振荡压路机压实动力学及压实过程控制关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
振荡压路机是用一种新的思路和技术来实现振动压实工艺的路面压实机械。它利用激发被压材料颗粒发生水平振动,从而可以如垂直振动压实一样来削弱被压实材料颗粒之间的联系,使之重新排列而变得更加密实。
     在确立的振荡轮与被压实材料相互作用的动力学模型基础上,进行了参数动态识别确定和振荡压路机样机的现场试验。测试了振荡压实样机的幅频特性;对国内外振荡与振动两种压路机对压实效果的影响进行了对比试验研究。在大量现场试验的基础上,分析了影响振荡压实度的主要工作参数;提出了评价路面压实质量的优化标准,建立了比压实功的优化控制模型和在能量平衡基础上的压实过程智能控制的目标函数。通过对国内外现有压路机智能压实控制策略的分析,以崭新的思路提出了基于能量平衡基础上的以单位体积压实材料所吸收的压实功最大且整个压实过程所用时间最短为目标的振荡压实自动化和智能化压实控制的新的控制策略,并指明了其技术实现的方法和途径。
     在上述研究基础上,得出了如下结论:
     1、对影响振动和振荡压路机压实效果的主要工作参数:振幅、频率、碾压速度和碾压遍数所进行的大量现场试验研究表明,对压实效果和压实质量的评价不仅要看铺层的平均压实度,而且还要看压实度的均匀性。因此,希望获得良好的压实质量不仅要防止压实不足,而且还要防止出现过度压实的问题。
     2、在上述研究成果的基础上提出了评价路面压实质量的优化标准,即在整个压实过程中应使施加给铺层的振动能量与混合料吸收有效压实功的能力保持平衡,以保证铺层既不会出现压实不足又不致造成过度压实。这一结论为进一步建立压实过程智能化控制的优化目标提供了依据。
     3、在不同激振能量(不同的名义振幅和激振频率)和不同的碾压遍数(不同的刚度和阻尼)下对振荡轮与热沥青混合料相互作用的振幅—频率特性与密度—频率特性所进行的大量试验研究与对比分析得出了一系列对制订智能化压实过程的优化控制策略具有重要指导意义的结果。它们包括:
     (1)不论对于不同的名义振幅还是不同的压实遍数,在幅频特性和密度频率特性之间都有着良好的相关关系,亦即二条特性曲线上与最大振幅和最大密度对应的频率是相同的,而二条曲线的走势则是相似的。这表明利用幅频特性来预测压实度随频率而变化的关系是可行的。
     (2)在不同的激振振幅和不同压实遍数下的试验结果都显示了与最大实际振幅和最大压实度对应的最佳激振频率的变化范围是很小的(27 Hz~31 Hz),这一结果为在实际压实过程中搜索最佳频率指出了方向(缩小了搜索的范围和加强了针对性)。
     (3)计算机仿真的幅频特性和实际测定的幅频特性都显示了在小于最大振幅频率的一方,幅频特性有一急剧下降的低谷,而在大于这一频率的一方,频率的增加对振幅的影响要平缓得多,这表明最佳频率的选择应稍大于最大振幅的频率,以免由于偶然的因素而导致滑入低谷。这一结果为确定优化控制中设置频率的初始值提供了依据。
     4、在一个碾压遍数内,影响铺层压实质量的因素是激振振幅、频率和碾压速度,在研究三者之间相互关系的基础上得出了计算铺层单位长度吸收有效压实功(即比压实功)的公式和能量平衡方程,以及多遍压实的比压实功和能量平衡方程,为建立基于能量平衡基础上的优化目标函数奠定了理论基础。
     5、在分析滑转率、施加给铺层的激振能量、混合料吸收的有效压实功三者之间相互关系的基础上提出了在实际上的压实过程中评价能量平衡的准则。所提出的在实际碾压过程中实时检测滑转率和确定最佳滑转率的方法为在智能控制过程中评价是否达到能量平衡要求提供了手段。
     6、在上述理论和试验研究的基础上进行的振荡压实过程控制关键技术的研究取得了重要成果:建立了基于能量平衡基础上智能化控制的优化目标和相应的目标函数,制订了为实现这一优化目标函数的控制策略,并根据这一控制策略为智能控制器设计了自动控制的流程图。以上这些关键技术问题的解决为开发振荡压路机的智能化控制系统奠定了坚实的基础。
     所进行的研究,填补了国内在此方面的空白。其结论对国产振荡压路机及其智能化的进一步研究、生产与应用既有理论上的指导意义,更有工程上的直接应用价值。
Oscillatory roller is the compaction machinery which uses a novel thoughts and technology to realize vibratory compaction techniques. As vibratory roller excite compacted material particles to vibrate in vertical direction, oscillatory roller can also excite compacted material particles to vibrate in horizontal direction and makes rearrangement of material particles in a dense way with reducing the friction force between particle and particle.
