复方麻醉剂舒眠宁的研制、临床效果、药代动力学及其对免疫功能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
静脉全身麻醉是指将一种或几种药物经静脉注入,通过血液循环作用于中枢神经系统而产生全身麻醉的方法,由于目前尚无任何一种静脉全麻药能够单一满足手术的需要,因此临床上的静脉全麻往往是将多种药理性质各不相同的药物,先后或同时使用,以实现迅速完成诱导,麻醉过程平稳,无污染,苏醒快等目的,为外科手术创造良好的条件,确保动物的安全和术后顺利康复。氯胺酮、赛拉嗪和咪达唑仑是兽医临床麻醉常用的三种药物,可用于小动物的麻醉前用药、化学保定、诱导和维持麻醉,但各药单用时,往往副作用较大,难以使动物进入理想的麻醉状态。本研究旨在通过合理配伍三种药物,组成复方麻醉剂,经正交试验优化其配比,获得最佳处方,并研究其急性毒性、局部刺激性、稳定性、药物代谢动力学过程、临床麻醉效果和药物对免疫功能的影响,为临床上合理应用本药提供数据和参考。试验共分为以下六个部分:
     试验Ⅰ舒眠宁注射液处方的研究
     氯胺酮、赛拉嗪和咪达唑仑是三种广泛应用于小动物临床的麻醉药,本试验将三者配伍使用,试图获得更好的麻醉效果,最低的副作用。在预实验基础上,以小白鼠为试验动物,以氯胺酮、赛拉嗪和咪达唑仑的含量为因素,每个因素设置三个水平,以注射复方药物后小鼠翻正反射消失数为考察指标,选用L9(34)正交表安排试验,优化复方麻醉剂的处方,并制定生产工艺。结果:复方中三种主要成份的含量为氯胺酮(8 g·100mL-1)、赛拉嗪(0.9 g·100mL-1)和咪达唑仑(0.2g·100mL-1),定名为舒眠宁注射液,处方工艺简单,适合工厂化大批量生产。
     试验Ⅱ舒眠宁注射液的安全性和稳定性试验
     为评价舒眠宁注射液的安全性,本试验以小鼠为试验动物,进行了急性毒性试验,经序贯法测定出其ED50和LD50分别为0.706 mL·kg-1体重和2.366 mL·kg-1体重,治疗指数为3.35;在家兔进行了局部刺激性试验,结果表明本药无眼刺激性,对肌肉具有非常轻度刺激性,对静脉具有轻度刺激性,可安全、方便地应用于临床;为确定本药的有效期,以市售包装的三批舒眠宁注射液,进行长期试验,结果表明在常温、避光条件下放置两年后,本品药液澄清、无杂质产生,主药的标示量变化不显著,有效期可初步确定为2年。
     试验Ⅲ舒眠宁在犬体内的药代动力学研究
     为研究舒眠宁主要成份(氯胺酮、赛拉嗪和咪达唑仑)在犬体内的药代动力学过程。本试验建立了一种可同步测定犬血浆内氯胺酮、赛拉嗪和咪达唑仑的RP-HPLC法。采用一步液-液萃取法处理血浆样品。使用C18色谱柱,流动相为乙腈:甲醇-10 mmol·L-1庚烷磺酸钠(44:10:46,v/v),加冰醋酸调至pH 3,流速0.7 mL·min-1,检测波长210 nm,柱温30℃。6只犬静注舒眠宁后,采血,测定血药浓度。氯胺酮、赛拉嗪和咪达唑仑三种成份的药时曲线均符合开放二室模型,主要药代动力学参数分别为:氯胺酮Vc= 1.231±0.147 L·kg-1 T1/2α=4.271±0.521min, T1/2β=65.877±15.701min, AUC=147.331±20.5μg·min·mL-1, CL(s)=0.0393±0.0055L·min-1·kg-1;赛拉嗪Vc=0.918±0.299L·kg-1,T1/2α=4.627±2.056 min, T1/2β=55.773±8.62 min, AUC=20.866±1.781μg·min·mL-1, CL(s)= 0.0336±0.00289 L·min-1·kg-1;咪达唑仑Vc=0.339±0.055 L·kg-1, T1/2α=5.675±1.82 min,T,/2p=39.152±6.546min,AUC=13.554±1.059μg·min·mL-1,CL(s)=0.0131±0.00097 5L·min-1·kg-1.
     试验Ⅳ舒眠宁注射液对灵(?)的麻醉效果研究
     9只灵(?)不使用麻醉前用药,经静脉注射舒眠宁0.06 mL·kg-1体重,观察其麻醉诱导时间、维持麻醉时间、苏醒时间,记录心率、血氧饱和度、呼吸数、收缩压、舒张压和直肠温度,评价镇痛、镇静和肌松效果。结果显示:其诱导、维持麻醉、苏醒时间分别为33.11±3.76sec、23±5.83 min、15±5min;麻醉后心率和血压先升高后缓慢降低,但均在正常生理范围内;体温缓慢下降,但变化幅度较小呼吸数先降低后缓慢升高;麻醉过程平稳,未见呕吐、眼球震颤、大量流涎等副作用。
     试验Ⅴ赛拉嗪对小鼠脾淋巴细胞增殖和周期分布的影响
     本研究使用α2-AR激动剂赛拉嗪、α2-AR颉颃剂育亨宾、α2A-AR颉颃剂BRL44408、α2B-AR颉颃剂Imiloxan hydrochloride和α2c-AR颉颃剂JP1302,研究α2-AR激动剂与其颉颃剂对ConA介导的小鼠脾淋巴细胞增殖和细胞周期分布的影响。结果表明:终浓度为0.01-0.4μg·mL-1的赛拉嗪对ConA介导的脾淋巴细胞增殖无明显影响;当赛拉嗪浓度在20-80μg·mL-1范围内时,对ConA介导的脾淋巴细胞增殖产生明显抑制,与单纯ConA组比较差异极显著(P<0.01),且呈剂量依赖性。育亨宾(20μg·mL-1,40μg·mL-1)与40μg·mL-1赛拉嗪联用时,可增强赛拉嗪对脾淋巴细胞的抑制作用;α2A-AR颉颃剂和α2B-AR颉颃剂均不影响赛拉嗪的细胞增殖调节作用;而α2C-AR颉颃剂JP-1302在较低浓度(30,60ng·mL-1),就能够明显增强40μg·mL-1的赛拉嗪对淋巴细胞的抑制作用,呈剂量依赖性。高浓度赛拉嗪(40μg·mL-1)可抑制细胞进入S期,促进晚期凋亡;JP1302可显著增强高浓度赛拉嗪的促凋亡作用和对淋巴细胞周期的阻滞作用。上述试验结果提示,赛拉嗪对脾淋巴细胞活性的抑制作用可能是由α2C-AR介导的。
     试验Ⅵ舒眠宁对小鼠脾淋巴细胞增殖和周期分布的影响
     本研究使用舒眠宁注射液的三种主要成份(氯胺酮、赛拉嗪和咪达唑仑)单用或联用,研究舒眠宁对ConA介导的小鼠脾淋巴细胞增殖和细胞周期分布的影响。结果表明:体外试验中,终浓度为0.0625~12.5μg·mL-1范围内的氯胺酮对ConA介导的脾淋巴细胞增殖无明显影响;当氯胺酮浓度升高至25~100μg·mL-1时,可产生明显抑制作用。终浓度为0.01-0.4μg·mL-1的赛拉嗪对ConA介导的脾淋巴细胞增殖无明显影响;当赛拉嗪浓度达到20~80μg·mL-1后,则产生明显抑制作用,呈剂量依赖性。试验浓度范围(0.01~100μg·mL-1)内的咪达唑仑与脾淋巴细胞作用48h后,均可抑制ConA诱导的细胞增殖。低浓度舒眠宁(0.01~0.4μg·mL-1)不影响ConA诱导的脾淋巴细胞增殖和周期分布,达到较高浓度时(2~80μg·mL-1)可对其产生剂量相关性抑制,与单纯ConA组比较差异极显著(P<0.01)。体内试验结果显示,低、中、高三个剂量的舒眠宁,对ConA介导的小鼠脾淋巴细胞增殖和周期分布均无显著影响。本研究结果显示,使用舒眠宁注射液麻醉小鼠,不会显著影响其脾淋巴细胞活性。
Intravenous anaesthesia is a way in which the patients are anaesthetized by mainline, lose their consciousness, rigor off their muscle, or lose ordinary respiring functions.The advantages of intravenous anaesthesia are that there is no repulsion and it can easily be used without specific anaethesia appliances. Intravenous anaesthesia is used in anaesthetic induction, anaesthetic maintenance, analgesias and pain easing after the operation. Ketamine, xylazine and midazolam are widely used for premedication, chemical restraint, and the induction and maintenance of anesthesia in small animals. The use of these three drugs as a sole anesthetic has been limited by muscle hypertonicity,myoclonus, violent recovery, convulsions, hypotension, bradycardia and respiratory depression. In the present study, we combine the three anesthetics into a compound prescription, the most appropriate prescription was determined by orthogonal experiment and orthogonal design decisive verification experiment in mice, carry out the acute toxicity, local irritation, stability test, pharmacokinetics, anesthetic effect and its effect on the immune function of the injection, providing experiment data for correct application of Shumianning injection. This study contained the follwing 6 parts.
