复杂条件下短波近红外检测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用近红外光谱可以快速地实现目标检测物的种类、组分和含量的无损分析,该技术已广泛应用于石化、农业、制药等各个领域。提取目标检测物的近红外光谱信息需要综合利用光学传感技术、计算机应用技术和一定的化学计量学方法。近年来短波近红外(780-1100nm)检测技术因为明显的成本优势越来越引起人们的重视。该波段光谱的吸收主要源自含氢基团振动的二级和三级倍频,它能够更深地进入样品内部,并产生较少的热效应,而且受水分吸收的干扰较小。该波段的光谱采集仪器技术具有成本低廉、结构紧凑、快速扫描等特点,是一种重要的过程分析技术。然而,在短波近红外仪器设计和应用方面仍然需要改进以适应新的应用需求。首先,现有的多通道短波近红外光谱采集装置的信噪比需要进一步提高,以满足低含量物质的检测。其次,多通道检测电路的设计缺乏灵活性和智能性。设计灵活性更强的检测电路使其不需硬件重新设计就能匹配不同的检测器,无疑能够降低成本。另外,检测电路参数的智能化调节对光谱采集的长期稳定性和一致性也很有帮助。在短波近红外技术的实际应用方面,受限于分子振动的倍频与合频吸收本身存在吸收较弱、吸收峰宽而重叠的特征,苛刻的检测条件,更容易导致短波近红外光谱复杂化,出现严重的重叠、偏移甚至旋转等非线性的变化,极大限制了该技术的应用。这些极端的检测条件包括:目标检测物含量低、存在外部变量的作用、检测物所在基质复杂等。
     本论文在短波近红外技术的光谱采集硬件技术、多元校正方法和实际应用方面进行了系统性的研究,做出了必要的改进和有益的尝试,以实现短波近红外技术在复杂光谱条件下的准确信息提取,扩展这一低成本、快速分析技术的应用范围。在短波近红外光谱采集装置硬件方面,使用CCD传感器设计实现了固定光路多通道光谱采集系统。光源采用卤素灯并联LED的复合形式,结合在ARM微控制器上实现的自适应光强调节策略,使仪器在整个谱段的信噪比达到了500:1。所设计的传感器驱动和信号采集电路能够针对两种不同型号的CCD器件。该电路不需改变硬件结构,采用软件编程就可以实现两种CCD的驱动,满足了不同场合光谱测量的特殊需要,提高了电路的通用性,降低了成本。针对低含量物质检测的需要,研究了多元校正模型的检测限计算方法和检测限与建模方法的关系。采用短波近红外结合PLS校正检测了医用葡萄糖注射液中葡萄糖的含量,建立了不同浓度范围下的PLS校正模型。研究发现,对含量较低的物质进行检测时,应该选择包含了该浓度的尽可能窄的校正浓度范围来建立PLS多元校正模型。采用傅里叶变换近红外技术实现的对饲料中磺胺抗生素添加剂的检测进一步证明了上述结论。且进一步发现,在建立浓度范围较宽的模型时,可以通过比较检测限来确定最佳的建模样品个数。研究为低浓度物质检测提供了建模方法上的参考。以短波近红外测量水溶液中酒精的含量为例,考察了不同的建模方法在消除外界变量-温度影响的作用。在不同的温度条件下研究对比了直接校正、全局建模、正交信号校正(OSC)和广义最小二乘加权(GLSW)这四种校正方法。结果表明温度对酒精水溶液的短波近红外光谱有强烈的影响,直接校正带来了很大的预测系统偏差,全局建模、OSC滤波和GLSW滤波,三种方法均能在一定程度上消除温度的影响。OSC和GLSW方法都可以作为一种有效的光谱前处理方法使用。相比而言,GLSW方法使用较少的隐含变量,在四个考察温度下均获得了最佳的预测结果,说明其温度校正能力优于OSC方法。采用磁性分子印迹分离结合近红外分析技术研究了制药厂污水中的磺胺抗生素的快速检测方法,探讨了使用这种方法定量检测复杂基质中的含量较低的有机物的可行性。制备了磁性分子印迹材料,且材料对磺胺类药物有很好的选择吸附性。利用这种材料在设计实现的自动制样装置上把制药废水中磺胺类药物残留快速分离、转移到了单一的基质-乙腈中,然后采用短波近红外光谱法和傅里叶变换长波近红外光谱法分别进行了分析。结论证明了这种新型自动检测方法的可行性。长波近红外光谱分析获得了更为满意的结果,说明分子印迹分离方法与近红外检测技术结合,可以弥补近红外技术检测限高、分辨性差的的缺点,为复杂基质中检测物的近红外分析提供了一条新的途径。本论文针低含量物质、外部变量作用和复杂基质下目标物质检测的关键问题,在仪器技术、建模方法方面的研究为复杂条件下应用短波近红外技术提供了参考,拓展了这一低成本快速检测技术的应用范围。
Near infrared spectroscopy (NIR) is a fast and non-destructive analytical method forqualitative and quantitative analysis. It has been widely used in petroleum,agriculture and pharmaceutical industry et al. The NIR technology is quitecomplicated, which involves optical sensing technology, computer technology andchemometric methods. Recently the short-wave NIR (SW-NIR,780-1100nm)technology has drawn researchers’ attention, due to the significantly low cost. TheSW-NIR, which originates from the2or3overtone of molecular vibration, cantransfer more deeply into the sample with less heat effect. Moreover, theinterference from intense water absorbance can be diminished. Instrumentationworking on this region is a sort of important process analytical technology, which isof low cost, compact and fast scanning. However, improvement is still need in termsof instrumentation and application technology in order to meet the new demands.Firstly, to determine the low content analyte, the signal-to–noise ratio of SW-NIRinstruments need to be further improved. Secondly, the electrics in the instrumentsneed to be designed more flexible and smarter. A more flexible electronic circuitwhich can drive more than one kind of light sensor should be helpful to reduce thecost. And a smarter instrument which can regulate the parameters automatically isuseful for the long-term stability and consistent of the SW-NIR spectra. Since theSW-NIR spectra are originated from the over tone of molecular vibration, the spectraare quite overlapped and complicated. Thus, the extreme application conditionsoften lead to the shift, rotation of the spectra which lead to more complicatedanalysis of the spectra. The extreme conditions include low content analyte,influence of external variable and complicated analytical matrix et al. Therefore, theapplication field of SW-NIR is limited and need to be expended by simultaneouslyusing other technologies.
