陕西柞水小茅岭复式岩体年代学、地球化学及构造意义研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
秦岭造山带经历了长期而复杂的地质演化,发育有多期、多阶段岩浆侵入体。对各期次岩体的成因及其物源研究,有助于深化对秦岭造山带地质演化机理的认识。小茅岭复式岩体位于南秦岭北缘、小茅岭-陡岭隆起带的西端,本文在对该复式岩体野外观察基础上,开展了岩石学、锆石U-Pb年代学、地球化学及Hf位素研究,并综合区域研究成果,得到以下认识:
     1.小茅岭复式岩体由早期宋家屋场基性辉绿(辉长)岩和晚期迷魂阵、磨沟峡及叶家湾中性-偏酸性闪长岩组成,闪长岩中含有辉绿(辉长)岩捕掳体。小茅岭复式岩体中见有前震旦系磨沟峡杂岩捕掳体,与复式岩体同期的花岗岩脉侵入磨沟峡杂岩,杂岩之上不整合覆盖有震旦系陡山沱组碎屑岩,故复式岩体应形成于前震旦系磨沟峡杂岩之后,震旦系陡山沱组之前。
     2.通过LA-ICP-MS锆石U-Pb年代学研究,获得小茅岭复式岩体中宋家屋场岩体侵位年龄为864.4+1.7Ma,迷魂阵岩体为846.7+2.7Ma,磨沟峡岩体为859.4+1.7Ma,叶家湾岩体为861.1±1.8Ma,表明小茅岭复式岩体形成于870~840Ma的新元古代。据此,笔者将小茅岭复式岩体进一步细分为三部分:早期宋家屋场角闪辉绿(辉长)岩体,中期磨沟峡石英闪长岩-英云闪长岩体及叶家湾石英二长岩-二长闪长岩体,晚期迷魂阵闪长岩-石英闪长岩体,为同期不同序次岩浆侵入活动的产物。
     3.岩石地球化学分析显示,小茅岭复式岩体早期宋家屋场岩体与中晚期磨沟峡、叶家湾、迷魂阵岩体之间,存在成分壁垒,属两个独立的系列。早期宋家屋场岩体FeO、K Fe2O3、MgO、TiO2含量较高,K2O、Na2O含量较低,A/CNK=0.68~0.83;轻稀土元素较重稀土元素略富集,无Eu异常或略具有Eu正异常;Rb、Ba、Th、U等大离子亲石元素含量较低,Nb、Ta、Ti、P等的负异常不明显,(Th/Nb)N比值略大于1, zr含量及Zr/Y比值较高,具有大陆拉张环境玄武岩的特征。中晚期磨沟峡、叶家湾及迷魂阵闪长岩钾、钠含量较高,A/CNK小于1.1;稀土元素、微量元素地球化学特征较为相似,轻稀土较重稀土富集,从迷魂阵闪长岩-石英闪长岩到磨沟峡石英闪长岩-英云闪长岩再到叶家湾石英二长岩-二长闪长岩,随着岩石酸性的增强,轻重稀土分馏逐渐增强,Eu负异常越来越显著;磨沟峡、叶家湾及迷魂阵岩体均富集Rb、Ba、Th、U、K等大离子亲石元素,亏损Nb、Ta、Ti、P等元素,体现了典型岛弧火成岩的地球化学特征。
     4.Hf同位素研究显示,小茅岭复式岩体从早期到晚期具有不同的物源。早期宋家屋场蚀变角闪辉绿(辉长)岩εHf(t)为7.9~9.9,单阶段模式年龄为1107~1021Ma,可能为来源于受到地壳物质混染的亏损地幔源区。中期磨沟峡及叶家湾岩体Hf同位素特征相似,磨沟峡岩体εHf(t)为4.1-5.1,阶段模式年龄为1476~1427Ma;叶家湾岩体εHf(t)为3.2~5.9,二阶段模式年龄为1548~1371Ma,表明磨沟峡及叶家湾岩体为中元古代中期形成的幔源物质(新生地壳)部分熔融的产物。晚期迷魂阵岩体多数锆石εHf(t)为负值(个别点εHf(t)略大于0),二阶段模式年龄集中在1970~1709Ma之间,源区可能为古元古代晚期古老地壳物质的部分熔融,混有少量幔源增生的地壳物质。
     5.结合区域地质背景和秦岭造山带构造演化特征,小茅岭复式岩体属秦岭新元古代早期后造山伸展构造环境下形成的岩体。
The Qinling orogenic belt has experienced a long time and complex tectonic evolution, with many multi-phase and multi-stage intrusives being developed. The studies on the petrogenesis of the intrusives including source rocks involve the formation of the Qinling orogenic belt, in particular the geodynamic processes. The Xiaomaoling composite intrusives dealt with in the dissertation are exposed at the western end of the Xiaomaoling-Doling uplift belt located in the northern most part of South Qinling. Based on the field work, the petrography, zircon U-Pb geochronology, systematic geochemistry and Hf isotope analysis of the composite intrusives are discussed in this paper.