     Experiment I Research on Prescription of Shumianning Injection
     Ketamine, xylazine and midazolam have been used extensively as small animal anesthetics for surgical procedures. Based on the results of pre-experimet, according to the facors that affect the anesthetic effect, orthogonal method was used, the concentrations of ketamine, xylazine and midazolam were selected as variable factors and table L9(34) was used to do exiperiment on the basis of loss of righting reflex in mouse. Results:The optimum prescription was:ketamine (8 g·100mL-1), xylazine (0.9 g·100mL-1) and midazolam (0.2 g·100mL-1), named as Shumianning injection. The manufacturing process is simple, which is suitable for mass production.
     ExperimentⅡSafety Evaluation and Long-Term Stability of Shumianning Injection
     To evaluate the safety of Shumianning injection, acute toxicity experiment was carried out in mice by up-and-down method, the results showed that ED50=0.706 mL·kg-1 body weight, LD50=2.366 mL·kg-1 body weight, TI=3.35; Injecting Shumianning into rabbits to carry out local irritation experiment, the results indicated that Shumianning had mild vein irritation and slight muscle irritation, did not cause eye irritation; To establish expiration time and suitable package for Shumianning injection, long term test was performed with 3 batches merchant injection, the results showed that the main compositions of Shumianning injection were stable, the injection looked clear, no impurity, the period of validity was 2 years at room temperature, away from light.
     ExperimentⅢPharmacokinetics of Shumianning in Canine
     To study the pharmacokinetics of Shumianning, a reverse-phase HPLC method with UV detection is developed and validated for simultaneous determination of ketamine, xylazine and midazolam in canine plasma. Analytes are extracted from alkalinized samples into diethyl ether-methylene chloride (7:3, v/v) using single-step liquid-liquid extraction. Chromatographic separation is performed on a C18 column using a mobile phase containing acetonitrile-methanol-10mmol·L-1 sodium heptanesulfonate buffer adjusted to pH 3 with glacial acetic acid (44:10:46, v/v) at a detection wavelength of 210 nm. Shumianning was applied intravenously to 6 dogs, the concentrations of ketamine, xylazine and midazolam were measured. The concentration-time curves of ketamine, xylazine and midazolam were best described of two-compartment open model and the typical pharmacokinetics parameters of the three drugs were as follows:Ketamine Vc=1.231±0.147 L·kg-1, T1/2α=4.271±0.521 min,T1/2β=65.877±15.701min,AUC=147.331±20.54μg·min·mL-1,L(s)=0.0393±0.0055 L·min-1·kg-1;XylazineVc=0.918±0.299L·kg-1,T1/2α=4.627±2.056min,T1/2β=55.773±8.62 min, AUC=20.866±1.781μg·min·mL-1, CL(s)=0.0336±0.00289 L·min-1·kg-1; Midazolam Vc=0.339±0.055 L·kg-1, T1/2α=5.675±1.82 min, T1/2β=39.152±6.546 min, AUC=13.554±1.059μg·min·mL-1, CL(s)=0.0131±0.000975 L·min-1·kg-1.
     Experiment IV Anesthetic Effect of Shumianning Injection in Greyhound
     In this study the anesthetic effect of Shumianning was investigated in 9 greyhounds. The animals were injected with Shumianning (0.06 mL·kg-1Ⅳ) without premedication, to observe the time to induction, maintenance, recovery, heart rate, SpO2, respiration rate, systolic pressure, diastolic pressure, rectal temperature, effects of analgesia, sedative and muscle relaxation. The time to induction, maintenance, recovery were 33.11±3.76 sec,23±5.83 min,15±5 min, respectively; heart rate, SAP and DAP increased slowly with a peak at 5 min, then decreased steadily but remained within the normal range; rectal temperatures decreased slowly but did not vary significantly during induction and maintence of anesthesia; respiratory rate decreased rapidly at first and then increased slowly; provided good surgical anesthesia; no vomiting, nystagmus, excessive salivation.
     Experiment V Effect of xylazine on cell proliferation and cell cycle in mouse spleen cells
     Xylazine is anα2-adrenoceptor agonist extensively used in veterinary medicine. The present study is focused on the effects of xylazine with or withoutα2 antagonists (yohimbine, BRL44408, imiloxan hydrochloride and JP1302) on the proliferation and cell cycles of mouse spleen cell in culture. The results are as follows:Xylazine at doses of 0.01,0.1,0.2 and 0.4μg·mL-1 did not significantly influence the proliferation of splenocytes in cultures triggered by ConA; at concentrations ranging between 20 and 80μg·mL-1 significantly inhibited spleen cell proliferation to Con A in a dose-dependent manner. Yohimbine enhanced the inhibitory effect of xylazine(40μg·mL-1) on spleen cell proliferation, BRL 44408, imiloxan were ineffective in modulating the inhibitory effect of xylazine(40μg·mL-1); JP1302 (30,60 ng·mL-enhanced the inhibitory effect of xylazine(40μg·mL-1) on spleen cell proliferation, dose dependently. xylazine(40μg·mL-1) blocked the progression of mouse lymphocytes into S phase, enhanced the apoptosis; JP1302 enhanced the activity of cell cycle arrest of xylazine. The present results provide evidence that the inhibitory effect of xylazine on spleen cell viability probably results from activation ofα2C-adrenoceptors.
     Experiment VI Effect of shumianning on cell proliferation and cell cycle in mouse spleen cells
     The aim of the this study was to investigate the effects of shumianning, ketamine, xylazine and midazolam on the proliferation and cell cycles of mouse lymphocytes in culture. The results are as follows:Low concentrations of ketamine and xylazine did not significantly influence the proliferation of splenocytes in cultures triggered by ConA; at high concentrations significantly inhibited spleen cell proliferation to Con A in a dose-dependent manner. Midazolam at concentrations ranging between 0.01 and 100μg·mL-1 significantly inhibited spleen cell proliferation to ConA in a dose dependent manner. Low concentrations of shumianning (0.01-0.4μg·mL-1) did not significantly change the proliferation of splenocytes in cultures stimulated by ConA; at high concentrations (2-80μg·mL-1) significantly inhibited spleen cell proliferation to ConA, dose dependently. The in vivo administration of shumianning at doses of 0.56,2.8 and 11.2 mg·kg-1 body weight, which produced weak sedation, slight and deep anesthesia, respectively, did not significantly change the proliferation and cell cycles of splenocytes in cultures triggered by ConA. Cumulatively, these results suggest that clinically relevant concentrations of shumianning did not affect the viability of splenocytes.
引文
[1]庄心良,曾因明,陈伯銮.现代麻醉学[M].第三版,北京:人民卫生出版社,2003:3-464
    [2]林德贵.兽医外科手术学[M].第四版,北京:中国农业出版社,2004:43
    [3]侯加法.小动物外科学[M].北京:中国农业出版社,1996:11
    [4]Blaze C A, Glowaski M M. Veterinary anesthesia drug quick reference [M], Missouri:Elsevier Saunders,2004:62-94
    [5]Robert L. Clinical pharmacology and therapeutics for the veterinary technician [M]. Missouri:Mosby Inc,2006:214-222
    [6]Carroll G L. Small animal anesthesia and analgeesia [M]. Blackwell Publishing,2008:73-74
    [7]Virbac laboratories. Guidebook of Anesthetic Protocols [EB/OL]. http://www.virbac.cz/zoletil_guide. html.2009.6
    [8]Donaldson L L, Mcgrath C J, Tracy C H. Testing low doses of intravenous Telazol in canine practice [J]. Vet Med,1989,84 (3):1202-1207
    [9]Hellyer P, Muir W W, Hubbel J A E, et al. Cardiorespiratory effects of the intravenous administration of tiletamine-zolazepam to dogs[J]. Vet Sur,1989,130(18):160-165
    [10]Codner E C, Lessard P, Mcgrath C J. Effect of tiletamine/zolazepam sedation on intradermal allergy testing in atopic dogs [J]. J AVM A,1992,201(5):1857-1860
    [11]Benson G J, Thurmon J C, W J Tranquilli, et al. Lumb and Jones' Veterinary Anesthesia [M]. Iowa:Blackwell Pub Professional,1996:241-296
    [12]Cullen L K. Effects of tiletamine/zolazepam premedication on propofol anaesthesia in dogs [J]. Vet Rec,1997,140 (5):363-366
    [13]Savas I, Plevraki K, Raptopoulos D. Aerophagia and gastric dilatation following tiletamine/zolazepam anaesthesia in a dog [J]. Vet Rec,2001,149(12):20-21
    [14]Maddison J E, Stephen W P, David B C. Small animal pharmacology [M]. Missouri:Elsevier Saunders, 2008:99-125
    [15]赵荣材,张隆山.几种甲苯胺噻唑类似物的合成及其镇痛催眠作用的比较[J].中国兽医科技,1980,1:3-9
    [16]赵荣材,张隆山.兽用镇静镇痛肌松药静松灵的研究与应用[J].中国农业科学,1981,4:9-16
    [17]《临床麻醉学》编写组.临床麻醉学[M].天津:天津科学出版社,1992,255-256
    [18]闫章年,尚建勋,于成功.动物全身麻醉剂-846合剂对犬的作用及其在中小动物手术中的麻醉效果[J].兽医大学学报,1987,7(1):8-14
    [19]闫章年,尚建勋,于成功.846注射液对中小动物麻醉的临床观察[J].中国兽医杂志,1988,14(5):26-28.
