008,99(6):1830-1836.
    [117]李桂祥,罗星晔,李竞.金桔园土壤及金桔中酞酸酯污染特征分析[J].农业环境与发展,2013,30(4):54-57.
    [118]高峰,俞立,张文安,等.现代通信技术在设施农业中的应用综述[J].浙江林学院学报,2009,26(5):742-749.
    [119]A.Ganguly, S.Ghosh. Modeling and analysis of a fan-pad ventilated floriculturalgreenhouse[J].Energy&Buildings,2006,39(10):1092-1097.
    [120]K.S.Kumar, K.N.Tiwari, Madan K.Jha. Design and technology for greenhouse coolingin tropical and subtropical regions: A review[J].Energy&buildings,2009,41(12):1269-1275.
    [121]王俊霞.滴灌技术在温室中的应用[J].农业技术与装备,2009(1):56.
    [122]王晓丽,邓璐娟.基于Matlab语言的温室作物蒸腾模型[J].控制工程,2005,S1:99-100.
    [123]ISO-8245-1999, Water quality--Guidelines for the determination of total organiccarbon (TOC) and dissolved organic carbon (DOC)[S].
    [124]GB/T5750.7.4-2006.生活饮用水标准检验方法有机物综合指标[S].
    [125]GB5084-92.农田灌溉水质标准[S].
    [126]刘岩,侯广利,孙继昌,等.水质总有机碳(TOC)分析方法的研究[J].山东科学,2005,18(5):1-5.
    [127]Khademikia Samaneh, Rafiee Zahra, Amin Mohammad Mehdi, et al. Association ofnitrate, nitrite, and total organic carbon (TOC) in drinking water and gastrointestinaldisease[J].Journal of environmental and public health,2013,1-5.
    [128]中华人民共和国国家发展计划委员会,中华人民共和国财政部,中华人民共和国国家环境保护总局,中华人民共和国国家经济贸易委员会第31号令.排污费征收标准管理办法[Z].2003-02-28.
    [129]BS EN1420-1-1999Influence of organic materials on water intended for humanconsumption-Determination of odour and flavour assessment of water in pipingsystems-Part1:test method[S].
    [130]Tang Zhijian, Hong Seungkwan, Xiao Weizhong, et al. Impacts of blending ground,surface, and saline waters on lead release in drinking water distributionsystems[J].Water Research,2006,40(5):943-950.
    [131]OECD(Organization for Economic Cooperation and Development). OECD guidelinesfor testing of chemicals[S].Paris. France:European Committee,1984,208-209.
    [132]温飞,陶华旸,李丽群.重金属污染的研究进展[J].甘肃科技,2008,24(24):118-121.
    [133]李颖梅,周向辉.水的硬度引起的危害及其软化[J].魅力中国,2009(10):54.
    [134]林云甲.营养元素缺乏或过量的危害[N].中国花卉报,2005-5-10.
    [135]United States Environmental Protection Agency(EPA). EPA822-S-12-001, Edition ofthe Drinking water quality standards and Health Advisories[S].Washington, DC.,2012.
    [136]World Health Organization (WHO). Guidelines for drinking water quality, secondedition. Recommendations, vol.1, Geneva,2004.
    [137]Aryapu Raviraja, Gaja Narayanamurthy Vishal Babu, Anita Raghuveer Bijoor, et al.Lead Toxicity in a Family as a Result of Occupational Exposure[J].Archives ofIndustrial Hygiene and Toxicology,2008,59(2):127-133.
    [138]Kalmokoff M L, Austin J W, Wan X D, et al. Adsorption, attachment and biofilmformation among isolates of Listerie monocytogenes using model conditions[J].Journalof Applied Microbiology,2001,91(4):725-734.
    [139]高永强,马燕.铅对人体的危害[J].内蒙古环境科学,2007,(3):115-117.
    [140]钱忠明.铁代谢-基础与临床[M].北京:科学出版社,2000:307.
    [141]Kang J O. Research on the adjustive system of the small intestime’s Fe-absorbency[J].Clinical Laboratory Science,2001,14(3):208-219.
    [142]孙玉锦,汤新云.铁摄入过量对人体健康的影响[J].四川生理科学杂志,2006,28(4):183-184.