     Based on establishing the interactive dynamics model of oscillatory drum and compacted material, the dynamic identification of parameters of dynamics model and some tests on the spot of a sample machine of oscillatory roller are studied, the amplitude-frequency characteristics of oscillatory roll is tried out and the compaction effect of between the oscillatory roller and the vibratory roller in the world are discussed. On the basis of an amount of tests on the spot, the parameters of dynamics model about oscillatory drum are optimized, main effect factors of the compaction degrees for oscillatory roller are analyzed, the optimization standard of evaluating compaction quality of road surface is advanced, the optimization control model of the unit effective compaction power and the target function of compaction process control on the basis of energy balance are established. Through analysis control tactics of intelligent compaction for current vibratory roller and oscillatory roller, based on energy balance, a new control tactics which the biggest effective compaction power absorbed by unit compacted material and the shortest time of whole compaction process is taken as the target of automatic or intelligent control compaction for oscillatory roller is put forward, its methods and ways for oscillatory roller to realize intelligent control compaction on the key technology are showed clearly.
     On the basis of above-mentioned research, the following conclusions are achieved:
     1 .On the spot, through an amount of tests of the main working factors (amplitude, frequency, speed, times of passes) effecting compaction effect of the vibratory/oscillatory roller, the test shows that to evaluate compaction effect and compaction quality need consider not only the average compaction degree of compacted layer, but also the even of the degree. Therefore, it is necessary for obtaining compaction quality to prevent less or more compaction.
     2. Based on above-mentioned study result, the optimization standard of evaluating compaction quality of road surface is advanced. That is, the vibratory energy transmitted by roller to pavement layer should balance with the effective compaction power absorbed by compacted materials during the whole compaction, so as to ensure the pavement layer to prevent less or more compaction. This conclusion is provided theory basis for further to establish the optimization target of intelligent compaction control.
     3. Under different excited energy (different nominal amplitude and excited frequency) and different times of passes (different stiffness and damp), through a lot of tests and analysis of the amplitude-frequency characteristics and the density-frequency characteristics, a series of important guidance results have been reached for formulating the optimization control tactics of intelligent compaction process, including:
     (1) For different nominal amplitude and different times of passes, between the amplitude-frequency characteristics and the density-frequency characteristics have a good related relationship which the frequency corresponding to the maximum amplitude and the maximum density is same on above two curves of the characteristics, and the charge of the two curves is similar. The above results show that it is feasible utilizing the amplitude-frequency characteristics to forecast the relationship of the compaction degree to change with the frequency.
     (2) Under different excited energy and different times of passes, the test demonstrates that it is very small for the charge range (27Hz~31Hz) of the best excited frequency corresponding to the maximum actual amplitude and the maximum compaction degree. This result points out the direction which searches for the best frequency during actual compaction process.
     (3) The simulation amplitude-frequency characteristics with computer and the actual amplitude-frequency characteristics by test show that the carve of amplitude-frequency characteristics has a rapidly fall low point when less than the frequency corresponding to the maximum amplitude, but when more than the frequency corresponding to the maximum amplitude, and the carve changes gently. These show that selecting the best frequency should be more than a little the frequency corresponding to the maximum amplitude so as not to slip the low point owing to accidental factors. This result provides basis for determining the initial value in optimization control.