    [20]吕古军,侯振中,王海彬.犬眠宝对小动物临床应用效果的观察[J].黑龙江畜牧兽医,2001,2:33
    [21]高利,肖建华,王洪斌犬眠宝手术期间麻醉效果实验初报[J].中国农学通报,2007,23(7):58-60
    [22]刘焕奇,王洪斌,霍慧君.QFM麻醉合剂对犬麻醉效果的观察[J].中国兽医杂志,2005,41(12):33-35.
    [23]李建军,丁巧玲,许圳怀,等.临床常用麻醉剂及麻醉方法对犬肝肾功能的影响[J].畜牧与兽医,2006,38(7):32-33
    [24]王洪斌,王云鹤,王统石,等氯胺酮静松灵复合麻醉对犬脑电图影响的研究[J].中国兽医杂志,1995,21(6):10-11
    [25]Mill J, Greene S A,Weil A B. Use of ketamine-Xylazine combination in large cats and its effects on the ECG [M]. AlcademceVerlag,1989,155-162
    [26]Maraisal A L, Greene S A,W eiA B. The effects of Xylazine and fentanyl on various hormones and motabo lites in karakul sheep and blesbok [J]. J S Af r Vet Assoc,1991,62(1):17-19
    [27]Doherty T J, Geiser D R, Roh rbach BW. The effects of epidural xylazine on halothane minium alveolar concentration in ponies [J]. J Vet Pharmacol Ther,1997,20 (3):246-248
    [28]Pathak J C, Pandey S S, Shukla B P, et al. Clinical evaluation of xylazine with barbiturate and non-barbiturate anaesthesia in dogs [J]. Indian Veterinary Journal,1998,75 (10):895-898
    [29]Branson K R, Ko J C H, Traanguilli W T, et al. Duration of analgesia induced by epidurally administered morphine and medetomidine in dogs [J]. J Vet Phamaco Ther,1993,16 (3):369-372
    [30]Sap R, Hellebrekers L J, Foreest A W, et al. Use of medetomidine and ketamine for anaesthetizing dogs for dental interventions evaluation of clinical usuage [J]. Tijdschrift voor Diergeneeskunde, 1997,122(9):248-251
    [31]Becker K, Oech tering G. Anaesthesia with medetomidine-ketamine [J]. J V et Med Sci,1997,59 (4): 309-310
    [32]Sarma B, Am R K, Harnam S. Clinical and anaesthetic effects of detomidine and ketamine in cats [J]. Indian Vet J,1996,73(6):665-668
    [33]Rao K N M, Rao K. V, Makkena S, et al. Ketamine as epidural anaesthetic in dogs [J]. Indian Vet J, 1999,76(1):61-62
    [34]Filho F M, Gomezde S I A, Tendillo F T C, et al. Cardiorespiratory effects of acepromazine xylazine and midazolam in combination with different isoflurane concent rations in dogs [J]. Acta Scientiarum, 1998,20(3):355-360
    [35]Hughes J M L. Anaesthesia for the geriatric dog and cat [J]. Irish Vet J,2008,61(6):380-387
    [36]周庆国,陈浣莎,黄卓文,等.犬氯胺酮和异丙酚复合静滴麻醉效果的观察[J],畜牧与兽医,2006,38(11):46-48
    [37]翟晓虎.犬地西汁、氯胺酮静脉复合麻醉效果及药代动力学研究[D].南京:南京农业大学,2007
    [38]刘伟,崔文,彭丽艳等,隆朋-氯胺酮-咪达唑仑复合制剂对猫麻醉效果及心肺功能的影响,中国兽医杂志[J],2008,44(10):46-47
    [39]高利,高文学,王洪斌,等.静脉注射异丙酚复合制剂对犬的麻醉效果及其对生理机能的影响[J],中国兽医杂志,2006,42(4):29-31
    [40]Murrell J C, Notten R W, Hellebrekers L J. Clinical investigation of remifentanil and propofol for the total intravenous anaesthesia of dogs [J]. Vet Rec,2005,156(25):804-808
    [41]Muhammad N, Zafar M A, Muhammad G, et al. Comparative anesthetic efficacy of propofol, thiopental sodium and combination of propofol with ketamine hydrochloride in dogs [J], Pakistan Vet J,2009,29(1):11-15
    [42]彭丽艳,郭文琦,高瑾,等.应用异丙酚对小型京巴犬匀速静脉麻醉的临床效果评价[J].黑龙江畜牧兽医,2008,11(3):63-66
    [43]Bufalari A, Short C E, Glannoni C, et al. Evaluation of selected cardiopulmonary and cerebral responses, during medetomidine, propofol and halothan anesthesia for lapares copy in dogs [J]. A J VET RES,1997,122 (9):248-251
    [44]Hellebrekers L J, Herpen H, Hird J F R, et al.Clinical efficacy and safety of propofol or ketamine anaesthesia in dogs premedicated with medetomidine [J]. Vet Rec,1998,142:631-634
    [45]Lerche P, Nolan A M, Reid J. Comparative study of propofol or propofol and ketamine for the induction of anaesthesia in dogs [J]. Vet Rec,2000,146:571-574
    [46]Cullen L K, Reynoldson J A. Effects of tiletamine/zolazepam premedication on propofol anaesthesia in dogs [J]. Vet Rec,1997,140:363-36
    [47]Hellebrekers L J, Sap R. Medetomidine as a premedicant for ketamine, propofol or fentanyl anaesthesia in dogs [J]. Vet Rec,1997,140:545-548
    [48]Musk G C, Pang D S, Beths T, et al. Target-controlled infusion of propofol in dogs-evaluation of four targets for induction of anaesthesia [J]. Vet Rec,2005,157(24):766-770
    [49]Baths T. Total intravenous anesthesia in dogs:development of a Target controlled infusion (TCI) scheme for protocol [D]. University of Glasgow,2008
    [50]Baths T, Glen J B, Reid J, Monteino A M, et al. Evaluation and optimisation of a targetcontrolled infusion system for administering ropofol to dogs as part of a total intravenous anaesthetic technique during dental surgery [J]. Vet Rec,2001,148:198-203
    [1]金伯泉.医学免疫学[M].第五版,北京:人民卫生出版社,2008:89
    [2]Reiner S L, Mullen A C, Hutchins A S. et al. Helper T cell differentiation and the problem of cellular inheritance[J]. Immunol Res,2003,27(2-3):463-468
    [3]Hoji A, Rinaldo C R J R. Hunan CD8+ T cells specific for inflenza A virus Mldisplay broad expression of maturation-associated phenotypic markers and chemokine receptors [J].Immunology, 2005,115(2):239-245
    [4]杨汉春.动物免疫学[M].第二版,北京:中国农业大学出版社,2003:75-94
    [5]Obst R, van Santen H M, Mathis D, et al. Antigen persistence is required throughout the expansion phase of a CD4+ T cell response [J]. J Exp Med,2005,201(10):1555-1565
    [6]Fowler D H, Gress R E. Th2 and Tc2 cells in the regulation of GVHD, GVL and graft rejection considerations for the allogeneic transplantation therapy of leukemia and lymphoma [J]. Leuk Lymphoma,2001,38(3-4):221-234
    [7]Glimcher L H, Murphy K. M. Linerage commitment in the immune system:The T helper lymphocyte grows up [J]. Genes Dev,2000,14(14):1693-1711
    [8]Yang M H, Suen J L, Li S L, et al. Identifieation of T-cell epitopes on U1A Protein in MRL/lpr mice:double-negative T cells are the major responsive cells [J]. Immunology,2005,115(2):279-286
    [9]庄心良,曾因明,陈伯銮.现代麻醉学[M].第三版,北京:人民卫生出版社,2003:232
    [10]Yokoyama M, Itano Y, Mizobuchi S, et al. The effects of epidural block on the distribution of lymphocyte subsets and natural-killer cell activity in patients with and without pain [J]. Anesth Analg, 2001,92(2):463-469
    [11]Yokoyama M, Nakatsuka H, Itano Y, et al. Stellate ganglion block modifies the distribution of lymphocyte subsets and natural-killer cell activity [J]. Anesthesiology,2000,92(1):109-115
    [12]Hogevold H E, Lyberg T, Kahler H, et al. Changes in plasma IL-I beta. TNF-alpha and IL-6 after total hip replacement surgery in general or regional anesthesia [J]. Cytokine,2000,12(7):1156-1159
    [13]Cras L E. Anna E, Helen F, et al. Spinal but not general anesthesia increases the ration of T helper 1 to helper 2 cell subsets in patients undergoing transurethlal resection of the prostate [J]. Anesth Analg, 1998,87:1421-1425
    [14]Novak-Jankovic V. Effect of epidural and intravenouse clonidine on the neuro-endoerine and immune stress response in patients undergoing lung surgery [J]. Eur J Anaesth,2000,17(1):50-56
    [15]Dan M C, Blanchet B, Pesee F, et al. Comparison of the time to extubation after use of remifentanil or senmnil in combination with propofol as anesthesia in adults undergoing nonemergeney [J]. Clin Ther,2006,28 (4):560-568
    [16]Christine E, Schneemilch, Thomas S. Effects of general anaesthesia on inflammation [J]. Best Pract Res Cl An,2004,18(3):493-507
    [17]Anis N A, Berry S C, Burton, N R, et al. The dissociative anaesthetics, ketamine and phencyclidine, selectively reduce excitation of central mammalian neurones by N-methyl-aspartate [J]. Brit J Pharmacol,1983,79:565-575
