土基振动压实系统模型与参数研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
交通量的增长及汽车荷载的增大,对公路压实质量提出了更高的要求。实践证明,对公路路基进行必要的有效压实,可以增加路基土和路面材料的不透水性和强度稳定性,增强路面的使用性能并延长路面的使用寿命。由于振动压路机比同吨位的静力压路机不仅有更好的压实效果,而且有更高的压实效率,所以,振动压路机被广泛应用于压实施工的各个领域。
     本文分别从动力学理论模型分析、试验研究、土压应力信号的分析与处理及有限元数值分析等方面,对土体振动压实系统的力学模型、模型参数对振动压实效果的影响规律、压应力及压实能量在土层中的分布与传递规律及土内压应力的三维分布特性进行深入研究。
     根据机械系统动力学理论,建立了“振动压路机—土”系统的动力学模型,对振动压实过程中的接地振压和跳振压实两种工况进行动力学分析,推导了振动轮与土体间动态作用力只的计算公式,在此基础上,分析了模型中激振频率、振幅等振动参数及土体参数对振动压实效果的影响关系。
     通过振动压实试验研究,以压实度为评价指标,得到了振幅、振动频率、碾压速度等压实作业参数对压实效果的影响规律为:振幅对压实度影响最大,其次是碾压速度,振动频率对压实度的影响不如振幅和碾压速度明显,但存在最佳振动频率。结合所建立的动力学模型,对土体刚度和阻尼进行动态识别,结果表明:土体刚度随土体不断趋于密实状态逐渐增大,土体阻尼随土体不断趋于密实状态逐渐减小;振动压实系统的固有频率和振动轮加速度随着土体刚度的增加逐渐增大,但增幅越来越小。
     土压应力信号包含了振动压实物理过程的重要信息。通过对土压应力信号的时频域分析,研究了压应力在土体各层的分布情况以及压实能量在土内的吸收状况与传递规律。
     由于试验中采集的土压应力信号是一个含噪的非平稳瞬态突变信号。为了从含噪信号中提取理想的压应力信号,分析信号的联合时频特性,对信号去噪方法进行了对比研究,提出了基于小波变换去噪和奇异值检测的土体振动压实压应力信号分析方法。计算出压应力从出现到达峰值的历经时间和压应力在土中作用时间,以此研究名义振幅、振动频率和碾压速度等压实作业参数对土基振动压实效果的影响关系。结果表明:压应力在各层土体内的作用时间与振幅基本上呈线性增长关系,与碾压速度呈下降关系,但碾压速度越高,其降低趋势变缓,与振动频率呈先增长后下降的关系,即存在最佳振动频率。
     综合压实度测试结果和土压应力信号的小波变换去噪与奇异值检测结果,得到最佳的振动压实作业参数为:振幅1.6mm,振动频率30Hz到32Hz之间,碾压速度1.12km/h-1.30km/h之间。
     为了研究振动压实作用下土中压应力的三维分布特性,将振动压实系统的动力学理论模型与有限元方法相结合,首次建立了土体振动压实系统的三维数学物理模型,并利用有限元方法对土体振动压实过程进行仿真。仿真结果显示:激振力在任一瞬时的作用区域内,土内应力场分布基本一致,在轮宽方向,压应力分布不均匀,而在压实深度方向,压应力具有递减性。
     本文工作将理论分析、试验研究和有限元仿真有机结合,为优化土体振动压实作业参数、提高压实效果和效率、揭示土的振动压实机理提供理论依据,并对现场压实具有重要的工程指导意义。
With the increase of the traffic and vehicle load, the requirement for the compaction quality of highway is improved. The experiments show that if the necessary compaction is carried out on the highway subgrade, the non-permeability and strength stability of the subgrade soil and pavement material can be increased. The utility performance can be strengthened and the life of the pavement can be lengthened. For the vibration roller is superior to the same weight static roller in that good compaction quality and compaction efficiency, the vibration roller is widely applied in the compaction construction field.