     4. In one times of pass, the influence factors of compaction quality of pavement layer are excited amplitude, frequency and speed of pass. On the basis of research the interactive relationships of above three factors, the calculation formula of the effective compaction power absorbed by unit length pavement layer and the energy balance equation as well as its unit compaction power and energy balance equation in more times of passes are achieved, which will lay the theoretical foundation for establishing the optimization target function on the basis of energy balance.
     5. The evaluating standard of energy balance on the bases of analyzing interactive relationships of between slip-rotation ratios, excited energy and effective compaction power advanced. the method of real measuring the slip-rotation ratio and determining the best slip-rotation ratio during actual compaction is put forward, which will provide means for evaluating the energy balance whether or not to be fulfilled requirements.
     6. Based on above theory and test, to study the key technology of oscillatory compaction process have acquired some important results which establish the optimization target of intelligent control on the basis of energy balance and its corresponding to the target functions, draw up the control tactics for the optimization target to realize, and design the automatically control flow chart for the intelligent controller. Above the key technologies solved will lay the solid foundation for intelligent compaction control system of oscillatory roller to be studied.
     The studies make great progress in the dynamics process of oscillatory drum and compacted material, as well as intelligent control compaction for oscillatory roller. The conclusions are significant in both research and application of domestic traditional roller and intelligent oscillatory roller.
引文
[1]孙祖望,卫雪莉,张志友等.振荡压路机课题研究总报告[R].西安:西安公路学院,1990.5
    [2]卫雪莉,孙祖望,武雅莉.压实控制技术的现状与展望.筑路机械与施工机械化[J],1992.1
    [3]孙祖望,卫雪莉,王鹊.振荡压实的动力学过程及其响应特性的研究[R].中国公路学报,1998.11(2):117-126
    [4]拉斯·福斯布莱德[瑞典]著.土壤和岩石填方的振动压实[M].甘杰贤,卢锡忠,秦丽芳,刘书民译.北京:人民交通出版社,1989.
    [5]Thurner H.Oscillatory Roller Geodynamik AB Stockholm, 82. 02. 23
    [6]李冰.振荡模拟轮的研制和试验研究[D].西安公路学院硕士学位论文,1988.1
    [7]孙祖望.压实技术与压实机械的发展与展望[J].筑路机械与施工机械化,2004.21(5):4-7
    [8]万汉驰.压实机械技术发展方向与产品发展展望[J].筑路机械与施工机械化,2004.5
    [9]吴永平.现代压实技术发展概况[J].筑路机械与施工机械化,2005.4
    [10]孙文进.压路机的研制和发展[A].中国工程机械学会路面与压实机械分会第一届学术交流会论文集[C]. 1998.2
    [11]宋建安,谷平.压路机技术发展趋势[J].建设机械技术与管理,2004.
    [12]葛恒安.中国压实机械行业发展现状与未来战略抉择[J].交通世界,2004.
    [13]聂福全.国外振动压路机设计的发展趋势[J].水利电力机械,2002(6):37-39
    [14]杨国平.国内外筑路机械最新发展动态[J].筑路机械与施工机械化,2001.5
    [15]韩才林主编.筑养路机械新技术[M].北京:人民交通出版社,2001.4
    [16]张启君,张忠海,张宏,王华君.国外双钢轮振动压路机的探讨[J].筑路机械与施工机械化,2004.