    [18]Orser B A, Panne P S, Mac D J F. Multiple mechanisms of ketamine blockade of N-methyl-D-aspartate receptors [J]. Anesthesiology,1997,86:903-917
    [19]Mathisen L C, Skjelbred P, Skoglund L A, et al. Effect of ketamine, an NMDA receptor inhibitor, in acute and chronic or facial pain [J]. Pain,1995,61:215-220
    [20]Ngan K W D, Khaw K S, Ma M L,et al. Postoperative analgesic requirement after cesarean section:a comparison of anesthetic induction with ketamine or thiopental [J]. Anesth Analg,1997,85: 1294-1298
    [21]Nishina K, Akamatsu H, Mikawa K, et al. The inhibitory effects of thiopental, midazolam, and ketamine on human neutrophil functions [J]. Anesth Analg,1998,86,159-165
    [22]Kang J H, Kim M J, Yang M P. Ketamine decreases phagocytic capacity of canine peripheral blood phagocytes in vitro [J]. J Vet Cli,2008,25:73-78
    [23]Dahlgren C, Karlsson A. Respiratory burst in human neutrophils [J]. J Immunol Methods,1999,232: 3-14
    [24]Hofbauer R, Moser D, Hammerschmidt V, et al. Ketamine significantly reduces the migration of leukocytes through endothelial cell monolayers [J]. Crit Care Med,1998,26(9):1545-1549
    [25]Melamed R, Bar Y S, Shakhar G, et al. Suppression of natural killer cell activity and promotion of tumor metastasis by ketamine, thiopental, and halothane, but not by propofol:mediating mechanisms and prophylactic measures [J]. Anesth Analg,2003,97(5):1331-1339
    [26]Bourgoin A, Albanese J, Wereszczynski N, et al. Safety of sedation with ketamine in severe head injury patients:comparison with sufentanil [J]. Crit Care Med,2003,31 (7):711-717
    [27]Larsen B, Hoff G, Wilhelm W, et al. Effect of intravenous anestheties on spontaneous and endotoxin-stimulated eytokine response in cultured human whole blood [J]. Anesthesiology,1998, 89:1218-1227
    [28]Feiner J R, Bickler P E, Estrada S, et al. Mild hypothermia, but not propofol is neuroprotecti ve in organ typic hippocampal cultures [J]. Anaesth Analg,2005,100(1):215-225
    [29]Rossaint J, Rossaint R, Weis J, et al. Propofol neutroprotection in an invitro model of traumat ic brain injury [J]. Crit Care,2009,13(2):61-62
    [30]Yamamoto Y, Kawaguchi M, Kurita N, et al. Effects of xenon on ischemic spinal cord injury in rabbits: a comparison with propofol [J]. Acta Anaesthesiol Scand,2010,54(3):337-342
    [31]Iijima T, Mishima T, Akagawa K, et al. Neuroprotective effect of propofol on necrosis and apoptosis following oxygen glucose deprivati n relationship between mitochondrial membrane potential and mode of death [J]. Brain Res,2006,1099(1):25-32
    [32]L ee S R, Cheun J K. Propofol administration reduces hippocampal neuronal damage induced by kainicacid in rats [J]. Neurol Res,1999,21(2):225-228
    [33]Honegger P, Matthieu J M. Selective toxicity of the general anesthetic propofol for GABA ergic neurons in rat brain cell cultures [J]. J Neuro Sci Res,1996,45(5):631-636
    [34]Ceylan B G, Yilaz F, Eroglu F, et al. Oxidant and antioxidant activities of different anesthetic techniques:Propofol versus desflurane [J]. Saudi Med J,2009,30(3):371-376
    [35]Huang C H, Wang Y P, Wu P Y, et al. Propofol infusion shortens and attenuates oxidative stress during one lung ventilation [J]. Acta Anaesthesiol Taiwan,2008,46(4):160-165
    [36]Gonzalez C J A, Cruz A, Arrebola M M, et al. Effects of propofol on the leukocyt enitric oxi de pathway:i nvitro and exvivo studies in surgical patients [J]. Naunyn Schmiedebergs Arch Phar maco, 2008,376(6):331-339
    [37]Liu M C, Tsai P S, Yang C H, et al. Propofol significantly attenuated iNOS, CAT-2B, and CAT-2B transcription in lipopolys accharide stimulated murine macrophages [J]. Acta Anaesthesiol Taiwan, 2006,44 (2):73-81
    [38]Hulse D, Knsel J R, O'Donell N G, et al. Effect of anesthetics on the membrane mobility and loco motor responses of human neutrophils [J]. FEMS Immunol Med Microbio,1994,8(3):241-248
    [39]Kushida A, Inada T, Shingu K. Enhancement of antitumor immunity after propofol treatment in mice [J]. Immunopharm Immunot,2007,29(3/4):477-486
    [40]Kambara T, Inada T, KuboK, et al. Propofol suppresses prostaglandin E (2) production in human peripheral monocytes [J]. Immunopharm Immunot,2009,31(1):117-126
    [41]Inada T, Kubo K, Shingu K. Vaccines using dendritic cells, differentiated with propofol, enhance antitumor immunity in mice [J]. Immunopharm Immunot,2009,31(1):150-157
    [42]Krause T K, Jansen L, Seholz J, et al. Propofol anesthesia in children does not induce sister chromatid exchanges in lymphoeytes [J]. Mutat Res,2003,542(1-2):59-64
    [43]Inada T, Yamanouchi Y, Jomura S, et al. Effect of Propofol and isoflurane anaesthesia on the immune response to surgery [J]. Anaesthesia,2004,59(10):954-959
    [44]Salo M, Pirttikangas C O, Pulkki K. Effects of propofol emulsion and thiopentone on T helper cell type-1/type-2 balance invitro [J]. Anaesthesia,1997,52(4):34-344
    [45]Neywelt E A, Kikuchi K, Hill S A, et al. Barbiturate inhibition of lymphocyte function:differing effects of various babiturates used to induce coma [J]. J Neurosurg,1982,56:254-259
    [46]Stover J F, Stocker R. Barbiturate coma may promote reversible bone marrow suppression in patients with severe isolated traumatic brain injuey [J]. Eur J Clin Pharmacol,1998,54:529-534
    [47]Nadal P, Nicolas J M, Font C, et al. Pneumonia in ventilated head trauma patients:the role of thiopental therapy [J]. Eur J Emerg Med,1995,2:14-16
    [48]McCluskie M J, Krieg A M. Enhancement of infectious disease vaccines through TLR9 dependent recognition of CpG DNA [J]. CurrTop Microbiol Immunol,2006,311:155-178
    [49]Larsen B, Hoff G, Wilhelm W, et al. Effect of intravenous anesthesia on spontaneous and endotoxin stimulated cytokine response in cultured human whole blood [J]. Anesthesiology,1998,89:1218-1227
    [50]Salman H, Bergman M, Besaler H, et al. Effect of sodium thiopentone anesthesia on the phagocytic activity of rat peritoneal macrophages [J]. Life Sci,1998,63:2221-2226
    [51]Salo M, Pirttikanges C O, Ptilkki K. Effects of propofol emulsion and thiopentone on T helper cell type I/type 2 balance in vitro [J]. Anesthesia,1997,52:341-342
    [52]Taylor R P, Ferguson P J, Martin E N, et al. Immune complexes bound to the primate erythrocyte complement receptor (CR1) via anti-CRl mabs are cleared simultaneously with loss of CR1 in a concerted reaction in a rhesus monkey model [J]. Clin Immunol Immunopathol,1997,82:49-59
    [53]Currie M S, Vala M, Pisetsky D S, et al. Correlation between erythrocyte CR1 reduction and other blood proteinase markers in patients with malignant and in flammatory disorders [J]. Blood,1990,75: 1699-1704
    [54]Hagi K, Inaba K, Sakuta H, et al. Enhancement of murine bone marrow macrophage dif ferentiation by endorphin [J]. Blood,1995,86:1316-1321
    [55]Mandler R N, Biddison W E, Mandler R, et al. Endorphin augments the cytolytic activity and interferon production of natural killers cells [J]. J Immunol,1986,136:934-941
    [56]Docherty J R. Subtypes of functional alphal and alpha2 adrenoceptors [J]. Eur J Pharmacol 1998, 361:1-15
    [57]Docherty J R. Subtypes of functional al -and a2-adrenoceptors [J]. Eur J Pharmacol,1998,361:1-15.