     From the dynamic theory model analysis, experimental study, the analysis and treatment of the stress signals of the soil compaction and the finite element numerical analysis, the studies are carried out on the dynamic model of the soil vibration compaction system, the effect of the model parameters on the compaction quality, and the three-dimensional distribution and transmit of the stress and compaction energies in the soil, and the distribution characteristics of soil internal stress in deep.
     According to the dynamic theory of mechanical system, the "vibration roller-soil" models are presented. The dynamic analysis is carried out on two work conditions of near ground compaction and jump ground compaction during the vibration compaction. The calculation equation Fs of the dynamic force between the vibration wheel and the soil is derived. Based on the equation, the relation between the vibration parameters and the soil parameters, as for vibration frequency and vibration amplitude, and the compaction quality is analyzed.
     Through the vibration compaction experiments, based on the evaluation index of compactness, the law between the work parameters, such as the amplitude, vibration frequency and roller compaction velocity and the compaction quality is gotten. The effect of amplitude on the compactness is the most. The second is the compaction velocity. The effect of vibration frequency on the compactness is not obvious as that both the amplitude and compaction velocity. But the optimal frequency exists. Combing the established dynamic model, the soil stiffness and dampness are identified. The experiments showed that the soil stiffness increased with the dense of the soil. The soil dampness decreased with the dense of the soil. The more the soil stiffness is, the more the natural frequency of the vibration system and the acceleration of the vibration wheel. However the increase domain becomes small.
     The stress signals of the soil compaction are rich in the important information during the vibration physical progress. Through the time domain analysis on the soil stress signals, the distribution of the compressive stress in the soil and the absorption status and the transmit law of the compaction energy in the soil.
     The stress signal is unstable and transient salutation signals accompanied by strong noise, which are acquired from the soil by the experiments. To extract the ideal signal from the noise signals and study the joint time-frequency property of the soil stress signal during vibrating compaction, the wavelet transform method for de-noising and the singular value identification method are proposed. The time of the stress appearance and the time of the stress peak arrival can be calculated, further the function time. So the relation between the work parameters, such as the amplitude, vibration frequency and the rolling velocity, and the vibration rolling effect can be analyzed. The results show that the function time of stress on the soil is increased linearly to the amplitude, which decreased with the increase of the rolling velocity. However the high the rolling velocity is, the slower the decrease tendency is. The function time increase with the vibration frequency first then decrease. So the optimal vibration frequency exits.
     Combining the compactness test and the wavelet transformation and singular value detect of the soil stress signal, the optimal compaction parameters are that the amplitude is 1.6 mm, the vibrating frequency is 30-32 Hz and the roller compaction velocity is 1.12km/h~1.30km/h.
     To study the three dimensional distribution of the compact stress of the soil under the vibration compaction, the dynamic theoretical model is combined with the finite element method. The three-dimensional mathematic and dynamic model of the soil vibration compaction system is proposed for the first time. By the finite element method, the simulations of the vibration compaction of the soil are carried out. The simulated results showed that the distribution of the soil internal stress is uniform for the instantaneous region of the exciting force. Along the wheel width, the compact stress is not uniform. Along the compaction depth direction, the compact stress decreased little by little.
     This dissertation combined the theoretical analysis, experimental study and finite element simulation, which pave for the parameter optimization of the soil compaction, the improvement of the compaction quality and efficiency and discovering the compaction mechanism of the soil. The study is of importance in guiding the infield engineering construction of compaction.
引文
[1]H.a哈尔胡塔,曹相云译.压实土壤的理论及机械[M].北京:水利出版社,1957.
    [2]Yoo T.S.. A theory for vibratory compaction of soils [D]. Buffalo:State university of New York at Buffalo, Buffalo, New York,1975.44-52.
    [3]Selig E.T.. Fundamentals of Vibratory Compaction of Soil[C]. Proceedings,Ninth International Conference on Soil Mechanics and Foundation Engineering,VOL.2, Japan,1977:375-380.
    [4]Selig E.T., Yoo T.S.. Dynamics of Vibratory-Roller ComPaction[J]. Journal of The Geotechnical Engineeing Division, ASCE, Vol.105, No.10,1979.