    [17]王云国,李玉东等.HAMM DV08V型振荡压路机[J].建筑机械,2000.12: 48-49
    [18]叶向东,段志善.一种自行式振荡压路机模型及ADAMS运动学仿真分析[J].筑路机械与施工机械化,2005.22 (4): 51-53
    [19]Raymond HU.压实技术的飞跃——宝马研制中的GPS全球定位系统技术[J].工程 机械与维修2003.6
    [20]白飞平.现代压路机新技术[J].建筑机械,2007.6(上):63-67
    [21]郭诚编译.振荡压实机械[J].筑路机械与施工机械化,1991.2
    [22]苏小敏编译.日本振荡压路机简介[J].国外工程机械,1989
    [23]林栋冰.浅谈对压路机行业的几点看法[J].工程机械,2004.11: 66-67
    [24]陈忠良.西德劳森豪森公司选择振动压实机械振动参数的有关力学原理和计算方法[J].建筑机械,1982,2
    [25]卫雪莉等.Dynamic model of oscillatory roller—soil interaction and its application in real time monitoring the degree of compaction[A].第十二届国际地面系统ISTVS论文集[C].1996
    [26]BOMAG.BOMAG Variomatic (BVM) [R],2000
    [27]Ingersoll Rand[J].Compaction Technology. 1998
    [28]Hamm. Compaction in Earthwork and Asphalt[J]. Applied Technology,1999
    [29]The HAMM Journal. Special BAUMA edition[J]. April 1995
    [30]New Compaction Method Makes Rapid Advance[J]. World Construction. June 1985
    [31]Thuner H. A New Compaction Concept. Paper at the ⅩⅦth Road Congress[R].Sydney Australia. 1984
    [32]Bomag. BOMAG Terrameter BTM05 BOMAG Compaction Management System BCM03 Compaction Control and Documentation System[R], 1998
    [33]Piezsch, Dieter; Roppy, Wolfgang. Simulation of soil compaction with vibratory rollers[J].J ournal of Terramechanics, 1992(11)
    [34]New Compaction Concept Passes Tests[J].World Construction. March 1984
    [35]赵昱东.我国振动压路机的发展[J].建筑机械化,2002.2
    [36]洪鲁宾.智能化振动压路机调幅控制系统的设计[J].建筑机械,2006.3: 78-80
    [37]余金松.压路机械技术发展概况[J].建筑机械,2004.11:104-109
    [38]陈达刚,李太杰,孙祖望.振荡压路机设计方法研究[J].中国公路学报,1991.3
    [39]李冰,焦生杰.振动压路机与振动压实技术[M].北京:人民出版社,2001,4
    [40]田丽梅.振动振荡压路机动力学分析及参数优化[D].西安公路交通大学硕士学位论文,2001.1
    [41]郭宝良,赵玉秀,段志善.基于虚拟样机的一种小型压实机械的仿真优化研究[J]. 筑路机械与施工机械化,2004.9
    [42]陈少幸,邱志雄,张肖宁.沥青路面压实度评价及控制探讨[J].筑路机械与施工机械化,2006.23 (6): 51-53
    [43]吴仁智.振动压路机质量参数的匹配分析[J].工程机械,1999.7: 16-17
    [44]严普强,黄长艺.机械工程测试技术基础[M].北京:机械工业出版社.1985
    [45]何锃,张仲甫.振动压路机跳振过程的数学仿真与机械的振动参数选取方法的研究[J].武汉工学院学报,1992.12
    [46]严世榕,闻邦椿.振动压路机的一种非线性动力学仿真[J].建筑机械,1999,(2):35-38
    [47]鹿世敏.振荡压路机的优点及其作业工况的选择[J].工程机械与维修,2000.(6):28-29
    [48]温读夫,罗衍领,胡传正.振动压路机连续压实控制系统.建筑机械,2007,4(上):87-90