    [58]Ruffolo R R J, Nichols A J, Stadel J M, et al. Pharmacologic and therapeutic applications of a2-adrenoceptor subtypes [J]. Annu Rev Pharmacol Toxicol,1993,32:243-279
    [59]Kobilka B K, Matsui H, Kobilka T S, et al. Cloning, sequencing and expression of the gene coding for the human platelet a2-adrenergic receptor [J]. Science,1987,238:650-656
    [60]Regan J W, Kobilka T S, Yang-Feng T S, et al. Cloning and expression of a human kidney cDNA for an a2-adrenergic receptor subtype [J]. Pore Natl Acad Sci USA,1988,85:6301-6305
    [61]Lomasney J W, Lorenz W, Allen L F, et al. Expansion of the a2-adrenergic receptor family:cloning and characterization of a human a2-adrenergic receptor subtype, the gene for which is located on chromosome 2 [J]. Pore Natl Acad Sci USA,1990,87:5094-5098
    [62]Bylund D B, Blaxall H S, Iversen L J, et al. Pharmacological characteristics of a2-adrenergic receptors: comparison of pharmacologically defined subtypes with subtypes identified by molecular cloning [J]. Mol Pharmacol,1992,42:1-5
    [63]Zeng D W, Harrison J K, D'Angelo D D, et al. Molecular characterization of a rat a2B-adrenergic receptor [J]. Pore Natl Acad Sci USA,1990,87:3102-3106
    [64]Lanier S M, Downing S, Duzic E. Homcy CJ. Isolation of rat genomic clones encoding subtypes of the a2-adrenergic receptor [J]. J Biol Chem,1991,266:10470-10478
    [65]Link R, Daunt D, Brash G, et al. Cloning of two mouse genes encoding a2-adrenergic receptor subtypes and identification of a single amino acid in the mouse a2-C10 homolog responsible for an interspecies variation in antagonist binding [J]. Mol Pharmacol,1992,42:16-27
    [66]Chruscinski A J, Link R E, Daunt D A, et al. Cloning and expression of the mouse homolog of the human a2-C2 adrenergic receptor [J]. Biochem Bioph Res Co,1992,186:1280-1287
    [67]Svensson S P S, Bailey T J, Porter A C, et al. Heterologous expression of the cloned guinea pig a2A, a2B, and a adrenoceptor subtypes [J]. Biochem Pharmacol,1996,51:291-300
    [68]Guyer C A, Horstman D A, Wilson A L, et al. Cloning, sequencing, and expression of the gene encoding the porcine a2-adrenergic receptor [J]. Allosteric modulation by Na+, H+, and amiloride analogs [J]. J Biol Chem,1990,265:17307-17317
    [69]Blaxall H S, Heck D A, Bylund D B. Molecular determinants of the alpha-2D adrenergic receptor subtype [J]. Life Sci,1993,53:255-259
    [70]Blaxall H S, Cerutis R, Hass N A, et al. Cloning and expression of the a2C-adrenergic receptor from the OK cell line [J].Mol Pharmacol,1994,45:176-181
    [71]Svensson S P S, Bailey T J, Pepperl D J, et al. Cloning and expression of a fish a2-adrenoceptor [J]. Brit J Pharmacol,1993,110:54-60
    [72]Venkataraman V, Duda T, Sharma R K. The bovine alpha 2D-adrenergic receptor:structure, expression in retina, and pharmacological characterization of the encoded receptor [J]. Mol Cell Biochem,1997, 177:113-123
    [73]Lomasney J W, Lorenz W, Allen L F, et al. Expansion of the a2-adrenergic receptor family:cloning and characterization of a human a2-adrenergic receptor subtype, the gene for which is located on chromosome 2 [J]. Pore Natl Acad Sci USA,1990,87:5094-5098
    [74]Kable J W, Murrin L C, Bylund D B. In vivo gene modification elucidates subtype-specific functions of a2-adrenergic receptors [J]. J Pharmacol Exp Ther,2000,293:1-7
    [75]Link R E, Desai K, Hein L, et al. Cardiovascular regulation in mice lacking a2-adrenergic receptor subtypes b and c [J]. Science,1996,273:803-805
    [76]Altman J D, Trendelenburg A U, MacMillan L, et al. Abnormal regulation of the sympathetic nervous system in a2A-adrenergic receptor knockout mice [J]. Mol Pharmacol,1999,56:154-161
    [77]Lockwood L L, Silbert L H, Laudenslager M L,Watkins L R, Maier S F. Anesthesia-induced modulation of in vivo antibody levels:a study of pentobarbital, chloral hydrate, methoxyflurane, halothane, and ketamine/xylazine [J]. Anesth Analg,1993,77:769-774
    [78]Moore T C, Spruck C H, Leduc L E, Depression of lymphocyte traffic in sheep by anesthesia and associated changes in efferent lymph PGE2 and antibody levels [J]. Immunology,1988,63:139-143
    [79]Bubien J K, Cornwell T, Bradfor A L, Fuller C M, et al. Alpha-adrenergic receptors regulate human lymphocyte amiloride-sensitive sodium channels [J]. Am J Physiol,1998,275:702-710
    [80]Felsner P, Hofer D, Rinner 1, Porta S, et al. Adrenergic suppression of peripheral blood T cell reactivity in the rat is due to activation of peripheral alpha 2-receptors [J]. J Neuroimmunol,1995,57:27-34
    [81]Jetschmann J U, Benschop R J, Jacobs R, et al. Expression and in-vivo modulation of alpha- and beta-adrenoceptors on human natural killer (CD161) cells [J]. J Neuroimmunol,1997,74:159-164
    [82]Ramer-Quinin D S, Baker R A, Sanders V M. Activated T helper 1 and T helper 2 cells differentially express the beta-2-adrenergic receptor:a mechanism for selective modulation of T helper 1 cell cytokine production [J]. J Immunol,1997,159:4875-4887
    [83]Vitomir C, Miodrag C, Ljiljana P, et al. Immunomodulatory effect of xylazine, ana2-adrenergic agonist, on rat spleen cells in culture [J]. Journal of Neuroimmunology,2001,113:19-29
    [84]Haberfeld M, Johnson R O, Ruben L N, et al. Adrenergic modulation of apoptosis in splenocytes of Xenopus laevis in vitro [J]. Neuroimmunomodulat,1999,6:175-181
    [85]Ellis J E, Pedlow S, Bains J, Premedication with clonidine does not attenuate suppression of certain lymphocyte subsets after surgery [J]. Anesth Analg,1998,87:1426-1430
    [86]Kahoru N, Hirohiko A, Katsuya M, et al. The effects of clonidine and dexmedetomidine on human neutrophil functions [J]. Anesth Analg,1999,88:452-458
    [87]Anholt R R, De Souza E B, Oster G M L, et al. Peripheral-type benzodiazepine receptors: autoradiographic localization in whole body sections of neonatal rats [J]. J Pharmacol Exp Ther,1985, 233:517-526
    [88]Drugan R C. Peripheral benzodiazepine receptors:molecular pharmacology topossible physiological significance in stress-induced hypertension [J]. Clin Neurophannaeol,1996,19:475-496
    [89]Landau M, Weizrnan A, Zoref-Shani E. et al. Antiproliferative and differentiating effects of benzodiazepine receptor ligands on B16 melanoma cells [J]. Biochem Pharmacol,1998,56: 1029-1034
    [90]Wang J K, Morgan J I> Spector S. Differentiation of erythroleukemia cells induced by benzodiazepines [J]. Proc Natl Acad Sci USA,1984,81:3770-3772
    [91]Matthew E, Uskin J D, Zirnxnennan E A, et al. Benzodiazepines have high affinity binding sites and induce melanogenesis in B16/C3 melanoma cells [J]. Proc Natl Acad Sci USA,1981,78:3935-3939
    [92]Morgan J I, Johnson M D. Wang J K, et al. Peripheral-type benzodiazepines influence ornithine decarboxylase levels and neurite outgrowth in PC 12 cells [J]. Proc Natl Acad Sci USA,1985,82: 5223-5226
    [93]Strittmatter W J. Hirata F, Axelrod J. et al. Benzodiazepine and beta-adrenergic receptor ligands independently stimulate phospholipid methylation [J]. Nature,1979,282:857-859
    [94]Curran T, Morgan J I. Superinduction of c-fos by nerve growth factor in the presence of peripherally active benzodiazepines [J]. Science,1985,229:1265-1268
    [95]Bessler H, Caspi B, Gavish M, et al. Peripheral-type benzodiazepine receptor ligands modulate human natural killer cell activity [J]. Int J Irnmunopharmacol,1997,19:249-254
    [96]Camins A. Fernandez C, Camarasa J, et al. Cell surface expression of heat shock proteins in dog neutrophils induced by mitochondrial benzodiazepine receptor ligands [J]. Immunopharmacology, 1995,29:159-166
    [97]Canat X, Guillaumont A. Bouaboula M, et al. Peripheral benzodiazepine receptor modulation with phagocyte differentiation [J]. Bioehem Pharmaeol,1993,46:551-554