    [143]徐宜秋.铝对人体的危害[C].中学生数理化(八年级物理):2013(Z1):90.
    [144]曹春信,刘新华,周琴,等.过量锌对油菜生长、产量和养分吸收的影响及锌在植株地上部器官中的富集特征[J].浙江农业学报,2011,23(4):787-791.
    [145]胡亦群,宁慧青.人体必需微量元素过量对健康的影响[J].太原科技,2008,(5):35-36.
    [146]曾昭华,曾雪萍.癌症与土壤环境中钡元素的关系[J].辽宁地质,1999,16(3):231-233.
    [147]Sandberg E, Vaz R, Albanus L, et al. Contamination of foodstuffs by plasticizers fromplastic film[J].Var Foda,1982,34:470-482.
    [148]苏锡辉,宋健,邱志隆,等.温度对食品级PVC中4种增塑剂迁移量的影响[J].食品研究与开发,2012,33(1):190-192.
    [149]张双灵,郭康权,孟娟.几种水性溶剂对PVC膜中增塑剂DEHP的溶出作用[J].农业工程学报,2008,24(5):261-264.
    [150]陈晓峰.增塑剂对聚氯乙烯紫外光老化性能影响的研究[D].成都:四川大学高分子研究所高分子科学与工程专业,2007.
    [151]王贵斌.PVC型材老化问题探讨[J].中国建筑金属结构,2002,(9):19-22.
    [152]张立尖,曹霞霓.水中总有机碳测定的定量校正[J].分析仪器,2003,(4):50-51.
    [153]张亨.抗氧剂综述[J].精细石油化工进展,2000,1(10):10-15.
    [154]赵颖,孙芳,孙利.抗氧剂168的合成与应用[J].化学工程师,2003,97(4):48-49.
    [155]周宝利,李娜,刘双双,等.2,4-二叔丁基苯酚对番茄叶霉病及幼苗生长的影响[J].生态学杂志,2013,32(5):1203-1207.
    [156]黄昕,厉曙光.酞酸酯毒性作用及其机制的研究进展[J].环境与职业医学,2004,21(3):198-204.
    [157]丁鹏,赵晓松,刘剑峰.酞酸酯类化合物(PAES)研究新进展[J].吉林农业大学学报,1999,21(3):119-123.
    [158]曲洪琴,赵冬梅,程卯生.3,5-二叔丁基-4-羟基苯甲醛的合成[J].2005,34(2):51-52.
    [159]尹帮少.苯并噻唑类化合物的合成与荧光性质研究[D].桂林:广西师范大学化学化工学院,2005.
    [160]H.De Wever and H.Verachtert.Biodegradation and toxicity of benzothiazoles[J].Waterresearch,1997,31(11):2673-2684.
    [161]GB2760-1996.食品添加剂使用卫生标准[S].
    [162]刘晓东,张蕾,陆玲娟,等.滴灌带总有机碳迁移及其生物效应研究[J].安徽农业科学,2011,39(24):14975-14977.
    [163]陈默,王志伟,胡长鹰,等.湿度对聚乙烯醇膜阻隔性能的影响[J].高分子材料科学与工程,2009,25(8):61-67.
    [164]苏仕琼,易军,王春江,等.干、湿热自然气候环境下塑料老化-PP老化规律研究[J].塑料工业,2013,41(6):92-95.
    [165]曾竟成,罗青,唐羽章.复合材料理化性能[M].长沙:国防科技大学出版社,1998,159.
    [166]Zhao S, Gaedke M. Moisture effects on mode Ⅱ delamination behaviour ofcarbon/epoxy composites[J].Adv Comp Mater,2002,5(4):291.
    [167]Jia Liu,Haiye Yu,Lei Zhang,et al. Effect of Greenhpuse Environment on OrganicsMigrating from Agricultural Heigh-Density Polyethylene(HDPE) Pipes[J].SENSORLETTERS,2013,11(6-7):1293-1297
    [168]吴石山.紫外线辐照光强对HDPE化学结构及对HDPE/PC共混体系增容效应的影响[J].化学学报,2002,60(7):1353-1356.
    [169]雷景新,徐僖.紫外线辐照对高密度聚乙烯结晶行为及热分解动力学参数的影响[J].高分子材料科学与工程,1996,12(1):101-105.