     In this dissertation research was done in terms of the SW-NIR instrumentaltechnology, multivariable calibration methods and new applications. The objective was to use this low-cost technology in complicated conditions and new applicationfields. And this was achieved through development in the instrumentation andcalibration method as well as the applying some new extraction technology. A newmultichannel SW-NIR spectrometer was designed by using the charge-coupled device(CCD) as the detector. A signal-to-noise ratio of500:1in the whole wavelength regionwas achieved by the compound light source design and using the self-adaptive lightintense regulation strategy. The light source was designed using a halogen lampenhanced by two single wavelength light emitting diodes centered at920nm and1020nm respectively. The electronic circuit designed can drive two different CCDs,which need only change the program in the microcontroller. This electronic circuitwas quite flexible and can be used for different demands with a very low cost. Themultivariate detection limit (MDL) was calculated and the relation between MDL andpartial least squares (PLS) calibration was researched to find a calibration strategy fordetermination of low analyte using the SW-NIR technology. This was done by analysisof the glucose injection using the designed SW-NIR spectrometer. PLS models werebuilt in different concentration ranges. It was found that a narrow concentrationrange which included the concentration of target analyte should be selected in orderto obtain a lower MDL. This conclusion was further proved by determining thesulfonamides additives in pig feed using FT-NIR spectroscopy. Furthermore, it wasfound that the optimal calibration sample number can be determined by comparingthe MDL. The influence of external variable can be diminished by appropriatecalibration methods. And this was approved by determining the alcohol content inaqueous solution at different temperature using the SW-NIR spectra. A significantsystematic error was found when using the direct transfer method which indicated atemperature correction was necessary. For this purpose, global modeling, orthogonalsignal correction (OSC) and generalized least squares weighting (GLSW) were utilizedand compared. It was found that all the three methods can reduce the temperatureinfluence. But the OSC and GLSW methods used less calibration samples that theglobal modeling and could be used as spectra pretreatment. The GLSW method provided the best predictions at all the four temperatures requiring less latentvariables. Thus, the GLSW method was superior to the OSC method. The possibilityof using the SW-NIR method to analyze the target analyte in complicated matrix wasapproved by determining sulfonamides in the pharmaceutical wastewater incombination with magnetic molecular imprinted polymers (MMIP). The MMIP wassynthesized and had good selective adsorption ability towards sulfonamides andstructurally related molecular. By using this MMIP with a designed auto-samplingdevice, sulfonamides in complicated matrix, wastewater, were separated andtransferred to a simple matrix-acetonitrile. Then the extractions were analyzed byusing the FT-NIR and SW-NIR spectroscopy. The SW-NIR did not provide goodpredictions due to the weak absorbance. However, good results were obtained byusing the FT-NIR spectroscopy, which approved the possibility of using this newapproach to fast determine the sulfonamides in pharmaceutical wastewater. Theweakness of NIR spectroscopy, such as relatively high detection limit and poorresolution, can be avoided by simultaneously using the MMIP technology. Theconclusions made in the research of the current dissertation are useful and helpfulfor using the SW-NIR technology in complicated conditions. And by using MMIPtechnology, the application field of SW-NIR was further expended.
引文
[1] Burns D A, Ciurczak E W. Handbook of Near-Infrared Analysis [M]. NewYork:MareelDekker INC,2001.
    [2]严衍禄.近红外光谱分析基础与应用[M].北京:轻工业出版社,2005.
    [3] Samuels A C, Zhu C J, Willianis B R, et al. Improving the linearity of infrareddiffuse reflection spectroscopy data for quantitative analysis: an application inquantifying organophosphorus contamination in soil [J]. Anal. Chem.,2006,78(2):408–415.
    [4] Griffiths P R. Letter: practical consequence of math pre-treatment of nearinfrared reflectance data: log(1/R) vs F(R)[J]. J. Near Infrared Spectroc.,1995,3:60-62.
    [5]陈星旦,张军,朴仁官,等,快速粮食成份光电分析仪研制开发[R],2004.
    [6]吕进,施秧,刘辉军.基于NIR的茶叶成分检测仪的设计与实现[J].光电工程.2010,37(1):82-87.
    [7]张哗晖,劳彩莲,吉海彦.近红外玉米品质分析仪的研制与应用[J].现代仪器.20015:11-13.
    [8]郑毅,骆清铭,刘谦,等.适于脑功能活动检测的便携式近红外光谱仪的研制[J].中国生物医学工程学报[J].2007,26(6):898-902.
    [9]闻明,吉海彦.基于LED的便携式近红外整粒小麦成分测量仪的研制[J].光谱学与光谱分析.2004,24(10):1276–1279.
    [10] Malinen J et al. LED-based NIR spectrometer module for hand-held and processanalyzer applications [J]. Sensors and Actuators B.1998,51:220–224.
    [11]王智宏,林君,武子玉,等.便携式矿物近红外光谱仪器的研制[J].仪器仪表学报.2005,26(11):1135-1154.
    [12]施嫚嫚.小型快速扫描近红外分光光度计的研制[D].上海交通大学,2011.
    [13]袁洪福,褚小立,陆婉珍,等.一种新型在线近红外光谱分析仪的研制[J].分析化学.2004,32(2):255-261.
    [14]赵才荣,瞿芳,王增林.一种便携式光谱仪的设计[J].仪表技术.2007,7:27-29.
    [15] Jiang L, Chen H, Cai B. Development of A Portable NIR Rice Wine Analyzer [J].Chinese Optics Letters.2011,6, S10706.
    [16]向贤毅,温志渝,龙再川,等.微型近红外光谱仪分析系统的研制[J].光谱学与光谱分析.2009,29(8):2286-2290.
    [17]王增林,李宝华,王威.基于ILX511的光谱数据采集系统[J].仪器仪表用户.2005,12(6):57-58.
    [18] Kawamura S, Kawasaki M, Morita S. On-line Near-infrared Spectroscopic SensingTechniques for Assessing Milk Quality in Automatic Milking Systems [C]. Canada:2004ASAE/CSAE Annual International Meeting Sponsored by ASAE/CSAEFairmont Chateau Laurier,2004.
    [19] Kawasaki M, Kawamura S, Tsukahara M. Near-infrared spectroscopic sensingsystem for on-line milk quality assessment in a milking robot [J]. Computers AndElectronics In Agriculture.2008,63:22–27.
    [20]张波,温志渝.微型光纤光谱仪的研制及性能测试[J].半导体光电.2007,28(1):147-149.