    [49]马文胜,鲍永华,包旭.智能压路机人机交互界面的设计与实现[J].工程机械,2006.12:1-3
    [50]郭军卫,李军,周志立.振动压路机压实度检测及分析[J].建筑机械,2007.8(上):86-89
    [51]巨永锋,蔺广逢,龙水根.智能压路机控制系统人机交互软件设计[J].筑路机械与施工机械化,2006.(8):52-54
    [52]吴竟吾.国内外压路机概况及趋势[J].工程机械与维修,2005.1(上):59-61
    [53]管迪,陈乐生.智能振动压路机建模与试验[J].建筑机械,2007.5:56-59
    [54]巨永锋,龙水根,张奕.智能压路机控制系统数据通信的实现[J].筑路机械与施工机械化,2006. (8) :51-53
    [55]余金松.智能型工程压实机械[J].机电技术,2004
    [56]辛涛,张奕,黄伦明.智能振动压路机控制系统软件流程设计[J].建设机械技术与管理,2004.10: 84-86
    [57]张大鹏,辛涛.现场总线技术在智能振动压路机控制系统中的应用[J].建设机械技术与管理,2004.8: 61-63
    [58]张润利,贺杰.振动压路机机载压实度检测仪的技术发展[J].交通世界,2003.(10):50-51
    [59]杜善其.振动压路机压实度实时测量与控制采集信号的分析[J].压实机械与施工技术,2004.8: 47-49
    [60]张润利,贺杰,刘力松,马长培.压实度连续检测系统信号处理的探讨[J].河北工业大学学报,2003.8: 99-102
    [61]刘昌仁.酒井SW750N复式水平振荡压路机[J].建筑机械, 2005.2:58-59
    [62]陈镰.振荡压路机参数的计算及对未来的展望[J].建筑机械,1989.5
    [63]张桓奇.对新型压实机械-振荡式压路机作用机理的研讨[J].工程机械,1989.5
    [64]张智明,宋建安.智能化振动压路机发展现状[J].筑路机械与施工机械化,2004.10: 47-52
    [65]倪振华.振动动力学[M].西安:西安交通大学出版社,1994.8
    [66]谢立扬,张智明.振动压路机智能化与压实控制研究概况[J].筑路机械与施工机械化,2004.5
    [67]丁少华,张仲甫.新型振动压路机控制方案探讨及土体参数在线辩识器研究[J].武汉工学院学报,1992.3
    [68]李冰.振荡压路机压实功率计算的探讨[J].工程机械,1991,12
    [69]刘习军,贾启芬.工程振动理论与测试技术[M].北京:高等教育出版社,2004.11
    [70]何挺继,朱文天,邓世新主编.筑路机械手册[M].北京:人民交通出版社,1998.
    [71]冯忠绪著.工程机械理论[M].北京:人民交通出版社,2004.2
    [72]王戈,王贵慎,张世英.压实机械[M].北京:中国建筑工业出版社,1992
    [73]鹿世敏.YDC10型串联式双钢轮振荡压路机[J].建筑机械,1999.11: 46-47
    [74]闫新军,马英学.提高沥青路面压实性能的技术[J].筑路机械与施工机械化.2005.3.
    [75]龙运佳.中国源于混沌科学的振动技术[J].筑路机械与施工机械化,2004.
    [76]车胜创.冲击式压实机的应用研究与发展前景[J].筑路机械与施工机械化,2006.3:10-12
    [77]张智明.智能化振动压路机及技术现状[J].工程机械,2005.3: 5-8
    [78]王红举.道路压实与质量的控制[J].筑路机械与施工机械化,2006.23 (4) : 52-53
    [79]支喜兰,江晓霞,沙爱民.路面基层振动压实作用下的底基层应力[J].长安学报(自然科学版),2003.5: 33-36
    [80]史保华,杨晓娟,王宏伟.冲击压路机及其技术在土基处理中的应用分析[J].筑路机械与施工机械化,2006.3: 1-5
    [81]贺杰.压路机机载压实度检测仪技术发展趋势[J].中国公路:建设市场专刊,2004.8(10):23-26
    [82]牛占文,王树新,郑尚龙.机群智能化工程机械故障诊断系统研究[J].机械科学与技术,2003.11: 999-1002
    [83]李贺英.一种新型振动压路机无级调幅系统的设计方案与分析[J].工程机械,1999.11:16-17
    [84]张泓,闻邦春.振动压路机压实机理的研究[J].建筑机械,2000.(3):25-57
    [85]严普强,黄长艺.机械工程测试技术基础[M].北京:机械工业出版社.1985
    [86]何锃,张仲甫.振动压路机跳振过程的数学仿真与机械的振动参数选取方法的研究武汉工学院学报,1992.12.