    [5]Machet J.M, More L.G.. Vibratory ComPaction of Bituminous Mixes in France[J]. Pavement Constraction and Field Contral.1977:326-333.
    [6]Pietzsch DIETER, Wolfgang POPPY. Simulation of soil compaction with vibratory rollers[J]. Journal of Terramechanics,1992,29(6):585-597.
    [7]万世宏、张子正、张仲甫.振动压实系统的动力学理论分析[J].武汉工学院学报,1987,9(1):101-112.
    [8]严世榕,闻邦椿.振动压路机的一种非线性动力学特性研究[J].福州大学学报(自然科学版),2000,28(5):64-67.
    [9]龙运佳,杨勇,王聪玲.基于混沌振动力学的压路机工程[J].中国工程科学,2000,2(9):76-79
    [10]马培新.振动压路机三自由度振动模型分析[J].筑路机械与施工机械化,2008,25(8):43-45.
    [11]孙祖望,卫雪莉,王鹊.振荡压实的动力学过程及其响应特性的研究[J].中国公路学报,1998,11(2):117-126.
    [12]杨人凤.冲击与振动复合压实技术的研究[D].西安:长安大学,2003.
    [13]杨人凤,张永新,汤键.冲击+振动+静碾复合压实滚轮与土壤系统的动力学模型[J].长安大学学报:自然科学版,2003,23(5):56-59.
    [14]HIROAKIFUJII. Problems Between Soil and Construction Machinery Special Reference to Field ComPaction[J].Journal of Terramechanics, Vol.29, No.1,1992.
    [15]丁少华,张仲甫.新型振动压路机控制方案探讨及土体参数在线辨识器研究[J].武汉 工学院学报,1992,14(3):8-16.
    [16]秦四成,陈龙珠,苏峰.振动压路机橡胶减振器动态性能试验研究[J].工程机械,2000,31(1):19-20.
    [17]秦四成,程悦荪,李忠等.振动压路机振动轮减振支承系统动力分析[J].农业机械学报,2001,32(6):88-91.
    [18]周昌雄,周传鳞.振动压路机动力学模型及工作参数控制[J].华东船舶工业学院学报,2000,14(6):28-31.
    [19]周昌雄,周传鳞.优化振动压路机工作参数[J].筑路机械与施工机械化,2000,17(3):3-5.
    [20]张帆.YZ30型振动压路机动力学分析、计算机仿真及参数优化[D].西安:西安理工大学,2003.
    [21]田丽梅.振动振荡压路机动力学分析及参数优化[D].西安:长安大学,2002.
    [22]邓丽娜.双频振动压实作业参数优化及动态仿真[D].西安:长安大学,2004.
    [23]郭启华,钟春彬,蒋拓等.双频振动压实机-土壤系统的数值仿真[J].山东交通学院学报:2007,15(4):58-65.
    [24]张世英.关于振动压路机设计中土的参数的确定方法[J].工程机械,1998,29(1):5-8.
    [25]张仲甫,饶明太,万世宏等.振动压实过程中的土壤—机械系统相似模型的实验研究[J].武汉工学院学报,1986,8(3):1-11.
    [26]秦四成,程悦荪,李忠等.土壤振动压实下动态性能试验研究[J].农业工程学报,2001,17(4):26-29.
    [27]秦四成,程悦荪,李忠等.振动压路机振动轮-土壤系统动力学分析[J].同济大学学报,2001,29(9):1026-1031.
    [28]秦四成,程悦荪,李忠等.振动压实下土壤基础密实程度在线监测研究[J].农业工程学报,2001,17(5):15-18.
    [29]周昌雄,周传鳞.振动压实土体参数的辨识[J].华东船舶工业学院报,2000,14(3):91-94.
    [30]杨东来.振荡轮与热沥青混合料相互作用动力学过程的研究[D].西安:长安大学,2005.