     1. The Xiaomaoling composite intrusives are composed of early Songjiawuchang diabase (grabbro) and late Mihunzhen, Mogouxia and Yejiawan diorites. The diorites contain diabase (grabrro) xenoliths. The Xiaomaoling intrusives bear xenoliths of the Pre-Sinian Mogouxia Complex. Synchronous granitic dikes intrude into the Mogouxia Complex, which is covered unconformably by the Sinian Doushantuo group clastic rocks. It follows that the Xiaomaoling composite intrusives were formed after the Pre-Sinian Mogouxia Complex and before the Sinian Doushantuo group.
     2. The Songjiawuchang intrusive, Mihunzhen intrusive, Mogouxia intrusive and Yejiawan intrusive from the Xiaomaoling intrusives yield mean 206Pb/238U ages of 864.4±1.7 Ma,846.7±2.7 Ma,859.4±1.7 Ma and 861.1±1.8 Ma respectively by LA-ICP-MS zircon U-Pb dating, suggesting that these composite intrusives were formed during the Neoproterozoic (870~840 Ma). Accordingly, the Xiaomaoling composite intrusives are classified into three parts:early Songjiawuchang diabase (grabbro), middle Mogouxia quartz diorite-tonalite and Yejiawan quartz monzonite-monzodiorite and late Mihunzhen diorite-quartz diorite, that is to say, they are products of different evolutionary sequence of synchronous magmas.
     3. The early Songjiawuchang intrusive and middle to late Mogouxia, Yejiawan and Mihunzhen intrusives belong to two different series on their geochemical analysis. The early Songjiawuchang intrusive has high FeO, Fe2O3, MgO and TiO2 contents, low K2O and Na2O contents, with A/CNK=0.68~0.83; enriched LREE, negligible Eu anomalies or weakly positive Eu anomalies; low Rb, Ba, Th and U contents, slightly negative Nb, Ta, Ti and P anomalies, (Th/Nb)N ratios slightly greater than one, hight Zr content and Zr/Y ratios, showing a feature of the continental tholeiite. The middle to late Mogouxia, Yejiawan and Mihunzhen diorites have high K and Na contents, A/CNK less than 1.1; similar REE and trace elements feature, enriched LREE; LREE and HREE fractionation and negative Eu anomalies becoming stronger with the increasing acidity from Mihunzhen diorite-quartz diorite to Mogouxia quartz diorite-tonalite to Yejiawan quartz monzonite-monzodiorite; enriched Rb, Ba, Th, U and K and depleted Nb, Ta^ Ti and P for the Mogouxia, Yejiawan and Mihunzhen intrusives, indicating a geochemical feature of island arc volcanic rocks.
     4. The Lu-Hf isotopic analysis shows the Xiaomaoling composite intrusives of different stages have different sources. The early Songjiawuchang amphibolic diabase (gabbro) withεHf(t) value of 7.9~9.9 and TDM1 of 1107~1021 Ma, might be derived from depleted mantle contaminated by crustal material. The middle Mogouxia intrusive and Yejiawan intrusive have similar Hf isotopic feature, the former characterized by eHf(t) value of 4.1~5.1 and TDM2 of 1476~1427 Ma, and the latter byεHf(t) value of 3.2~5.9 and TDM2 of 1548~1371 Ma, indicating that they were derived from partial melting of juvenile crust formed in the middle-late Mesoproterozoic. The late Mihunzhen intrusive has mostly negativeεHf(t) value and TDM2 of 1970~1709 Ma, indicating that it resulted from the partial melting of a late Paleoproterozoic old crust mixed with some mantle material.