    [87]段志善,闻邦椿.自行式摆动冲击机械的非线性动力学研究[J].振动与冲击,1985,3
    [88]祁隽燕,葛恒安.振动压路机技术与振动压实的前沿技术[J].建筑机械,2002.9: 35-37
    [89]王继新,王国强,刘小光,林建荣.振动压路机安全驾驶室ROPS侧向加载特性研究[J].建筑机械,2006.2(上):55-58
    [90]张华军.振动压路机的技术参数与压实效果[J].工程机械2005.1: 58-59
    [91]杨士敏,何波,邵建波.沙漠土壤压实关键技术及压实设备[J].筑路机械与施工机械化,2006.5: 55-57
    [92]万汉驰.压路机蟹行机构[J].建筑机械,2005.3: 61-64
    [93]赵悟,姚运仕,冯忠绪,赵万芹,朱伟敏.多频合成振动强化压实方法[J].筑路机械与施工机械化,2006.4: 49-51
    [94]曹全星,张宗涛,庞明宝.基于人工神经网络的振动压路机智能控制研究[J].筑路机械与施工机械化,2007.11: 54-58
    [95]邓习树,吴运新.基于ADAMS的振动压路机动态特性分析研究[J].建筑机械,2005.10: 63-66
    [96]梁宗铨.振动压路机的研究与发展方向[J]矿业研究与开发,1995.3: 30-32
    [97]H. H.科尔斯,格努贝/霍尔斯坦(德).振荡压路机——压实技术的里程碑?[J].建筑机械,1994.11:29-31
    [98]郭松生.中国压实机械行业发展评析[J].建筑机械,2004.6: 15-19
    [99]陈蝶.一种可供双驱双振压路机使用的电气系统[J].筑路机械与施工机械化, 1999.5: 23-25
    [100]谭军,翟丽艳.振荡压路机压实原理及应用[J].东北公路,2003.3: 143-144
    [101]杨小卫,高行方.振荡压实效果的理论分析[J].筑路机械与施工机械化,1998.5:7-10
    [102]高海龙.特殊环境中振荡压路机的应用[J].西部探矿工程,2001.8
    [103]沙庆林.公路压实与压实标准-3版[S].北京:人民出版社,1999.1
    [104]洪毓康.土质学与土力学-2版[M].北京:人民出版社,1993.7
    [105]胡宗武.工程振动分析基础[M].上海:上海交通大学出版社,1999.4
    [106]王作海,刘春芬.交流液压技术在压路机振动系统的应用[J].工程机械,1995.2:34-35
    [107]梁凤英.振动-振荡压路机[J].工程机械与维修,1997.(4): 19
    [108]清华大学工程力学系,固体力学教研组,振动组编.机械振动(上册)[M].北京:机械工业出版社,1980.8
    [109]田丽梅,杨春红,王国安.国内外振动振荡压路机动力学模型[J].吉林大学学报,2003.33(2):100-103
    [110]何建和,严世榕.振动压路机的一种新模型及其动力学特性研究[J].福建电脑,2004.(1):29-30
    [111]李冰.振荡压路机动力学模型[J].西安公路交通大学学报.1991.1
    [112]张奕,刘桦,龙水根.智能压路机行走控制系统设计[J].筑路机械与施工机械化,2006.11:56-58
    [113]万世宏.振动压实系统的动力学理论分析[J].武汉工学院学报,1987.1
    [114]车胜创.压路机的压实特性对公路压实度的影响分析与研究[J].筑路机械与施工机械化,2004.21(1):37-39
    [115]任军锋.振动压路动态特性研究[D].[硕士学位论文].西安:西安公路交通大学,1997
    [116]张仲甫,饶明太等.振动压实过程中的土壤-机械系统相似模型的实验研究[J].武汉工学院学报,1986.3
    [117]魏洪兴,王田苗,陈殿生.智能化工程机械及其关键技术研究[J].工程机械,2004,35 (5):1-3
    [118]韩志强,林慕义.振动压实与振荡压实机理研究[J].筑路机械与施工机械 化,1991.6
    [119]杨小卫,高行方.振荡压实效果的理论分析[J].筑路机械与施工机械化,1998.5:7-10
    [120]陈荣波,刘志明.振荡压路机模型装置的实验研究[J].建筑机械,1989
    [121]贾小民.振动与振荡压实技术简析[J].市政技术,2003.1: 15-19
    [122]严世榕,闻邦椿.振动压路机的一种非线性动力学特性研究[J].福州大学学报,2000.10
    [123]焦生杰,闰胜利.振动压路机隔振器理论研究[J].西安公路交通大学学报.1995.