    [98]Torres S R, Frode T S, Nardi G M, et al. Anti-inflammatory effects of peripheral benzodiazepine receptor ligands in two mouse models of inflammation [J]. Eur J Pharmaeol,2000,408:199-211
    [99]Waterfield J D, McGeer E G, McGeer P L.The peripheral benzodiazepine receptor ligand PK11195 inhibits arthritis in the MRL-Ipr mouse model [J]. Rheumatology,1999,38:1068-1073
    [100]Bribe E, Bourrie B, Esclangon M, et al. Involvement of the peripheral benzodiazepine receptor in the development of rheumatiod arthritis in Mrl/Ipr mice [J]. Eur J Pharmacol,2002,452:111-122
    [101]Kunduzova O R, Escourrou G, Dela F F, et al. Involvement of peripheral benzodiazepine receptor in the oxidative stress, death-signaling path ways, and renal injury induced by ischemia-reperfussion [J]. J Am Soe Nephrol,2004,15:2152-2160
    [102]Ldueq N, Bono F, Sulpice T, et al. Role of peripheral benzodiazepine receptors in mitochondrial, cellular, and cardiac damage induced by oxidative stress and ischemia-reperfusion [J]. J Phannaeol ExP Ther,2003,306:828-837
    [103]Carayon P, Portier M, Dussossoy D, et al. Involvement of peripheral benzodiazepine receptors in the protection of hematopoietic cells against oxygen radical damage [J]. Blood,1996,87:3170-3178
    [104]Miccoli L, Oudard S, Beurdeley T A, et al. Effect of 1-(2-chloropheny)-N-Methyl-N-(1-Methyl-propyl)-3-isoquinoline carboxamide (PK11195), a specific ligand of the peripheral benzodiazepine receptor, on the lipid fluidity ofmitochondria in human glioma cells [J]. Biochem Pharmacol,1999, 58:715-721
    [105]Pelaia G, Dipaola E D. Is the mitochomdrial benzodiazepine receptor involved in the control of airway smooth muscle tone? [J]. Gen Pharmacol,1997,28:495-498
    [106]Tanabe K, Dohi S, Matsuno H, et al. Midazolam stmiulates vascular endothelial growth factor release in aortic smooth muscle cells:role of the mitogen activated protein kinase superfamily [J]. Anesthesiology,2003,98(5):1147-1154
    [107]Heine G H, Weindler J, Gabriel H H. et al. Oral premedication with low dose midazolam modifies the immunological stress rection after the setting of retrobulbar anaesthesia [J]. BR J Ophthalmol,2003, 87(8):1020-1024
    [108]Ballantyne D L, Harper A D. Prolongation of survival in mouse tail skin allografts by valium (diazepam) [J]. Transplan,1977,23:163
    [109]Krumholz W, Reussner D, Hempelmann G. The influence of several intravenous anaesthetics on the chemotaxis of human monocytes in vitro [J]. Eur J Anaesthesiol,1999,16(8):547-549
    [110]Davidson J A, Boom S J, Pearsall F J, et al. Comparison of the effects of four i.v. anaesthetic agents on polymorphonuclear leucoeyte function [J]. Br J Anaesth,1995,74(3):315-318
    [111]Szekely A, Heindl B, Zahler S, et al. Nonuniform behavior of intravenous anesthetics on postichemic adhesion of neutrophils in the guinea pig heart [J]. Anesth Analg,2000,90(6):1293-1300
    [112]Helmy S A, Attiyah R J. The immunomodulatory effects of prolonged intravenous infusion of propofol versus midazolam in critically ill surgical patients [J]. Anaesthesia,2001,56(1):4-8
    [113]Zavala F, Taupin V, Descamps L B, et al. In vivo treatment with benzodiazepins inhibits murine phagocyte oxidative metabolism and production of interleukin-1, tumor necrosis tacter and interleukin-6 [J]. J Phamacol EXP Ther,1990,255 (2):442-450
    [114]Woods G M, Griffiths D M. Reversible inhibition of natural killer cell activity by volatile anaesthetic agents in vitro [J]. Br J Anaesth,1986,58(5):535-539
    [115]Hansbrough F, Ramon L, Battle E J, et al. Atteration in splenic lymphocyte subpopulations and increased mortality from sepsis follwing anaesthesia in mice [J]. Anesthesiology,1985,63:267-275
    [116]Rossi L W, Brueckmann M, Rex S, et al. Xenon and isoflurane differentially modulate liopolysaccharide-induced activation of the nuclear transcription factor KB and production of tumor necrosis faetor-aand interleukin-6 in monocytes [J]. Anesth Analg,2004,98:1007-1012
    [117]Kotani N, Hashimoto H, Sessler D I, et al. Expression of genes for proinflammatory cytokines in alveolar macrophages during propol and isoflurane anesthesia [J]. Anesth Analg,1999, 89(5):1250-1256
    [118]Puig N R, Ferrero P, Bag M L. Hidalgo G, et al. Effects of sevoflurance general anaesthesia immunological studies in mice [J]. Int Immunopharmaeol,2002,2(1):95-104
    [119]Goto Y, Ho S L, McAdoo J, et al. General versus regional anaesthesia for cataraet surgery:effects on neutrophil apoptosis and the postoperative proinflammatory state [J]. Eur J Anaesthesiol,2000,17(8): 474-480
    [120]Giraud O, Seince P F, Rolland C, et al. Halothane reduces the early lipopolysaceharide-induced lung inflammation in mechanieally ventilated rats [J]. Am J Respir Crit Care Med,2000,162(6):2278-2286
    [121]Kotani N, Hashimoto H, Sessler D L, et al. Volatile anesthetics augment expression of proinflammatory cytokines in rat alveolar macrophages during mechanical ventilation [J]. Anesthesiology,1999,91(1):187-197
    [122]Rivka M, Shahar BY, Guy S, et al. Suppression of natural killer cell activity and promotion of tumor metastasis by ketamine, thiopental and halothane, but not by propofol:mediating mechanisms and prophylactic measures [J]. Anesth Analg,2003,97(5):1331-1339
    [123]Welters I D. Menzebach A, Goumon Y, et al. Morphine suppresses complement receptor expression, phagoeytosis, and respiratory brust in neutrophila by a nitric oxide and mu(3)opiatereeeptor-dependent mechanism [J]. Neuro Immunol,2000,111(1-2):139-145
    [124]Kragsbjerg P, Holberg H,Vikerfors T. Serum concentrations of interleukin-6, tumour necrosis factor-alpha, and C-reactive protein in patients undergoing major operations [J]. Eur J Surg,1995, 161(1):17-22
    [125]Freier D O, Fuchs B A. A mechanism of action for moprhine-inudced immunosuppression: corticosterone mediaets moprhine-induced supression of natural killer cell activity [J]. J Pharmacol Exp Ther,1994,270:1127-1133
    [126]Eisenstein T K, Hillburger M E. Opioid modulation of immune responses:effects on phagocyte and lymphoid cell populations [J]. J Neuroimmunol,1998,83(1-2):36-44
    [127]Yeager M, Colacchio T, Yu C, et al. Morphine inhibits spontaneous and cytokine-enhanced natural killer cell cytotoxicity in volunteers [J]. Anesthesiology,1995,83:500-508
    [128]Elena L, Leda G, Alberto E P, et al. Differential morphine tolerance development in the modulation of macrophgae cytokine production in mice [J]. J Leukocyte Biol,2002,72:43-48
    [129]Freier D O, Fuehs B A. Morphine-induced alterations in thymocyte subpopulations of B6C3F1 mice [J]. J Phamraeol ExP Ther,1993,265:81-88
    [130]Singhal P, Sharma P, Kapasi A. Morphine ehhances macrophage apoptosis [J]. J Immunol,1998,160: (1886-1893)
    [131]Gaveriavx R I, Peluso J. Abolition of morphine-Immunosuppression in mice lacking the mu-opioid receptor gene [J]. Pore Natl Acad Sci USA,1998,95:6326-6330
    [132]Hamra J G, Yaksh T L. Equianalgesic doses of subcutaneous but not intrathecal morphine alter phenotypic expression of cell surface markers and mitogen-induced proliferation in rat lymphocytes [J]. Anesthesiology,1996,85:355-365
    [133]Risdahl J M, Khanna K. V, Peterson K W, et al. Opiates and infections [J]. J Neuroimmunol,1998,83: 4-18
    [134]Bianchi M, Martucci C, Ferrario P, et al. Increased tumor necrosis factor-α and prostaglandin E2 concentrations in the cerebrospinal fluid of rats with inflammatory hyperalgesia:the effects of analgesic drugs [J]. Anesth Analg,2007,104:949-954
    [135]Sacerdote P, Bianchi M, Gaspani L, et al. Effects of tramadol and its enantionmers on concanavalin-A induced proliferation and NK activity of mouse splenoeytes:involvement of serotonin [J]. Int J Immunopharmacol,1999,21:727-734