     5. In combination with regional geological background and tectonic evolution characteristics of the Qinling orogen, it can be seen that the Xiaomaoling composite intrusives were formed in an early Neoproterozoic post-orogenic extensional environment.
引文
[1]任纪舜,陈廷愚,牛宝贵,等.中国东部及邻区大陆岩石圈的构造演化与成矿[M].北京:科学出版社,1992:1-205.
    [2]姜春发,张庆贵,张玉岫,等.东秦岭地槽型印支运动的存在[J].地质论评,1963,21(3):116-121.
    [3]任纪舜,姜春发,张正坤,等.中国大地构造及其演化[M].北京:科学出版社,1980:1-124.
    [4]郭进京,李怀坤,陈志宏.秦岭造山带秦岭杂岩研究中有关问题讨论[J].地质调查与研究,2003,26(2):95-102.
    [5]陆松年,陈志宏,李怀坤,等.秦岭造山带中两条新元古代岩浆岩带[J].地质学报,2005,79(2):165-173.
    [6]王涛,张宗清,王晓霞,等.秦岭造山带核部新元古代碰撞变形及其时代——强变形同碰撞花岗岩与弱变形脉体锆石SHRIMP年龄限定[J].地质学报,2005,79(2):220-232.
    [7]王涛,张国伟,王晓霞,等.一种可能的多陆块、小洋盆、弱俯冲的动力学特征及其花岗岩演化特点——以秦岭造山带核部花岗岩为例[J].南京大学学报(自然科学),1999,35(6):659-667.
    [8]王涛,李伍平,王晓霞.秦岭杂岩牛角山花岗质片麻岩体锆石U-Pb同位素年龄及其地质意义[J].中国区域地质,1998,17(3):262-265.
    [9]陈志宏,陆松年,李怀坤,等.北秦岭德河黑云二长花岗片麻岩体的成岩时代——TIMS和SHRIMP锆石U-Pb同位素年代学[J].地质通报,2004,23(2):136-141.
    [10]张成立,刘良,张国伟,等.北秦岭新元古代后碰撞花岗岩的确定及其构造意义[J].地学前缘,2004,11(3):33-42.
    [11]王涛,王晓霞,田伟,等.北秦岭古生代花岗岩组合、岩浆时空演变及其对造山作用的启示[J].中国科学D辑:地球科学,2009,39(7):949-971.
    [12]陈志宏.秦岭造山带东部新元古代热-构造事件及其地质构造意义——中国地质科学院博士学位论文.2004.
    [13]张宗清,刘敦一,付国民.北秦岭变质地层同位素年代研究[M].北京:地质出版社,1994.
    [14]孙勇.东秦岭古洋盆与加里东运动[J].地质论评,1991,37(6):555-559.
    [15]陆松年,于海峰,李怀坤,等.“中央造山带”早古生代缝合带及构造分区概述[J].地质通报,2006,25(12):1368-1380.
    [16]陆松年,李怀坤,陈志宏,等.秦岭中-新元古代地质演化及对RODINIA超级大陆事件的响应[M].北京:地质出版社,2003:1-194.
    [17]闫全人,王宗起,陈隽璐,等.北秦岭斜峪关群和草滩沟群火山岩成因的地球化学和同位素约束、SHRIMP年代及其意义[J].地质学报,2007,81(4):488-502.
    [18]张思纯,唐尚文.东秦岭北部早古生代放射虫硅质岩的发现与板块构造[J].陕西地质,1983,(2):1-9.
    [19]李采一,马国建,陈瑞保.对河南二郎坪群层序及时代的新认识[J].中国区域地质,1990,9(2):181-185.
    [20]王学仁.河南西峡湾潭地区二朗坪群微体化石研究[J].西北大学学报,1995,25(4):353-358.
    [21]陈丹玲,刘良,孙勇,等.北秦岭松树沟高压基性麻粒岩锆石的LA-ICP-MS U-Pb定年及其地质意义[J].科学通报,2004,18(14).
    [22]杨经绥,许志琴,裴先治,等.秦岭发现金刚石:横贯中国中部巨型超高压变质带新证据及古生代和中生代两期深俯冲作用的识别[J].地质学报,2002,76(4):484-495.
    [23]Zhang Chengli, Li Miao, Wang Tao, et al. U-Pb Zircon Geochronology and Geochemistry of Granitoids in the Douling Group in the Eastern Qinling[J]. Acta Geologica Sinica,2004,78(1):83-95.