    [124]高文炯德国BOMAG多边形钢轮和变幅控制自动压实系统[J].筑路机械与施工机械化,2005.22 (4): 9-12
    [125]徐世强,崔钧.悍马振荡压路机的特性研究[J].筑路机械与施工机械化,2006.8:56-57
    [126]刘永跃.振荡轮与介质相互作用动力学系统的参数识别[D].西安公路交通大学硕士学位论文,1999.6
    [127]杨东来.振荡轮与热沥青混合料相互作用动力学过程的研究[D].长安大学博士学位论文,2005.5
    [128]樊孝礼.振动压路机的选型及振动压实技术(1) [J].筑路机械与施工机械化,1992.5
    [129]杜文靖,周德成.虚拟样机技术的振动压路机起振及换向过程仿真分析[J].建筑机械技术与管理,2004.1:63-65
    [130]杨东来,陈飚,黄洪涛,孙祖望.振荡压实对桥梁结构物的影响研究[J].筑路机械与施工机械化,2005.22 (6) : 48-50
    [131]杨东来,孙祖望.振荡压实与振动压实效果对比试验研究[J].中国工程机械学报,2005.1
    [132]姚荔明,陈乐生.智能化振动压路机动力学模型与测试[J].建筑机械,2006(4):66-68
    [133]中华人民共和国国家标准.振动压路机性能试验方法(GB4478 - 84)[S]
    [134]杨士敏.压路机作用下土应力分析及对压实效果的影响[J].筑路机械与施工机械化,1994.6: 10-13
    [135]路晶,郭涛.宝马振动压路机智能压实控制系统[J].建筑机械,2007.9(上): 55-58
    [136]薛渊,陆念力,凌贤长.工程振动机械动力学模型[J].筑路机械与施工机械化,2006.23 (7): 51-53
    [137]孙祖望.振幅实时无级可调的振动机构[P].中国专利:ZL98 2 33268. 8, 1998.2.
    [138]杨东来,孙祖望.薄层路面与桥面铺装新技术[J].建筑机械,2007. 11(上).12-15
    [139]朱伟敏,高雁北,岳建平.沥青路面压实度的控制[J].筑路机械与施工机械化,2005.12: 49-51
    [140]孙祖望,卫雪莉,李冰.振荡压实检测原理[R].西安:西安公路学院.1991.6.
    [141]吴仁智.振动压路机液压系统动态特性分析及功率计算方法的研究[D].西安公路交通大学硕士论文,1989.