    [21]王晗,李水峰,刘秀英.微型光谱仪光学结构研究[J].应用光学.2008,29(2):230-233.
    [22]肖立峰,胡鸿璋,张梅,等.一种基于集成光学声光可调谐滤波器的近红外光谱仪[J].中国激光.2004,31(3):269-272.
    [23]常敏,张学典,李朝阳,等.近红外成分含量分析仪的研制[J].现代仪器.2004,3:40-42.
    [24]毕卫红,唐予军,杨小莉,等.基于AOTF的便携式近红外光谱测量仪[J].半导体光电.2005,26(3):264-266.
    [25]张辉.基于AOTF技术的近红外光谱分析系统的研制[D].北京:中国农业机械化科学研究,2005.
    [26]张知廉,郑平,何文琪,等.可见一近红外傅里叶变换光谱仪[J].分析测试通报.1988,7(4):12-15.
    [27]武惠忠,王百华,高学军.国产傅里叶变换近红外光谱仪研制动向[J].现代仪器.20015:11.
    [28]刘佳,陈奋飞,廖乘胜,等.基于数字微镜技术的阿达玛变换近红外光谱仪[J].光谱学与光谱分析.2011,31(10):2874-2878.
    [29]张智海,莫祥霞,郭媛君,等.微型MOEMS阿达玛变换近红外光谱仪[J].光谱学与光谱分析.2011,31(7):1975-1979.
    [30]王复兴.一种新型在线分析仪器-可调谐二极管激光光谱分析器[J].分析仪器.2007,2:60-63.
    [31]黄伟,高晓明,张为俊,等.高分辨率高灵敏度可调谐近红外二极管激光光谱探测[J].光学与光电技术.2004,2(3):5-8.
    [32]齐晓,韩建国,李曼莉.近红外光谱分析仪器的发展概况[J].光谱学与光谱分析.2007,27(10):2022–2026.
    [33]吉海彦.近红外光谱仪器技术[J].现代科学仪器.2001,6:25-28.
    [34]徐广通,袁洪福,陆婉珍.近红外光谱仪器概况与进展[J].现代科学仪器.1997,3:9-11.
    [35]田地,金钦汉.近红外光谱仪器[J].分析仪器.2010,3:39-42.
    [36]唐宏武,周锦松,李涛,等.阿达玛变换光谱和成像技术的应用和研究进展[J].分析化学.2005,33(3):417-422.
    [37] Workman J J. Handbook of Near Infrared Analysis. New York: Marcel Dekker, inc.,1992.
    [38] Zuo X, Zhao J, Malcolm J, Povey W, et al. Variables Selection Methods InNear-Infrared Spectroscopy [J]. Analytica Chimica Acta.2010,667:14–32.
    [39] Harrel jr F E, Lee K L, Make D B. Multivariable Prognostie models: Issues indeveloping Models evaluating assumptions and adequacy and measuring andredueing errors [J]. Stat. Med.1996,15:361-87.
    [40] Fearn T, Chalmers J M, Griffths P R. Handbook of Vibrational Spectroscopy [J].2002,3:2086–2093.
    [41] Martens H, Naes T. Multivariate Calibration [M]. Chichester, UK: Wiley,1989.
    [42] Jouan-Rimbaud D, Walczak B, Massart D L, et al. Comparison of multivariatemethods based on latent vectors and methods based on wavelength selectionfor the analysis of near-infrared spectroscopic data [J]. Anal. Chim. Acta.1995,304:285.
    [43]张德丰. MATLAB神经网络应用设计[M].北京:机械工业出版社,2009.
    [44] Curry B, Rumelhat D E. MSnet: A neural network that classifies mass spectra.Tetrahedron. Computer Methodology [J],1990,3:213–238.
    [45] Vapnik V N. The nature of statistical learning theory [M]. NY: Springer,1995.
    [46]张学工.关于统计学习理论与支持向量机[J].自动化学报.2000,26(1):32.
    [47]张录达,苏时光,王来生,等,支持向量机(SVM)在傅里叶变换近红外光谱分析中的应用研究[J].光谱学与光谱分析.2005,25(1):33-35.
    [48] Bittner A, Marbach R, Heise H M. Multivariate Calibration for Protein, Cholesteroland Triglycerides in Human Plasma Using Short-Wave Near InfraredSpectrometry [J]. J. Mol. Struct.1995,349:341.
    [49] Reeves J B III. Effects of water on the spectra of model compounds [J]. J. NearInfrared Spectrosc.1994,2:199-212.
    [50] Cavinato A G, Mayes D M, Ge Z et al. Noninvasive Method for MonitoringEthanol in Fermentation Processes Using Fiber-optic Near-Infrared Spectroscopy[J]. Anal. Chem.1990,62:1977-1982.
    [51] Bonnano A S, Griffiths P R. Short-wave near infrared spectra of organic liquids [J].J. Near Infrared Spectroc.1993,1:13-23.
    [52] Mayes D M, Callis J B. A Photodiode-Array-Based Near-InfraredSpectrophotometer for the600-1100nm Wavelength Region [J]. Appl Spectrosc.1989,43:27-32.
    [53] Gonzaga F B, Pasquini C. A low cost short wave near infrared spectrophotometer:Application for determination of quality parameters of diesel fue [J]. AnalyticaChimica Acta.2010,670:92–97.
    [54]邬云山,朴仁官,陈星旦.近红外分析仪[J].光学精密工程.1993,1(1):47-53.
    [55]谭爱民,徐金华,赵新那.短波近红外过程分析仪的研制与应用[J].分析试验室.1993,12(1):61-64.
    [56]刘国良,张涛,曹彦波,等,便携式短波近红外漫透射玉米成分快速分析仪的研制和应用[J].现代科学仪器.2006,6:37-39.
    [57] Kawamura S, Natsuga M, Takekura K, et al. Development of an automaticrice-quality inspection system [J]. Computers and Electronics in Agriculture.2003,40:115-126.
    [58] Gonzaga A B, Pasquini C. A low cost short wave near infrared spectrophotometer:Application for determination of quality parameters of diesel fuel [J]. AnalyticaChimica Acta2010,670:92–97.
    [59]袁洪福,岳俊奇,陆婉珍.近红外光谱快速测定喷气燃料的冰点[J].分析化学.1998,26(5):603-606.
    [60]许育鹏,袁洪福,陆婉珍.采用相关分析解析石油产品近红外光谱[J].现代仪器.2002,6:23-25.