    [24]牛宝贵,和政军,任纪舜,等.秦岭地区陡岭-小茅岭隆起带西段几个岩体的SHRIMP锆石U-Pb测年及其地质意义[J].地质论评,2006,52(6):826-835.
    [25]游振东,索书田.造山带核部杂岩变质过程构造解析—以东秦岭为例[M].武汉:中国地质大学出版社,1991.
    [26]张宗清,张国伟,付国民,等.秦岭变质地层年龄及其构造意义[J].中国科学D辑,1996,26(3):216-222.
    [27]裴先治,张维吉,王涛,等.北秦岭造山带的地质特征及其构造演化[J].西北地质,1995,16(4):8-12.
    [28]张宗清,张国伟,唐索寒.南秦岭变质地层同位素年代学[M].北京:地质出版社,2002:1-256.
    [29]沈洁,张宗清,刘敦一.东秦岭陡岭群变质杂岩Sm-Nd、 Rb-Sr、40Ar/39Ar、207Pb/206Pb年龄[J].地球学报,1997,18(3):248-254.
    [30]雷敏.秦岭造山带东部花岗岩成因及其与造山带构造演化的关系——中国地质科学院博士学位论文.2010.
    [31]许志琴,卢一伦,汤耀庆,等.东秦岭造山带的变形特征及构造演化[J].地质学报,1986,(3):237-247.
    [32]张国伟,张本仁,袁学诚,等.秦岭造山带与大陆动力学[M].北京:科学出版社,2001:1-855.
    [33]卢欣祥,肖庆辉,董有.秦岭花岗岩大地构造图[M].西安:西安地图出版社,2000.
    [34]卢欣祥,李明立,王卫,等.秦岭造山带的印支运动及印支期成矿作用[J].矿床地质,2008,27(6):762-773.
    [35]Mattauer M P H, Mqtte J, Malqvieille T, et al. Tectonics of the Qinling belt:Build-up and evolution of eastern Asia[J]. Nature,1985,317(10):496-500.
    [36]张二朋,牛道韫,霍有光,等.秦巴及邻区地质-构造特征概论[M].北京:地质出版社,1993:1-291.
    [37]任纪舜.昆仑-秦岭造山系的几个问题[J].西北地质,2004,37(1):1-5.
    [38]任纪舜,牛宝贵,刘志刚,等.软碰撞、叠复造山和多旋回缝合作用[J].地学前缘,1999,6(3):85-93.
    [39]任纪舜.中国大陆的组成、结构、演化和动力学[J].地球学报,1994,No.(3-4):5-13.
    [40]任纪舜.中国大陆构造的基本模型[J].地球学报,1995,No.3:328-330.
    [41]杨巍然.东秦岭“开”“合”史[J].地球科学—武汉地质学院学报,1987,12(5):487-493.
    [42]张国伟,张宗清,董云鹏.秦岭造山带主要构造岩石地层单元的构造性质及其大地构造意义[J].岩石学报,1995,1 1(2):101-114.
    [43]张国伟,孟庆仁,于在平,等.秦岭造山带的造山过程及其动力学特征[J].中国科学(D辑),1996,26(3):193-200.
    [44]张国伟,董云鹏,姚安平.关于中国大陆动力学与造山带研究的几点思考[J].中国地质,2002,29(1):7-13.
    [45]张国伟.试论秦岭造山带岩石圈构造演化基本特征[J].西北大学学报,1991,21(2):77-88.
    [46]张二朋,牛道韫,霍有光,等.秦岭—大巴山及邻区地质图[M].北京:地质出版社,1993.
    [47]许全成.陕西秦巴地区花岗岩类的时代及分期[J].陕西地质,1984,2(1):1-8.
    [48]严阵,黄云玉.秦巴地区花岗岩类岩石的K-Ar年龄数据处理[J].陕西地质,1986,4(1):79-85.
    [49]李先梓,严阵,卢欣祥.秦岭-大别山花岗岩[M].北京:地质出版社,1993:1-218.
    [50]杨斌虎,张成立,李雷.东秦岭陡岭杂岩花岗岩的Sr-Nd-Pb同位素特征及其地质意义[J].地质通报,2011,30(2-3):439-447.
    [51]陕西省地质局区域地质测量队.中华人民共和国地质图说明书(1:20万)——商县幅.1966.