    [142]尹继瑶.振动压路机的振动与振荡功率及其计算方法[A].中国工程机械学会路面与压实机械分会第一届学术交流会论文集[C]. 1998.2
    [143]张奕.智能压路机控制系统设计及关键技术研究[J].长安大学博士论文,2004.5
    [144]卫雪莉,武雅莉,张义甫,李冰,张志友,王鹊.振荡压实计的试验与研究[R].西安:西安公路学院,1991.1
    [145]蔡自兴.人工智能控制[M].北京:化学工业出版社,2005.7
    [146]杨和雄,李崇文编著.模糊数学和它的应用[M].天津:天津科学技术出版社,1993.10
    [147]罗均,谢少荣,蒋蓁,王琦编著.智能控制工程及其应用实例[M].北京:化学工业出版社,2005.3
    [148]焦生杰等编著.工程机械机电液一体化[M].北京:人民交通出版社,2000.11
    [149]丁勇强,陈新轩.振荡压实技术在沥青路面施工中的可行性分析[J].筑路机械与施工机械化,2007.6: 50-52
    [150]H.E.Thurner, A.J.Sandstrom. Continuous compaction control, CCC. Proceedings, Compaction of soil and granular materials[R], Paris, 2000.p237-246
    [151]D.Adam, E.Kopf. Sophisticated compaction technologies and continuous compaction control. Proceedings, Compaction of soil and granular materials[R],Paris,2000.p207-220
    [152]Terry Martin. Expert system for Diagnosing Equipment Failures[J].IEEE,1998(10)
    [153]Heung-Jae Lee.AFuzzy Expert System for the Integrated Fault Diagnosis[J].IEEE. 1999(6)
    [154]Latham J.D. The effect in densification of applying a constant impact force at varying linear speeds. Proceedings, International Conference on Compaction[R], Paris,France. 1980 p647-650
    [155]Geodynamik AB presents. Numerical Soil-roller Model[R].
    [156]Hussein J.B,Selig E.T. Predicting compactor performance. Proceedings, International Conference on Compaction[R], Paris, France. 1980 p639-645
    [157]D.Adam, E.Kopf. Theoretical analysis of dynamically loaded soils. Proceedings,Compaction of soil and granular materials[R],Paris, 2000.p3-16
    [158]B.Anderegg. ACE Amman compaction Expert-Automatic control of the compaction.Proceedings, Compaction of soil and granular materials[R], Paris, 2000.p229-236
    [159]Yoo T.S., and Selig E.TNew concept for vibratory compaction of soil. Proceedings,International Conference on Compaction[R], Paris, France. 1980 p703-707
    [160]Lars Fossblad. In Vestigations of Siol Compaction by Vibration[R]. Stockholm, 1965
    [161]D.Adam, E.Kopf. Sophisticated compaction technologies and continuous compaction control. Proceedings, Compaction of soil and granular materials[R], Paris,2000.p207-220
    [162]R.Floss, H.J.Kloubert. Newest developments in compaction technology. Proceedings,Compaction of soil and granular materials[R], Paris, 2000.p247-262
    [163]J.M.MACHET Interpr(?)tation de I'efcacit(?) des compactrurs vibrants[R]. September 1976
    [164]Clifford J.M. An introduction to impact rollers. Proceedings, International Conference on Compaction[R], Paris, France. 1980 p621-626
    [165]DivayR.Cycloidalcompaction.Proceedings,InternationalConferenceon Compaction[R], Paris, France. 1980 p633-637
    [166]Machet J.M. et Sanejouand R. Mathmatical model for vibratory compaction.Proceedings, International Conference on Compaction[R], Paris, France. 1980p651-657
    [167]Buchanan,M.Shane,Brown,E.Ray. Effect of superpave gyratory compactor type on compacted hot-mix asphalt density[J]. Transportation Research Record,2001
    [168]Degraeve F. Performance optimization of a vibratory compactor. Proceedings,International Conference on Compaction[R],Paris, France. 1980 p62 7-631
    [169]Ullah W Selig E.T.Test of a vibratory plate compactor. Proceedings, International Conference on Compaction[R], Paris, France. 1980 p689-694
    [170]Khunthongkeaw, Jittbodee; Tangtermsirikul,Somnuk. Vibration consistency Prediction model for roller-compacted concrete[j].ACI
    [171]Quibel A.et Fronmentin M. The influence of the parameters of a vibrating roller on its efficiency. Proceedings, International Conference on Compaction, Paris[R],France. 1980 p677-682
    [172]Quibel A. Vibratory behavior: a link between the selection of parameters and the efficiency of a vibrating roller. Proceedings, International Conference on Compaction[R], Paris, France. 1980 P651-657
    [173]Quibel A. et Fronmentin M. Compaction with small size equipment. Proceedings,International Conference on Compaction[R], Paris, France. 1980 p683-688

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700