    [31]Alan V.Oppenheim, Alan S. Willsky, With s. Hamid Nawab.刘海棠译.信号与系统(第二版)[M].北京:清华大学出版社,1999.
    [32]卢文祥,杜润生.机械工程测试、信息、信号分析(第二版)[M].武汉:华中理工大学出版社,1999.
    [33]程正兴.小波分析算法与应用[M].西安:西安交通大学出版社,2000.
    [34]S. G. Mallat. Multifrequency channel decompositions of images and wavelet models[C]. IEEE Transactions on Acoustics, Speech and Signal Processing,1989,37(12):2091-2110.
    [35]刘本学,王国富.仿冲击振动压实机-土壤三维模型的仿真及试验[J].公路交通科技:应用技术版,2008,4(5):73-76.
    [36]王建军,张洪.冲击振动压实机工作装置分析及动力学仿真[J].工程机械:2008,39(10):24-28.
    [37]严世榕,闻邦椿.考虑塑性变形的振动压路机非线性动力学仿真[J].筑路机械与施工机械化:1999,16(4):13-16.
    [38]杨勇,龙运佳.土壤塑性变形的混沌振动压路机动力学仿真研究[J].农业机械学报,2003,34(6):44-46
    [39]李冰、焦生杰.振动压路机与振动压实技术[M].北京:人民交通出版社,2001.
    [40]沙庆林.公路压实与压实标准[M].北京:人民交通出版社,1999.
    [41]何挺继,朱天文,邓世新.筑路机械手册[M].北京:人民交通出版社,1998.
    [42]杨人凤.冲击振动复合压实技术与设备[M].北京:中国科学技术出版社,2003.
    [43][美]F.E.小理查特等,徐攸在等译.土和基础的振动[M].北京:中国建筑工业出版社,1976
    [44]拉斯.福斯布拉德<瑞典>,甘杰贤等译.土壤和岩石填方的振动压实[M].北京:人民交通出版社,1989.
    [45]孙祖望.压实技术与压实机械的发展与展望[J].筑路机械与施工机械化,2004,21(5):4-7.
    [46]Thurner H. New Compaction Concept[C]. Paper at the Ⅹ Ⅶth World road Congress, Sydney, Australia,1984.
    [47]景宏君.振动压实与黄土高路堤沉降变形[D].西安:长安大学,2004.
    [48]任军锋·振动压路机动态特性研究[D]·西安公路交通大学硕士学位论文,1997.
    [49]任军锋,陈浙江.振动压实系统动力学模型及其解析[J].建筑机械,2005,25(7):70-73.
    [50]王聪玲·混沌振动在压实作业中应用的仿真研究[D]·中国农业大学博士学位论文, 2000.
    [51]张青哲,杨人凤,戴经梁.振动压路机—土壤系统动力学模型及分析[J].建筑机械,2009,29(11):98-101.
    [52]邵忍平.机械系统动力学[M].北京:机械工业出版社,2005.
    [53]姚运仕.双频合成振动压实方法的试验研究[D].西安:长安大学,2006.
    [54]中华人民共和国国家标准.振动压路机性能试验方法(GB4478-1995)[S].北京:中国标准出版社,1995.
    [55]陈魁.试验设计与分析[M].北京:清华大学出版社,1996.
    [56]中华人民共和国交通部.JTG E40-2007公路土工试验规程[S].北京:人民交通出版社,2007.
    [57]张青哲,杨人凤,戴经梁.黄土振动压实试验研究[J].郑州大学学报(工学版),2010,31(3):92-95.
    [58]张青哲,杨人凤,戴经梁.振动压实过程土体参数识别方法研究[J].公路交通科技,2009,26(8):6-10.
    [59]袁文忠.相似理论与静力学模型试验[M].成都:西南交通大学出版社,1998.
    [60]杨俊杰.相似理论与结构模型试验[M].武汉:武汉理工大学出版社,2005.
    [61]张世英,陈元基.筑路机械工程[M].北京:机械工业出版社,1998.
    [62]沙爱民,陈开圣,马峰.黄土室内振动压实特性试验[J].长安大学学报:自然科学版,2008,28(1):1-5.