    [52]陕西省地质局区域地质测量队.中华人民共和国地质图说明书(1:20万)——东江口幅.1966.
    [53]杨永成,曹建科,崔建堂,等.区域地质调查报告(1:5万)——石嘴子、凤凰咀幅.1990.
    [54]王延华,崔建堂,等.地质图说明书(1:5万)——东川街幅.1996.
    [55]陕西省地质调查院.中华人民共和国区域地质调查报告(1:25万)——镇安县幅.2003.
    [56]张国伟,等.秦岭造山带的形成与演化[M].西安:西北大学出版社,1988:1-192.
    [57]张国伟,周鼎武.秦岭杂岩和秦岭造山带[A].刘国惠,张寿广.秦岭-大巴山地质论文集(一)——变质地质[C].北京科学技术出版社,1990:11-14.
    [58]安三元,张维吉,杨家喜,等.陕西太白地区秦岭群的岩石组合与变质作用[A].刘国惠,张寿广秦岭-大巴山地质论文集(一)[C].北京科技出版社,1990:25-39.
    [59]陈丹玲,刘良,周鼎武,等.东秦岭松树沟超镁铁质岩中辉石巨晶的成因和40Ar_39Ar定年及其地质意义[J].岩石学报,2002,18(3):355-362.
    [60]闫全人,王宗起,闫臻,等.秦岭造山带宽坪群中的变铁镁质岩的成因、时代及其构造意义[J].地质通报,2008,27(9):1475-1492.
    [61]孙勇,卢欣祥,韩松,等.北秦岭早古生代二郎坪蛇绿岩片的组成和地球化学[J].中国科学D辑:地球科学,1996,26(增刊):56-63.
    [62]张本仁,高山,张宏飞,等.秦岭造山带地球化学[M].北京:科学出版社,2002:1-187.
    [63]和政军,牛宝贵,任纪舜.陕南山阳地区刘岭群砂岩岩石地球化学特征及其构造背景分析[J].地质科学,2005,40(4):594-607.
    [64]秦克令,宋述光,何世平.陕西勉略宇区鱼洞子花岗岩-绿岩地体地质特征及其含金性[J].西北地质科学,1992,13(1):65-74.
    [65]魏春景,王式光,张立飞,等.安徽省大别山东段江岭地区榴辉岩及其围岩的变质作用研究[J].高校地质学报,1998,4(3):262-270.
    [66]王娟.佛坪地区印支期花岗岩地球化学研究及研究的地质意义——西北大学硕士学位论文.2006.
    [67]李曙光.大陆俯冲化学地球动力学[J].地学前缘,1998,5(4):211-229.
    [68]凌文黎,任邦方,段瑞春,等.南秦岭武当山群、耀岭河群及基性侵入岩群锆石U-Pb同位素年代学及其地质意义[J].科学通报,2007,52(12):1445-1456.
    [69]祝禧艳,陈福坤,王伟,等.豫西地区秦岭造山带武当群火山岩和沉积岩锆石U-Pb年龄[J].地球学报,2008,29(6):817-829.
    [70]蔡志勇,罗洪,熊小林,等.武当群上部变沉积岩组时代归属问题:单锆石U-Pb年龄的制约[J].JOURNAL OF STRATIGRAPHY,2006,30(1):60-63.
    [71]李怀坤,陆松年,陈志宏,等.南秦岭耀岭河群裂谷型火山岩锆石U-Pb年代学[J].地质通报,2003,22(10):775-781.
    [72]蔡志勇,熊小林,罗洪,等.武当地块耀岭河群火山岩的时代归属:单锆石U-Pb年龄的制约[J].地质学报,2007,81(5):620-625.
    [73]夏林圻,夏祖春,徐学义.南秦岭中-晚元古代火山岩性质与前寒武纪大陆裂解[J].中国科学(D辑),1996,26(3):237-243.
    [74]周鼎武,张成立,刘良,等.武当地块基性岩墙群的Sm-Nd定年及相关问题讨论[J].地球学报,1998,19(1):25-30.
    [75]张成立,周鼎武,刘颖宇.武当山地块基性岩墙群地球化学研究及其大地构造意义[J].地球化学,1999,28(2):126-135.
    [76]凌文黎,程建萍,王歆华,等.武当地区新元古代岩浆岩地球化学特征及其对南秦岭晋宁期区域构造性质的指示[J].岩石学报,2002,18(1):25-36.