    [61]徐广通,袁洪福,陆婉珍.近红外光谱快速测定柴油中的芳烃含量[J].分析化学.1999,27(1):29-33.
    [62] Amat-Toselloa S, Dupuyb N, Kisterb J. Contribution of external parameterorthogonalisation for calibration transfer in short waves—Near infraredspectroscopy application to gasoline quality [J]. Analytica Chimica Acta.2009,642:6-11.
    [63] Singh C B, Jayas D S, Paliwal J, et al. Detection of midge-damaged wheat kernelsusing short-wave near-infrared hyperspectral and digital colour imaging [J].Biosystems Engineering.2010,105:380–387.
    [64]王多加,周向阳,金同铭,等.近红外光谱检测技术在农业和食品分析上的应用[J].光谱学与光谱分析.2004,24(4):447-450.
    [65] Fernández-Novales J, López M, Sánchez M, et al. Shortwave-near infraredspectroscopy for determination of reducing sugar content during grape ripening,winemaking, and aging of white and red wines [J]. Food Research International.2009,42:285–291.
    [66] Herrera J, Guesalaga A, Agosin E. Shortwave–near infrared spectroscopy fornon-destructive determination of maturity of wine grapes [J]. Meas. Sci. Technol.2003,14:689–697.
    [67] Qu N, Li X, Dou Y, et al. Nondestructive quantitative analysis of erythromycinethylsuccinate powder drug via short-wave near-infrared spectroscopy combinedwith radial basis function neural networks [J]. European Journal ofPharmaceutical Sciences.2007,31:156–164.
    [68] Chen X, Wu D, He Y, et al. Nondestructive Differentiation of Panax Species UsingVisible and Shortwave Near-Infrared Spectroscopy [J]. Food Bioprocess Technol.2011,4:753–761.
    [69] a i S, Ozaki Y. Short-Wave Near-Infrared Spectroscopy of Biological Fluids.1.Quantitative Analysis of Fat, Protein, and Lactose in Raw Milk by PartialLeast-Squares Regression and Band Assignment [J]. Anal. Chem.2001,73:64-71.
    [70] Wu D, He Y, Feng S. Short-wave near-infrared spectroscopy analysis of majorcompounds in milk powder and wavelength assignment [J]. Analytica ChimicaActa.2008,610:232–242.
    [71] Shimoyama M, Morimotob S, Ozakic Y. Non-destructive analysis of the twosubspecies of African elephants, mammoth, hippopotamus, and sperm whaleivories by visible and short-wave near infrared spectroscopy and chemometrics[J]. Analyst.2004,129:559–563.
    [72] Liu F, He Y, Wang L. Comparison of calibrations for the determination of solublesolids content and pH of rice vinegars using visible and short-wave near infraredspectroscopy [J]. Analytica Chimica Acta.2008,610:196–204.
    [73]胡永光,李萍萍,母建华,等,基于可见-近红外光谱技术预测茶鲜叶全氮含量[J].光谱学与光谱分析.2008,128(112):2821-2825.
    [74] Swierenga H, Wülfert F, De Noord O E et al. Development of robust calibrationmodels in near infrared spectrometric applications [J]. Analytica Chimica Acta.2000,411(1-2):121–135.
    [75] Shenk J S, Westerhaus M O, Templeton W C. Calibration Transfer Between NearInfrared Reflectance Spectrometers [J]. Crop. Sci.1985,25(1):159-161.
    [76] Wang Y, Veltkamp D J, Kowalski B R. Multivariate instrument standardization [J].Anal.Chem.1991,63:2750-2756.
    [77] Bouveresse E, Massart D L. Standardisation of near-infrared spectrometricinstruments: A review [J]. Vibrational Spectroscopy.1996,11(1):3–15.
    [78]李庆波,张广军,徐可欣,等. DS算法在近红外光谱多元校正模型传递中的应用[J].光谱学与光谱分析.2007,127(15):873-876.
    [79]李鸿儒,柏文良,甘峰.对直接标准化算法的改进及其应用[J].分析测试学报.2011,30(5),549-552.
    [80]包鑫,戴连奎.一种简便的近红外光谱标准化方法[J].光谱学与光谱分析.2008,128(14):829-833.
    [81] Wülfert F, Kok Wt, De Noord O E. Correction of temperature-induced spectralvariation by continuous piecewise direct standardization [J]. Analytical Chemistry.2000,72(7):1639–1644.
    [82] Trygg J, Wold S. Orthogonal projection to latent stractures (O-PLS)[J]. J.Chemometrics.2002,16(3):119-128.
    [83] Roger J M, Chauchard F, Bellon-Maurel V. EPO-PLS external parameterorthogonalisation of PLS application to temperature-independent measurementof sugar content of intact fruits [J]. Chemometrics and Intelligent LaboratorySystems.2003,66(2):191-204.
    [84] Zeaiter M, Roger J M, Bellon-Maurel V. Dynamic orthogonal projection. A newmethod to maintain the on-line robustness of multivariate calibrations.Application to NIR-based monitoring of wine fermentations [J]. Chemometricsand Intelligent Laboratory Systems.2006,80(2):227-235.
    [85] Wold S, Antti H, Lindgren F, et al. Orthogonal signal correction of near-infraredspectra [J]. Chemometrics and Intelligent Laboratory Systems.1998,44:175–185.
    [86]Brown J M. Method for correcting spectral data for data due to the spectralmeasurement process itself and estimating unknown property and/orcomposition data of a sample using such method. USA: Patent5121337[P],Issued on June9,1992.
    [87] Martens H, H y M, Wise B M, et al. Pre-whitening of data bycovariance-weighted pre-processing [J]. Journal of Chemometrics.2003,17(3):153-165.
    [88] Marbach R. A new method for multivariate calibration [J]. Journal of nearinfrared spectroscopy.2005,13(5):241-254.
    [89] Swierenga H, Wülfert F, De Noord O E et al. Development of robust calibrationmodels in near infrared spectrometric applications [J]. Analytica Chimica Acta.2000,411(1-2):121–135.
    [90] Araújo M C U, Saldanha T C B, Galv o R K H, et al. The successive projectionsalgorithm for variable selection in spectroscopic multicomponent analysis [J].Chemometrics and Intelligent Laboratory Systems.2001,57:65–73.
    [91] V. Centner, D.-L. Massart, Analytical Chemistry68(1996)3851–3858.