    [136]Gaspan L, Bianchi M, Limirol E, et al. The analgesic drug tramadol prevents the effect of surgery on natural killer cell activity and metastatic colonization in rats [J]. J Neuroimmunol,2002,129:18-24
    [137]Sacerdote P, Bianchi M, Manfredi B, et al. Effects of tramadol on immune responses and nociceptive thresholds in mice [J]. Pain,1997,72(3):325-330
    [138]Cronin J, Aucutt W N M, Budinetz T, et al. Low dose remifentanil infusion dose not impair natural killer cell function in healthy volunteers [J]. Brit J Anaesth,2003,91(6):805-809
    [139]Jacobs R, Karst M, Scheinichen D, et al. Effects of fentanyl on immune functions in an [J]. Int J Immunopharmaeol,1999,21:445-454
    [140]Yeager M P, Procopio M A, Deleo J A, et al. Intravenous fentanyl increases natural killer cell cytotoxicity and circulating CD 16+lymphocytes in humans [J]. Anesth Analg,2002,94:94-99
    [141]Brand J M, Kirchner H, Poppe S P. Cytokine release and changes in mononuelear cells in peripheral blood under the influence of general anaesthesia [J]. Anaesthesist,1998,7(5):379-386
    [142]Yokoyama M, Itano Y, Mizobuchi S, et al. The effects of epidural block on the distribution of lymphocyte subsets and natural-killer cell activity in patients with and without pain [J]. Anesth Analg, 2001,92(2):463-469
    [143]Yokoyama M, Nakatsuka H, ItanoY, et al. Stellate ganglion block modifies the distribution of lymphocyte subsets and natural-killer cell activity [J]. Anesthesiology,2000,92(1):109-115
    [144]Gasparoni A, Ciardelli L, De Amici D, et al. Effect of general and epidural anaesthesia on thyroid hormones and immunity in neonates [J]. Paediatr Anaesth,2002,12(1):59-64
    [145]Fu E S, Norman J G, Scharf J E, et al. Effect of type of anesthesia and lower abdominal laparotomy in mice on the cytokine response to acute stress [J]. Reg Anesth,1996,21:470-473
    [146]Hashimoto T, Hashimoto S, Hori Y, et al. Epidural anaesthesia blocks changes in peripheral lymphocytes subpopulation during gastrectomy for stomach cancer [J]. Acta Anaesthesiologica Scandinavica,1995,39(3):294-298
    [147]Kotani N, Hashimoto H, Sessler D I, et al. Expression of genes for proinflammatory cytokines in alveolar macrophages during propofol and isoflurane anesthesia [J]. Anesth Analg,1999,89(5): 1250-1256
    [1]Flecknell P A. Injectable anaesthetics [M], Philadelphia:WB Saunders,1994,129-156
    [2]Haskins S C, Farver T B, Patz J D. Ketamine in dogs [J]. Am J Vet Res,1985,46:1855-1860
    [3]Reves J G, Fragen R J, Vinik H R, Greenblatt D J. Midazolam:pharmacology and uses [J]. Anesthesiology,1985,62:310-324
    [4]Blaze C A, Glowaski M M. Veterinary anesthesia drug quick reference [M], Missouri:Elsevier Saunders,2004,62-94
    [5]Robert L. Clinical pharmacology and therapeutics for the veterinary technician [M]. Missouri:Mosby Inc,2006,214-222
    [6]Carroll G L. Small animal anesthesia and analgeesia [M]. Blackwell Publishing,2008,73-74
    [7]Maddison J E. Stephen W P, David B C. Small animal pharmacology [M]. Missouri:Elsevier Saunders, 2008,99-125
    [8]徐吉民.正交法在医药科研中的应用[M].北京:中国医药科技出版社,1987
    [9]方开泰,马长兴.正交与均匀试验设计[M].北京:科学出版社,2001
    [10]沈春岚,吴戈麓,宋鲁敏等.保定宁的神经药理作用研究[J].中国人民解放军兽医大学学报,1985,5(3):228-237
    [11]陈奇.中药药理研究方法学[M].北京:人民卫生出版社,1993
    [12]赵生财.反当兽平衡麻醉复合制剂-MP合剂的研究[D].哈尔滨:东北农业大学,2000
    [13]Peter W H, Lisa C F, John A E H. Induction of anethesia with diazepam-ketamine and midazolam-ketamien in greyhounds [J]. Vet Surg,1991,20(2):143-147
    [14]Papich M G. Saunders handbook of veterinary drugs [M]. Missouri:Elsevier Saunders,2007,351-352
    [15]徐仲安,王天保,李常英等.正交试验设计法简介[J].科技情报开发与经济,2002,12(5):148-150
    [1]郭祖超.医用数理统计方法[M],第三版,北京:人民卫生出版社,1988
    [2]徐叔云,卞如濂,陈修.药理实验方法学[M],第三版,北京:人民卫生出版社,2001
    [3]国家食品药品监督管理局.药物研究技术指导原则[M],北京:中国医药科技出版社,2006
    [4]Shintani S, Yamazaki M, Nakamura M, et al. A new method to determine the irritation of drugs after intramuscular injection in rabbits [J]. Tox Appl Pharm,1967,11:293-301
    [5]谢恩C.加德著,范玉明,李毅民,张舒等译.药物安全性评价[M].北京:化学工业出版社,2005
    [6]Gad S C. Preclinical toxicity testing in the development of new therapeutic agents [J]. Scand J Lab Anim.1996,23:299-314
    [7]Gad S C. Product safety evalution handbook [M]. New York:Marcel Dekker
    [8]Meyer D S. Safety evalution of new drugs. In:Modern Drug Researh [M]. New York:Marcel Dekker,1989,355-399
    [9]Dixon W J. The up-and-down method for small samples [J]. J Am Stat Assoc,1965,60:967-968
    [10]Dixon W J, Wood A M. A Method for obtaining and analyzing sensitivity data [J]. J Am Stat Assoc, 1948,43:109-126
    [11]Brownlee K., Hodges J, Rosenblatt M. The up-and-down method for small samples [J]. J Am Stat Assoc,1953,48:262-277
    [12]毕殿洲.药剂学[M].第4版.北京:人民卫生出版社,2002
    [13]中国曾药典委员会.中华人民共和国兽药典[M].2005年版,一部.北京:中国农业出版社,2005
    [1]Miksa I R, Cummings M R, Poppenga R H. Determination of acepromazine, ketamine, medetomidine. and xylazine in serum:multi-residue screening by liquid chromatography-mass spectrometry [J]. J Anal Toxicol,2005,29:544-552
    [2]Niedorf F, Bohr H H, Kietzmann M. Simultaneous determination of ketamine and xylazine in canine plasma by liquid chromatography with ultraviolet absorbance detection [J]. J Chromatogr B,2003, 791:421-426
    [3]Adams H A, Weber B, Bachmann B. Simultaneous determination of ketamine and midazolam concentrations by high-pressure liquid chromatography and UV-detection (HPLC/UV) [J]. Anaesthesist, 1992,41:619-624
    [4]Kanazawa H, Nagata Y, Matsushima Y, et al. Liquid chromatography-mass spectrometry for the determination of medetomidine and other anaesthetics in plasma [J]. J Chromatogr A,1993,631:215-320
    [5]孙毓庆.现代色谱法及其在药物分析中的应用[M].北京:科学出版社,2005
    [6]田颂九,胡昌勤.色谱在药物分析中的应用[M].北京:化学工业出版社,2006
    [7]丁黎.药物色谱分析[M].北京:人民卫生出版社,2008
    [8]宋航.药学色谱技术[M].北京:人民卫生出版社,2007
    [9]牟世芬,刘克纳,丁晓静.离子色谱方法及应用[M].第2版.北京:人民卫生出版社,2007
    [10]Zarghi A, Foroutan S M, Shafaati A,et al. Rapid determination of metformin in human plasma using ion-pair HPLC [J]. J Pharmaceut Biomed,2003,31:197-200
    [11]Smeta J D, Bousserya K, Colpaertb K. Pharmacokinetics of fluoroquinolones in critical care patients:A bio-analytical HPLC method for the simultaneous quantification of ofloxacin, ciprofloxacin and moxifloxacin in human plasma [J]. J Pharmaceut Biomed,2009,877:961-967
    [12]Yang Z Y, Wang L, Tang X. Determination of azithromycin by ion-pair HPLC with UV detection [J]. J Pharmaceut Biomed,2009,49:811-815
    [13]British Pharmacopoeia Commission. British Pharmacopoeia 2009. London:The Stationery Office,2009: 2290
    [14]The United States Phannacopeial Convention, Inc. The United States Pharmacopeia (USP 32th revision). Maryland:3879
    [1]Blaze C A, Glowaski M M. Veterinary anesthesia drug quick reference [M], Missouri:Elsevier Saunders, 2004:62-94
    [2]Robert L. Clinical pharmacology and therapeutics for the veterinary technician [M]. Missouri:Mosby Inc,2006:214-222
    [3]Carroll G L. Small animal anesthesia and analgeesia [M]. Blackwell Publishing,2008:73-74
    [4]Maddison J E. Stephen W P, David B C. Small animal pharmacology [M]. Missouri:Elsevier Saunders, 2008:99-125
    [5]Gwendolyn L C, Lisa B H, Margaret R S, Linda H, et al. Evaluation of analgesia provided by postoperative administration of butorphanol to cats undergoing onyehectomy [J]. J Am Vet Med Assoc, 1998,213:246-250
    [6]Jeff C H, Steven M, Ronald E. Sedative and cardiorespiratory effects of medetomidine, medetomidine-butorphanol, and medetomidine-ketamine in dogs [J]. J Am Vet Med Assoc,2000,216: 1578-1583
    [7]Kip A L. Sedativeeffects of intramuscular adminlstration of a low dose of romifidine in dogs [J]. J Am Vet Med Assoc,1999,60:162-168