    [170]化工部合成材料研究院.聚合物防老化实用手册[M].化学工业出版社,1999.
    [171]张艳玲.遮阳网对夏季温室小气候影响的研究[D].南京:南京农业大学农业生物环境与能源工程,2008.
    [172]费学宁,吕岩,张天永.几种环境激素酞酸酯的光催化降解研究[J].环境化学,2006,25(5):567-571.
    [173]刘佳.无土栽培营养液循环控制系统研究[D].长春:吉林大学生物与农业工程学院,2008.
    [174]ISO-8467-1993,Water quality-Determination of permanganate index[S].
    [175]连兆煌.无土栽培实用技术[M].北京:中国农业出版社,1994:10.
    [176]刘士哲.现代实用无土栽培技术[M].北京:中国农业出版社,2001:141.
    [177]孟庆玲,程智慧,徐鹏,等.营养液pH对非洲菊生长和生理特征影响[J].西北植物学报,2010,30(10):2081-2086.
    [178]曲剑巍.HDPE滴灌管材有机物向水中迁移的影响因素研究[D].长春:吉林大学生物与农业工程学院,2012.
    [179]邱晓国.TOC与COD间相关性数学模型的探讨[D].山东:山东大学环境工程,2010.
    [180]Qu Jianwei, Yu Haiye, Zhang Lei, et al. Effect of Temperature and Water Quality onMigration of Total Organic Carbon from the High-Density Polyethylene Drip IrrigationPipes[J].Sensor Letters,2012,10(1-2):471-474.
    [181]United States Environmental Protection Agency(USEPA). EPA822-R-03-026, DraftUpdate of Ambient Water Quality Criteria for Copper[S].Washington, DC:USEPA,2003.
    [182]Rauf V. Galiulin, Vladimir N. Bashkin, Rosa A. Galiulina. Ecological Risk Assessmentof Riverine Contamination in the Caspian Sea Basin: A Conceptual Model forPersistent Organochlorinated Compounds[J].Water, Air, and Soil Pollution,2005,163(1-4):33-51.
    [183]王晓辉,金静,任洪强,等.水质生物毒性检测方法研究进展[J].河北工业科技,2007,24(1):58-62.
    [184]GB/T13663-2000.给水用高密度聚乙烯(HDPE)管材[S].
    [185]王景成,周晏敏,黄晶雯,等.用发光细菌急性毒性试验评价工业废水毒性初探[J].齐齐哈尔师范学院学报(自然科学版),1993,13(3):49-51.
    [186]国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法(第四版)[M].中国环境科学出版社,2002:781-792.
    [187]庞贞武.铝毒快速抑制水稻根伸长生长的生理机制研究[D].武汉:华中农业大学植物科学技术学院,2009.
    [188]葛成军,陈秋波,俞花美,等. Cd胁迫对2种热带牧草种子发芽与根伸长的抑制效应[J].热带作物学报,2008,29(5):567~571.
    [189]Kyle L. Knoke, Theresa M. Marwood, Michael B. Cassidy, et al. A Comparison of FiveBioassays to Monitor Toxicity During Bioremediation of Pentachorophenol-Contaminated Soil[J]. Water, Air, and Soil Pollution,1999,110(1):157~169.
    [190]Gong P, Wilke BM, Strozzi E, et al. Evaluation and refinement of a continuous seedgermination and early seeding growth test for the use in the ecotoxicologicalassessment of soils[J].Chemosphere,2001,44(3):491-500.
    [191]ISO-11269-1, Soil quality-Determination of the effects of pollutants on soil flora-Part1:Method for the measurement of inhibition of root growth[S].
    [192]Organization for Economic Cooperation and Development: Terrestrial Plants: GrowthTest, OECD Guidance for Testing of Chemicals,No.208[S]Paris,1984.
    [193]鲁先文,何俊.重金属Cu和Zn对小麦种子萌发和生物量的影响[J].安徽农业科学,2008,36(35):15346-15348.
    [194]蔺冬梅.过量铁胁迫对豌豆幼苗毒害作用的研究[D].兰州:兰州大学生命科学学院,2010.
    [195]宋玉芳,周启星,许华夏,等.重金属对土壤中小麦种子发芽与根伸长抑制的生态毒性[J].应用生态学报,2002,13(4):459-462.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700