    [92] Z. Xiaobo, Z. Jiewen, M. J. W. Povey, et al. Variables Selection Method InNear-infrared Spectroscopy, Anal. Chim. Acta667,14(2010).
    [93] Centner V, Massart D L, De Noord O E, et al. Elimination of uninformativevariables for multivariate calibration[J]. Analytica Chimica Acta.1994,286:135-153.
    [94]谭超,覃鑫,吴同.基于小波变换的近红外光谱校正转移研究[J].计算机与应用化学.2009,26(5):645-648.
    [95]褚小立,袁洪福,陆婉珍.一种消除在线多通道近红外分析仪各通道光谱差异的方法[J].分析化学.2005,6:745-750.
    [96]张燮主编.工业分析化学[M].北京:化学工业出版社,2003.
    [97]郝勇.近红外光谱微量分析方法研究[D].天津:南开大学,2009.
    [98]张妍,蔡文生,邵学广.近红外光谱与离子交换树脂吸附预富集结合测定低浓度氨基酸含量[C].第十届全国计算(机)化学学术会议,中国浙江杭州,2009.
    [99]黄子夏,陶卫,卫雪梅,等.在线富集近红外光谱法测定痕量重金属铅[J].华东理工大学学报(自然科学版).2009,35(1):91-94.
    [100]沈飞,闫战科,叶尊忠,等.近红外光谱分析技术在辛硫磷农药残留检应用[J].光谱学与光谱分析.2009,129(19):2421-2424.
    [101] Ocean Optics Inc. Product Catalog,2007.
    [1]蔡文贵,李永远,许振. CCD技术及应用[M].北京:电子工业出版社,1992.
    [2] Siesler H W, Ozaki Y, Kawata S, et al. Near-Infrared Spectroscopy: principles,instruments, applications [M]. Weinheim (Germany): WILEY-VCH Verlag GmbHD-69469,2002.
    [3] Alves J, Santos J L, Carvalho A et al. Fiber Bragg Sensor Interrogation SystemBased on a CCD Spectrometer [C]. Proceedings of IEEE,2:909–913,2003.
    [4]袁洪福,龙义成,徐广通,等.近红外光谱仪的研制[J].分析化学.1999,27(5):608-614.
    [5]袁洪福,褚小立,陆婉珍,等.一种新型在线近红外光谱分析仪的研制[J].分析化学.2004,32(2):255-261.
    [6]赵才荣,瞿芳,王增林.一种便携式光谱仪的设计[J].仪表技术.2007,7:27-29.
    [7]向贤毅,温志渝,龙再川,等.微型近红外光谱仪分析系统的研制[J].光谱学与光谱分析.2009,29(8):2286-2290.
    [8]王增林,李宝华,王威.基于ILX511的光谱数据采集系统[M].仪器仪表用户.2005,12(6):57-58.
    [9] Kawamura S, Kawasaki M, Morita S. On-line Near-infrared Spectroscopic SensingTechniques for Assessing Milk Quality in Automatic Milking Systems [C]. Canada:2004ASAE/CSAE Annual International Meeting Sponsored by ASAE/CSAEFairmont Chateau Laurier,2004.
    [10] Kawasaki M, Kawamura S, Tsukahara M. Near-infrared spectroscopic sensingsystem for on-line milk quality assessment in a milking robot [J]. Computers AndElectronics In Agriculture.2008,63:22–27.
    [11]张波,温志渝.微型光纤光谱仪的研制及性能测试[J].半导体光电.2007,28(1):147-149.
    [12]王晗,李水峰,刘秀英.微型光谱仪光学结构研究[J].应用光学.2008,29(2):230-233.
    [13] Deckert V, Kiefer W. Scanning Multichannel Technique for ImprovedSpectrochemical Measurements with a CCD Camera and its Application toRaman Spectroscopy [J]. Applied Spectroscopy.1992,46(2):322-328.
    [14]赵艳皎,唐敏学,吴建宏.一种提高光谱仪中线阵信噪比的方法[J].光电子技术与信息.2007,17(4):43-47.
    [15]杨经国,冉瑞江,杜定旭,等.取样平均法提高882多道探测器信噪比[J].光谱学与光谱分析.193,13(6):7-12.
    [16]陈鲤江,郭金生,杨经国.改善光源光谱特性提高光学多道分析器用于吸收光谱测量的信噪比[J].光谱学与光谱分析.1999,19(3):286-288.
    [17]王海涌,申功勋.线阵CCD视频输出信号傅里叶分析与滤波参数设计[J].仪表技术与传感器.2003,11:38-40.
    [18]许秀贞,李自田,薛利军. CCD噪声及处理技术[J].红外与激光程.2004,4:343–347.
    [19] TOSHIBA, CCD linear image sensor TCD1209D [J/OL]. Japan.
    [20] SONY,2048-pixels CCD linear image sensor (B/W) ILX511[J/OL]. Japan.
    [21] Kodak. CCD Primer: Charge-Coupled Device (CCD) Image Sensors,#Kcp-001[J/OL]. Eastman Kodak Company,2010.
    [22]张智辉,田地,杨义先.线阵CCD驱动电路设计的几种方法[J].仪表技术与传感器.2004,6:32-34.
    [23]杨博雄,胡新和,傅辉清. CCD工作信号的噪声分析与处理[J].光学与光电技术.2004,2(4):51-53.
    [24]张健,张伯珩,边川平,等. CCD信号处理的滤波器设计[J].航天返回与遥感.2006,27(4):49-52.
    [25]陆婉珍.现代近红外光谱分析技术[M].北京:中国石化出版社,2006.
    [26]严衍禄.近红外光谱分析基础与应用[M].北京:中国轻工业出版社,2005.
    [27]田高友,褚小立,袁洪福,陆婉珍.近红外光谱仪器主要技术指标与评价方法概述[J].现代科学仪.2005,4:17-20.
    [1] Jouan-Rimbaud D, Walczak B, Massart D L, et al. Comparison of multivariatemethods based on latent vectors and methods based on wavelength selectionfor the analysis of near-infrared spectroscopic data [J]. Anal. Chim. Acta.1995,304:285.
    [2]史永刚,粟斌等.化学计量学方法及MATLAB实现[M].北京:中国石化出版社,2010.
    [3] Wentzell P D, Vega-Montoto L. Comparison of Principal Components Regressionand Partial Least Squares Regression Through Generic Simulations of ComplexMixtures [J]. Chemom. Intell. Lab. Syst.2003,65:257.