    [8]赵生财.反刍兽平衡麻醉复合制剂-MP合剂的研究[D].哈尔滨:尔北农业大学,2000
    [9]肖建华.猕猴复合麻醉剂的实验研究[D].哈尔滨:尔北农业大学,2003
    [10]翟晓虎.犬地西泮、氯胺酮静脉复合麻醉效果及药代动力学研究[D].南京:南京农业大学,2007
    [11]李建军,丁巧玲,许圳怀,等.临床常用麻醉剂及麻醉方法对犬肝肾功能的影响[J].畜牧与兽医,2006,38(7):32-33
    [12]周庆国,陈浣莎,黄卓文,等.犬氯胺酮和异丙酚复合静滴麻醉效果的观察[J],畜牧与曾医,2006,38(11):46-48
    [13]高利,高文学,王洪斌,等.静脉注射异丙酚复合制剂对犬的麻醉效果及其对生理机能的影响[J],中国兽医杂志,2006,42(4):29-31
    [14]彭丽艳,郭文琦,高瑾,等.应用异丙酚对小型京巴犬匀速静脉麻醉的临床效果评价[J].黑龙江畜牧兽医,2008,11(3):63-66
    [15 Butch K K, Diplomate. The disposition and behavioral effects of methadone in Greyhounds [J], Vet Anaesth Analg,2008,35(3):242-248
    [16]Kukanich B. Pharmacokinetics of acetaminophen, codeine, and the codeine metabolites morphine and codeine-6-glucuronide in healthy Greyhound dogs [J], J Vet Pharmacol Ther,2010,33(1):15-21
    [17]Wm T D, Guillermo C C, Anthony J F, et al. Comparison of glomerular filtration rate between greyhounds and non-greyhound dogs [J], J Vet Intern Med,2006,20(3):544-546
    [18]Williams S B, Wilson A M, Rhodes L, et al. Functional anatomy and muscle moment arms of the pelvic limb of an elite sprinting athlete:the racing greyhound (Canis familiaris) [J], J Anat,2008,213(4): 361-372
    [19]Vilar P, Couto C G, Westendorf N, et al. Thromboelastographic tracings in retired racing greyhounds and in non-greyhound dog [J], J Vet Intern Med,2008,22(2):374-379
    [20]Cosgrove S B, Eisele P H, Martucci R W, et al. Evalution of greyhound susceptibility to malignant hyperthermia using halothane-succinylcholine anesthesia and caffeine-halothane muscle contractures [J]. Lab Animal Sci,1992,42(5):482-485
    [21]侯加法.小动物疾病学[M].北京:中国农业出版社,2002
    [1]Tranquilli WJ & Maze M. Clinical pharmacology and use of a2-adrenergic agonists in veterinary anaesthesia [J]. Anaesth Pharmacol Rev,1993,1:297-309
    [2]Green SA & Thurmon JC. Xylazine-a review of its pharmacology and use in veterinary medicine [J]. J Vet Pharmacol Ther,1988,11:295-313
    [3]Lockwood L L, Silbert L H, Laudenslager M L,Watkins L R, Maier S F. Anesthesia-induced modulation of in vivo antibody levels:a study of pentobarbital, chloral hydrate, methoxyflurane, halothane, and ketamine/xylazine [J]. Anesth Analg,1993,77:769-774
    [4]Moore T C, Spruck C H, Leduc L E, Depression of lymphocyte traffic in sheep by anesthesia and associated changes in efferent lymph PGE2 and antibody levels [J]. Immunology,1988,63:139-143
    [5]Vitomir C, Miodrag C, Ljiljana P, et al. Immunomodulatory effect of xylazine, ana2-adrenergic agonist, on rat spleen cells in culture [J]. J Neuroimmunol,2001,113:19-29
    [6]Dorman T, Clarkson K, Rosenfeld B, et al. Effects of clonidine on prolonged sympathetic response [J]. Crit Care Med,1997,25:1147-1152
    [7]Tank J, Jordan J, Diedrich A, et al. Clonidine improves spontaneous baroreflex sensitivity in conscious mice through parasympathetic activation [J]. Hypertension,2004,43:1042-1047
    [8]Kulka P, Tryba M, Zenz M. Dose-response effects of intravenous clonidine on stress response during induction of anesthesia in coronary artery bypass grafting [J]. Anesth Analg,1995,80:26-268
    [9]Dossow V, Nadine B, Maryam M, et al. Clonidine attenuated early proinflammatory response in T-cell subsets after cardiac surgery [J]. Anesth Analg,2006,103:809-814
    [10]Ellis J E, Pedlow S. Premedication with clonidine does not attenuate suppression of certain lymphocyte subsets after surgery [J]. Anesth Analg,1998,87:1426-1430
    [11]Loick H M, Schmidt C, Van A H, et al. High thoracic epidural anesthesia, but not clonidine, attenuates the perioperative stress response via sympatholysis and reduces the release of troponin T in patients undergoing coronary artery bypass grafting [J]. Anesth Analg,1999,88:701-709
    [12]Kahoru N,Hirohiko A, Katsuya M, et al. The effects of clonidine and dexmedetomidine on human neutrophil functions [J], Anesth Analg,1999,88:452-458
    [13]王永祥,陈敏珠,徐叔云.可乐定对小鼠休外淋巴细胞转化的影响[J].中国药理学通报,1986,2(5):43-45
    [14]Bao J Y, Huang Y, Wang F, et al. Expression of u-AR subtypes in T lymphocytes and role of the a-ARs in mediating modulation of T cell function [J]. Neuroimmunomodulat,2007,14:344-353
    [15]Musgrave I F, Krautwurst D, Hescheler J, Schultz G. Clonidine and cirazoline inhibit activation of nicotinic channels in PC-12 cells [J]. Ann N Y Acad Sci,1995,763:272-282
    [16]Housmans P R. Effects of dexmedetomidine on contractility, relaxation, and intracellular calcium transients of isolated ventricular myocardium [J]. Anesthesiology,1990,73:919-922
    [17]Talke P, Bickler P E. Effects of dexmedetomidine on hypoxiaevoked glutamate release and glutamate receptor activity in hippocampal slices [J]. Anesthesiology,1996,85:551-557
    [18]Zhao Z, Code W E, Hertz L. Dexmedetomidine, a potent and highly specific alpha 2 agonist, evokes cytosolic calcium surge in astrocytes but not in neurons [J]. Neuropharmacology,1992,31:1077-1079
    [1]Hoff G, Bauer I, Larsen B, Bauer M. Modulation of endotoxin-stimulated TNF-alpha gene expression by ketamine and propofol in cultured human whole blood [J]. Anaesthesist,2001,50:494-499
    [2]Li C Y, Chou T C, Wong C S, et al. Ketamine inhibits nitric oxide synthase in lipopolysaccharide-treated rat alveolar macrophages [J]. Can J Anaesth,1997,44:989-995
    [3]Sakai T, Ichiyama T, Whitten C W, et al. Ketamine suppresses endotoxin-induced NF-kappaB expression [J]. Can J Anaesth,2000,47:1019-1023
    [4]Kawasaki T, Ogata M, Kawasaki C, et al. Ketamine suppresses proinflammatory cytokine production in human whole blood in vitro [J]. Anesth Analg,1999,89:665-669
    [5]Lockwood L L, Silbert L H, Laudenslager M L,et al. Anesthesia-induced modulation of in vivo antibody levels:a study of pentobarbital, chloral hydrate, methoxyflurane, halothane, and ketamine/xylazine [J]. Anesth Analg,1993,77:769-774
    [6]Moore T C, Spruck C H, Leduc L E. Depression of lymphocyte traffic in sheep by anesthesia and associated changes in efferent lymph PGE2 and antibody levels [J]. Immunology,1988,63:139-143
    [7]Helmer K S, Cui Y, Dewan A, et al. Ketamine/xylazine attenuates LPS-induced iNOS expression in various rat tissues [J]. J Sur Res,2003,112:70-78
    [8]Van Pelt, L. F. Ketamine and xylazine for surgical anesthesia in rats [J]. J Am Vet Med Assoc,1977, 171:842-846
    [9]Kang J H, Yang M P. In vitro evaluation of the effect of trans-10, cis-12 conjugated linoleic acid on phagocytosis by canine peripheral blood polymorphonuclear neutrophilic leukocytes exposed to methylprednisolone sodium succinate [J]. Am J Vet Res,2008,69:494-500
    [10]Kang J H, Kim M J, Yang M P. Ketamine decreases phagocytic capacity of canine peripheral blood phagocytes in vitro [J]. J Vet Clin,2008,25:73-78
    [11]Kang K A, Kang J H, Yang M P. Ginseng total saponin enhances the phagocytic capacity of canine peripheral blood phagocytes in vitro [J]. Am J Chinese Med,2008,36:329-341
    [12]Kim M J, Kang J H, Yang M P. Effect of ketamine on the oxidative burst activity of canine peripheral blood leukocytes in vitro [J]. J Vet Clin,2006,23:393-399
    [13]Chang Y, Chen T L, Sheu J R, et al. Suppressive effects of ketamine on macrophage functions [J]. Toxicol Appl Pharm,2005,204,27-35
    [14]Ruiz I, Offermanns J, Lanctot K L, et al. Comparative study on benzodiazepine use in Canada and Chile [J]. J Clin Pharmacol,1993,33:124-125
    [15]Nishina K, Akamatsu H, Mikawa K, et al. The inhibitory effects of thiopental, midazolam, and ketamine on human neutrophil functions [J]. Anesth Analg,1998,86:159-65
    [16]Massoco C, Palermo N J. Effects of midazolam on equine innate immune response:a flow cytometric study [J]. Vet Immunol Immunop,2003,95:11-19

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700