    [77]凌文黎,王歆华,程建萍,等.南秦岭镇安岛弧火山岩的厘定及其地质意义[J].地球化学,2002,3 1(3):222-229.
    [78]苏春乾,胡建明,李勇,等.南秦岭地区存在两种不同构造属性的耀岭河群[J].岩石矿物学杂志,2006,25(4):287-298.
    [79]彭海练,杨永成,王惠民,等.镇安县云镇小磨岭岛弧火山岩地球化学及其大地构造意义[J].陕 西地质,2004,22(1):11-16.
    [80]杨恺,刘树文,李秋根,等.秦岭柞水岩体和东江口岩体的锆石U-Pb年代学及其意义[J].北京大学学报(自然科学版),2009,45(5):841-847.
    [81]袁洪林,吴福元,高山,等.东北地区新生代侵入岩的激光锆石探针U-Pb年龄测定与稀土元素成分分析[J].科学通报,2003,48(4):511-520.
    [82]Kosler J, Fonneland H, Sylvester P, et al. U-Pb dating of detrital zircons for sediment provenance studies a comparison of laser ablation ICPMS and SIMS techniques. Chemical Geology,2002,182: 605-618.
    [83]宋彪,张玉海,万渝生,等.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论[J].地质论评,2002,48(增刊):26-30.
    [84]Belousova E A, Griffin W L, O'Reilly S Y, et al. Igneous zircon:trace element composition as an indicator of source rock type[J]. Contrib. Mineral. Petrol.,2002,143:602-622.
    [85]Hidaka H, Shimizu H, Adachi M. U-Pb geochronology and REE geochemistry of zircons from Palaeoproterozoic Paragneiss clasts in the Mesozoic Kamiaso conglomerate, central Japan:evidence for an Archean Provenance[J]. Chemical Geology,2002,187:279-293.
    [86]Harris N B W, Pearce J A, Tindle A G. Geochemical characteristics of collision-zone Magmatism[C]// Coward M P, Reis A C. Collision Tectonics. Spec. Publ. Geol. Soc,1986,19:67-81.
    [87]Fitton J G, James D, Lee Man W P. Basic Magmatism associated with the late Cenozoic extension in the western United States:compositional variations in space and time [J]. J. Geophys. Res.,1991, 96:13693-13711.
    [88]夏林圻,夏祖春,徐学义,等.利用地球化学方法判别大陆玄武岩和岛弧玄武岩[J].岩石矿物学杂志,2007,26(1):77-89.
    [89]Pearce J A. Trace element characteristics of lavas from destructive plate boundaries [A]. In:Thorps R S.(ed). Andesites [C]. New York:John Wiley and Sons,1982,525-548.
    [90]Pearce J A, N B W Harris, A G Tindle. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Petrology,1984,54(4):956-983.
    [91]吴福元,李献华,郑永飞,等.Lu-Hf同位素体系及其岩石学应用[J].岩石学报,2007,23(2):185-220.
    [92]张成立,王晓霞,王涛,等.东秦岭沙河湾岩体成因——来自锆石U-Pb定年及其Hf同位素的证据[J].西北大学学报(自然科学版),2009,39(3):453-465.
    [93]侯可军,李延河,邹天人,等.LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用[J].岩石学报,2007,23(10):2595-2604.
    [94]Chappell BW and White AJR. I and S type granites in the Lachlan Fold Belt[J]. Trans. Royal Soc. Edinburgh:Earth Sci.,1992.83:1-26.
    [95]朱弟成,莫宣学,王立全,等.西藏冈底斯东部察隅高分异I型花岗岩的成因:锆石U-Pb年代学、地球化学和Sr-Nd-Hf同位素约束[J].中国科学D辑,2009,39(7):833-848.
    [96]李献华,李武显,李正祥.再论南岭燕山早期花岗岩的成因类型与构造意义[J].科学通报,2007,52(9):981-991.
    [97]张旗,潘国强,李承东,等.花岗岩构造环境问题:关于花岗岩研究的思考之三[J].岩石学报,2007,23(7):2683-2698.
    [98]张旗,潘国强,李承东,等.花岗岩研究的误区——关于花岗岩研究的思考之五[J].岩石学报,2008,24(10):2212-2218.
    [99]都城秋穗,久城育夫.岩石学[M].北京:科学出版社,1984:1-340.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700