    [4] Xiaobo Z, Jiewen Z, Povey M J W, et al. Variables Selection Method InNear-infrared Spectroscopy [J]. Anal. Chim. Acta.2010,667:14.
    [5] Wold H. Path models with latent variables: The NIPALS approach [M].Quantitative Sociology: International perspectives on mathematical andstatistical model building, pages307–357. Academic Press,1975.
    [6] Wold S, Martens H, Wold H. The multivariate calibration problem in chemistrysolved by the PLS method. In Lecture Notes in Mathematics [J]. Springer Verlag:Heidelberg,1982.
    [7]吴晓华,陈德钊.化学计量学非线性偏最小二乘算法进展评述[J].分析化学.2004,32(4):534-540.
    [8] Andersson M. A comparison of nine PLS1algorithms [J]. J. Chemometrics.2009,23:518-529.
    [9] Currie L A. IUPAC Commission on analytical nomenclature [J]. Pure Appl. Chem.1995,67:1699-1723.
    [10] Lorber A. Error propagation and figures of merit for quantification by solvingmatrix equations [J]. Anal. Chem.1986,58:1167-1172.
    [11] Bauer G, Wegscheider W, Ortner H M. Limits of detection in multivariatecalibration [J]. Fresenius J. Anal.Chem.1991,340:135-139.
    [12] Faber K, Kowalski B R. Improved estimation of the limit of detection inmultivariate calibration [J]. Fresenius. J. Anal. Chem.1997,357:789-795.
    [13] Boqué R, Faber N M, Rius F X. Detection limits in classical multivariate calibrationmodels [J]. Anal.Chim.Acta.2000,423:41.
    [14] Sz yk E, Szyd owska-Czerniak A, Kowalczyk-Marze A. NIR Spectroscopy and PartialLeast-Squares Regression for Determination of Natural-Tocopherol in VegetableOils [J]. J. Agric. Food Chem.2005,53:69806987.
    [15] Blanco M, Castillo M, Peinado A et al. Determination of low analyteconcentrations by near-infrared spectroscopy: effect of spectral pretreatmentsand estimation of multivariate detection limits [J]. Anal.Chim.Acta.2007,318:581.
    [16] Li H, Van de Voort F R, Ismail A A, Coxb R. Determination of Peroxide Value byFourier Transform Near-Infrared Spectroscopy [J]. Journal of the American OilChemists' Society.2000,77(2):137-142.
    [17] Armenta S, Garrigues S, De la Guardia M. Determination of edible oil parametersby near infrared spectrometry [J]. Anal.Chim.Acta.2007,596:330.
    [18] AlcalàM, León J, Ropero J, et al. Analysis of Low Content Drug Tablets bytransmission near infrared spectroscopy: selection of calibration rangesaccording to multivariate detection and quantitation limit of PLS models [J]. J.Pharm. Sci.2008,97:5318.
    [19] De Jong S. SIMPLS: an alternative approach to partial least squaresregression [J].Chemom. Intell. Lab. Syst.1993,18:251-263.
    [20] Currie L A. Nomenclature in evaluation of analytical methods including detectionand quantification capabilities [J]. Pure Appl. Chem.1995,67:1699.
    [21] R. Boqué and F. X. Rius, Multivariate detection limits estimators [J] Chemom.Intell. Lab. Syst.32,11(1996).
    [22] K. S. Booksh and B. R. Kowalski, Theory of analytical chemistry [J] Anal. Chem.66,782A (1994).
    [23] P. Valderrama, J. W. B. Braga and R. J. Poppi. Variable selection, outlier detection,and figures of merit estimation in a partial least-squares regression multivariatecalibration model: A case study for the determination of quality parameters inthe alcohol industry by Near-infrared spectroscopy [J]. J. Agric. Food. Chem.55,8331(2007).
    [24] R. Boqué, N. M. Faber and F. X. Rius. Detection limits in classical multivariatecalibration models [J]. Anal.Chim.Acta423,41(2000).
    [25] C. A. Clayton, J. W. Hines and P. D. Elkins. Detection Limits with SpecifiedAssurance Probabilities [J]. Anal.Chem.59,2506(1987).
    [26] H. Van der Voet. Pseudo-degrees of freedom for complex predictive models: theexample of partial least squares [J]. J. Chemom.13,195(1999).
    [27] W. D. Keizer, M. E Bienenmann-Ploum, A. A. Bergwerff and W. Haasnoot. Flowcytometric immunoassay for sulfonamides in raw milk [J]. Anal.Chim.Acta620,142(2008).
    [28] L. G. Biehl, R. F. Bevill, M. Limpoka and G. D. Koritz. Sulfamethazine residues inswine [J]. J. Vet. Pharmacol. Therap.4,285(1981).
    [29] R. E Alcock, A. Sweetman and K. C. Jones. Assessment of organic contaminantfate in wastewater treatment plants I. Selected compounds and physiochemicalproperties [J]. Chemosphere38,2247(1999).
    [30] E. R. Campagnolo, K. R. Johnson, A. Karpati,et al. Antimicrobial residues inanimalwaste and water resources proximal to large-scale swine and poultryfeeding operations [J]. Sci. Total Environ.299,89(2002).
    [31] G. Hamscher, S. Sczesny, H. H per and H. Nau. Determination of persistenttetracycline residues in soil fertilised with liquid manure by high-performanceliquid chromatography with electrospray ionization tandem mass spectrometry[J]. Anal. Chem.74,1509(2002).
    [32] R. L. Smallidge, K. Albert, N. L Britton,et al. Determination of sulfamethazine inswine and cattle feed by reversed-phase liquid chromatography withpost-column derivatization [J]. Collaborative study. J. AOAC Int.83,260(2000).
    [33] S. Borras, R. Companyo and J. Guiteras. Analysis of Sulfonamides in Animal Feedsby Liquid Chromatography with Fluorescence Detection [J]. J. Agric. Food Chem.59,5240(2011).
    [34] L. Wang, H. Yang, C. Zhang, Y. Mo and X. Lu. Determination of oxytetracycline,tetracycline and chloramphenicol antibiotics in animal feeds using subcriticalwater extraction and high performance liquid chromatography [J].Anal.Chim.Acta619,54(2008).
    [35] R. Injac, A. Mlinaric, V. Djorjevic-Milic, K. Karljikovic-Rajic and B.Strukel. Optimalconditions for determination of zinc bacitracin, polymyxin B, oxytetracycline andsulfacetamide in animal feed by micellar electrokinetic capillary chromatography[J]. Food Addit. Contam.25,424(2008).