    [63]雷继尧,何世德等.工程信号处理技术[M].重庆:重庆大学出版社,1990:96-97.
    [64]王楠,杜劲松.小波消噪在振动信号处理中的应用[J].仪器仪表学报,2001,22(4):225-226.
    [65]常云华,李宗伟,尹大娟.非平稳振动信号的小波分析方法[J].噪声与振动控制,2008,28(5):98-101.
    [66]康金钟,康志伟.基于平移不变的小波变换去噪快速算法[J].微电子学与计算机,2005,22(9):24-26.
    [67]Boll S. Suppression of acoustic noise in speech using spectral subtraction[J]. Acoustic Speech and Signal Processing, IEEE Transactions,1979,27(2):113-120.
    [68]Lochwood P,Boudy J. Experimentswith a nonlinear spectral subtractor(NSS), hiddenMarkov models and projection for robust recognition in cars[J]. Speech Communication,1992,11(6):215-228.
    [69]刘志坤,唐小明,朱洪伟,基于改进谱减法的语音增强研究[J].计算机仿真,2009,26(6):363-366.
    [70]Comon P.Independent component analysis—a new concept Signal Processing,1994,36: 287-314
    [71]Hyvarinen A, Karhunen J, Oja E. (2001). Independent Component Analysis. John Wiley, New York.
    [72]Ella Bingham, Aapo hyvarinen. A fast fixed-point algorithm for independent component analysis of complex valued signals[J]. International Journal of Neual Systems, Vol.10, No.1(2000)1-8.
    [73]胡昌华,张军波,夏军等.基于Matlab的系统分析与设计-小波分析[M].西安:西安电子科技大学出版社,2000.
    [74]杨福生.小波变换的工程分析与应用[M].北京:科学出版社,1999.
    [75]Hwang W.L., Mallat S.G.. Singularities and noise discrimination with wavelets[C].1992 IEEE International Conference on Acoustics, Speech, and Signal Processing, March 23-26,1992,4:377-380.
    [76]Yu fu, Wen shengli, Guo huaxu. Wavelets and singularities in bearing vibration signals[C]. Proceedings of the Second International Conference on Machme Learning and Cybernetics, Xi'an, November 2-5,2003:2433-2436.
    [77]张青哲,杨人凤,戴经梁等.基于小波变换的瞬态压应力信号分析[J].微电子学与计算机,2010,27(5):206-208.
    [78]张青哲,杨人凤,戴经梁等.黄土振动压实的压应力信号分析[J].公路交通科技,2010,27(7):8-11,17.
    [79]张青哲,杨人凤,戴经梁.黄土振动压实特性分析[J].长安大学学报:自然科学版,2010,30(5):27-30.
    [80]龙驭球.有限元法概论[M].北京:高等教育出版社,1991.
    [81]郭成壁,陈全福编.有限元法及其在动力机械中的应用[M].北京:国防工业出版社,1984.
    [82]徐芝纶.弹性力学简明教程[M].北京:高等教育出版社,2001.
    [83]张学言.岩土塑性力学[M].北京:人民交通出版社,1993.
    [84]郑颖人,沈珠江,龚晓南.岩土塑性力学原理[M].北京:中国建筑工业出版社,2002.
    [85]David M.Potts, Lidija Zdravkovic著,周建等译.岩土工程有限元分析.理论[M].北京:科学出版社,2010.
    [86]David M.Potts, Lidija Zdravkovic著,谢新宇等译.岩土工程有限元分析.应用[M].北京:科学出版社,2010.
    [87]刘金龙,栾茂田,许成顺等.Drucker-Prager准则参数特性分析[J].岩石力学与工程学报,2006,25(2):4009-4015.
    [88]苏继宏,汪正兴,任文敏.岩土材料破坏准则研究及其应用[J].工程力学,2003,20(3):72-77.
    [89]William B. J.Zimmerman,中仿科技公司主编COMSOL Multiphysics有限元法多物理场建模与分析[M].北京:人民交通出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700