    [36] L. Kantiani, M. Farr, J. M. Freixiedas and D. Barcel. Development and validation ofa pressurised liquid extraction liquid chromatography-electrospray-tandem massspectrometry method for β-lactams and sulfonamides in animal feed [J]. J.Chromatogr. A1217,4247(2010).
    [37] C. Cháfer-Pericás, á. Maquieira, R. Puchades and J. Miralles. Multiresiduedetermination of antibiotics in feed and fsh samples for food safety evaluation.Comparison of immunoassay vs LC-MS-MS. Food Control [J]. A. Moreno. FoodControl.22,993(2011).
    [38] V. Jimenez, J. Adrian, J. Guiteras, M. P. Marco and R. Company. Validation of anenzyme-linked immunosorbent assay for detecting sulfonamides in feedresources [J]. J. Agric. Food. Chem.58,7526(2010).
    [39] G. Socrates. Infrared and Raman characteristic Group Frequencies: Tables andCharts [M]. England: John Wiley&Sons Ltd,2001.
    [1]王贞佐,逯家辉,郭伟良,等.短波近红外光谱-偏最小二乘法测定白酒中乙醇含量[J].分析检测.2005,26(11):163-165.
    [2]李继光,张根生,毛迪锐.近红外分光光度法在白酒检测中的应用[J],食品与机械,2004,20(1):22-37.
    [3]王友兵.短波近红外光谱法分析酒中乙醇含量初探[C].吉林省第三届科学技术学术年会,吉林.521-523.
    [4] Yu H Y, Niu X Y, Ying Y B, Pan X X. Use of visible and short-wavelengthnear-infrared spectroscopy and least-squares support vector machines fornon-destructive rice wine quality determination [J]. Transactions of theabase,2011,54(1):265-271.
    [5]武娟,杜振辉,刘瑾,徐可欣.短波近红外光谱在现场安检中的应用研究[J].光谱学与光谱分析,2008,28(9):2087-2089.
    [6] Maretto D A, Mello C, Poppi R J. Least-squares support vector machines tocorrect temperature-induced spectral variation in multivariate calibration [J].Journal of Near Infrared Spectroscopy.2008,16(3):249-255.
    [7] Barboza F D, Poppi R J. Determination of alcohol content in beverages usingshort-wave near-infrared spectroscopy and temperature correction by transfercalibration procedures [J]. Analytical and Bioanalytical Chemistry.2003,377(4):695-701.
    [8] Wülfert F, Wim T K, Smilde A K. Influence of Temperature on Vibrational Spectraand Consequences for the Predictive Ability of Multivariate Models [J]. AnalyticalChemistry.1998,70(9):1761-1767.
    [9] Libnau F O, Kvalheim O M, Christy A A, Toft J. Spectra of water in the near-andmid-infrared region [J]. Vibrational Spectrosc.1994,7:243-254.
    [10] Paquette J, Jolicoeur C. A near-infrared study of the hydration of various ions andnonelectrolytes [J]. J. Solution Chem.1977,6:403-428.
    [11] Maeda H, Wang Y, Ozaki Y, et al. A near-infrared study of hydrogen bonds inalcohols-comparison of chemometrics and spectroscopic analysis [J]. ChemomIntell Lab Systems.1999,45:121-130.
    [12] Czarnecki M A, Maeda H, Ozaki Y, et al. Resolution enhancement and bandassignments for the first overtone of OH stretching modes of butanols bytwo-dimensional near-infrared correlation spectroscopy2. Thermal dynamics ofhydrogen bonding in n-and tert-butyl alcohol in the pure liquid states [J]. J. PhysChem.1998,102:9117-9123.
    [13] Czarnecki M A, Maeda H, Ozaki Y, et al. Resolution enhancement and bandassignments for the first overtone of OH stretching mode of butanols bytwo-dimensional near-infrared correlation spectroscopy. Part I: sec-butanol [J].Appl Spectrosc.1998,52:994-1000.
    [14] Bouveresse E, Massart D L. Standardisation of near-infrared spectrometricinstruments: A review [J]. Vibrational Spectroscopy,1996,11(1):3-15.
    [15] Chen D, Hu B, Shao X, Su Q. Removal of major interference sources in aqueousnear-infrared spectroscopy techniques [J]. Analytical and Bioanalytical Chemistry.2004,379(1):143-148.S
    [16] Zeaiter M, Roger J M, Bellon-Maurel V. Dynamic orthogonal projection. A newmethod to maintain the on-line robustness of multivariate calibrations.Application to NIR-based monitoring of wine fermentations [J]. Chemometricsand Intelligent Laboratory Systems.2006,80(2):227-235.
    [17] Martens H, H y M, Wise B M, et al. Pre-whitening of data bycovariance-weighted pre-processing [J]. Journal of Chemometrics.2003,17(3):153-165.
    [18] Swierenga H, Wülfert F, De Noord O E, et al. Development of robust calibrationmodels in near infrared spectrometric applications [J]. Analytica Chimica Acta.2000,411(1-2):121-135.
    [19] Wise B M, Shaver J M, Gallagher N B. Using Clutter to Improve PatternRecognition, Calibration and Classification Models [C] Application ofMultivariable Analysis and Chemometry to Cultural Heritage and Environment3rded., Taormina, Sicily island, Italy, Europe,26-29September,2010.
    [20] Wülfert F, Kok W T, Smilde A K. Influence of Temperature on Vibrational Spectraand Consequences for the Predictive Ability of Multivariate Models [J]. AnalyticalChemistry.1998,70(9):1761-1767.
    [21] Wülfert F, Kok W T, De Noord O E, Smilde A K. Correction of temperature-inducedspectral variation by continuous piecewise direct standardization [J]. AnalyticalChemistry.2000,72(7):1639-1644.
    [22] Shao X, Kang J, Cai W. Quantitative determination by temperature dependentnear-infrared spectra [J]. Talanta.2010,82:1017-1021.
    [23] Savitzky A, Golay M J E. Smoothing and Differentiation of Data by SimplifiedLeast Squares Procedures [J]. Analytical Chemistry.1964,36(8):1627-1639.
    [24] Wold S, Antti H, Lindgren F, et al. Orthogonal signal correction of near-infraredspectra [J]. Chemometrics and Intelligent Laboratory Systems.1998,44:175-185.
    [25] Sjoblom J, Svensson O, Josefson M, et al. An evaluation of orthogonal signalcorrection applied to calibration transfer of near infrared spectra [J].Chemometrics and Intelligent Laboratory Systems.1998,44:229-244.
    [26] Wise B M, Gallagher N B. PLS_Toolbox Version4.0for use with MATLAB [M].Eigenvector Research, Inc.,3905West Eaglerock Drive, Wenatchee, WA98801,USA.
    [1]北京水环境技术与设备研究中心,北京市环境保护科学研究院,国家城市环境污染控制工程技术研究中心.三废处理工程技术手册(废水卷)[M].北京:化学工业出版社,2000.
    [2] Metcalf, Eddy Inc. Wastewater Engineering: Treatment and Reuse [M]. NewYork: McGraw-Hill Inc,2004.
    [3]曾丽璇,张秋云,刘佩红,吴涛.抗生素制药废水处理技术进展[J].安全与环境工程.2005,12(4):61-64.
    [4]饶义平.复合絮凝处理抗生素废水对其抑菌效力的影响[J].上海环境科学.1996,15(8):37-39.
    [5]陈曦.含CM, TMP及SMZ的化学合成制药废水研究[J].江苏环境科技.2007,20(4):1-3.
    [6]胡升荣,陈曦.含SD和KP化学合成制药废水的酸析预处理研究[J].重庆师范大学学报(自然科学版).2009,26(3):91-93.
    [7]黄胜炎.化学合成制药废水综合治理可行性分析[J].医药工程设计杂志.2005,26(5):49-51.
    [8]何金成,杨祥龙,王立人,等.近红外光谱法测定废水化学需氧量[J].浙江大学学报(工学版).2007,41(5):752-755.
    [9] Stephens A B, Walker P N. Near–Infrared Spectroscopy As A Tool ForReal–Time Determination of BOD5For Single–Source Samples [J]. Am. Soc.Agric. Eng.2002,45:451–458.
    [10]何金成,杨祥龙,王立人,等,基于近红外光谱法的废水COD、BOD5、pH的快速测量[J].环境科学学报.2007,27(12):2105-2108.
    [11] Zhao X, Yang K, Huang S C. A new method to rapidly determine quality ofwaste water [J]. Intell. Autom. Soft Co.2010,16:1157-1166.
    [12] Pascoa R N M, Lopes J A, Lima J L F C. In situ near infrared monitoring ofactivated dairy sludge wastewater treatment processes [J]. J. Near InfraredSpec.2008,16:409-419.
    [13] Sarragu a M C, Paulo A, Alves M M, et al. Quantitative monitoring of anactivated sludge reactor using on-line UV-visible and near-infraredspectroscopy [J]. Anal. Bioanal. Chem.,2009,395:1159–1166.
    [14] Zhang M L, Sheng G P, Yu H Q. Near-infrared spectroscopy-basedquantification of substrate and aqueous products in wastewater anaerobicfermentation processes [J]. Chin. Sci. Bull.2009,54:1918-1922.
    [15] Kawai S, Kohda J, Nakano Y, et al. Predicting methanol and glycerolconcentrations in microbial treated wastewater discharged from a biodieselfuel production process using near infrared spectroscopy [J]. J. Near InfraredSpec.2009,17:51-58.
    [16] Suehara K, Owari K, Kohda J, et al. Rapid and simple determination ofoil and urea concentrations and solids content to monitor biodegradationconditions of wastewater discharged from a biodiesel fuel production plant[J]. J. Near Infrared Spec.,2007,15:89-96.
    [17] Reich G. Near-infrared spectroscopy and imaging: Basic principles andpharmaceutical applications [J]. Adv. Drug Delivery Rev.,2005,57:1109–1143.
    [18] Balakrishnan V K, Terry K A, Toito J. Determination of sulfonamide antibioticsin wastewater: A comparison of solid phase microextraction and solid phaseextraction methods [J]. J. Chromatogr. A.2006,1131:1–10.
    [19] Malintan N T, Mohd M A. Determination of sulfonamides in selectedMalaysian swine wastewater by high-performance liquid chromatography [J].J. Chromatogr. A.2006,1127:154–160.
    [20] Shao B, Chen D, Zhang J, et al. Determination of76pharmaceutical drugsby liquid chromatography–tandem mass spectrometry in slaughterhousewastewater [J]. J. Chromatogr. A.2009,1216:8312–8318.
    [21] Langford K H, Thomas K V. Determination of pharmaceutical compounds inhospital effuents and their contribution to wastewater treatment works [J].Environ. Int.,2009,35:766–770.
    [22]朱国念.农药残留快速检测技术[M].北京:化学工业出版社,2008.
    [23] Francesco P, Carmelo G, Francesca I, et al. Molecularly imprinted solid phaseextraction for detection of Sudan I in food matrices [J]. Food Chem.2005,93:349-353.
    [24] Christina S, Hans M. Synthesis of a molecularly imprinted polymer for theselective solid-phase extraction of chloramphenicol from honey [J]. J.Chromatogr. A.2006,1132:325-328.
    [25] Siemann M, Anderson L I, Mosbach K. Selective recognition of theherbicide atrazine by noncovalent molecularly imprinted polymers [J]. J. Agric.Food Chem.,1996,44:141-145.
    [26] Chen L, Zhang X, Sun L, et al. Fast and Selective Extraction of Sulfonamidesfrom Honey Based on Magnetic Molecularly Imprinted Polymer [J]. J. AgricFood Chem.2009,57:10073–10080.
    [27] Nomura A, Shin S, Mehdi O O, et al. Preparation, Characterization, andApplication of an Enzyme-Immobilized Magnetic Microreactor for FlowInjection Analysis [J]. Anal. Chem.2004,76:5498-5502.
    [28] Deng Y, Deng C, Yang D, et al. Preparation, characterization and applicationof magnetic silica nanoparticle functionalized multi-walled carbon nanotubes[J] Chem. Commun.2005,5548–5550.
    [29] Deng Y, Wang C, Shen X, et al. Preparation, characterization, andapplication of multistimuli-responsive microspheres withfluorescence-labeled magnetic cores and thermoresponsive shells [J]. Chem.Eur. J.2005,11:6006-6013.
    [30] BílkováZ, SlovákováM, Lyka A, et al. Oriented immobilization of galactoseoxidase to bead and magnetic bead cellulose and poly (HEMA-co-EDMA) andmagnetic poly(HEMA-co-EDMA) microspheres [J]. J. Chromatogr. B.2002,770:25-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700