采空区风流分布数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
回采工作面采空区漏风对于采空区遗煤自燃发火和采空区瓦斯分布及其涌出有重要的影响。渗透率是解算采空区流场的关键参数,渗透率的变化对采空区的流场有很大的影响,而综采支架的存在,影响工作面向采空区的漏风。
     根据多孔介质渗流理论,利用计算流体力学软件Fluent,模拟了不同渗透率大小、不同渗透率分布及是否有综采支架三种情况下的采空区的流场,通过对采空区三带、漏风量、漏风风速等的比较,分析研究了采空区渗透率变化及采面是否有综采支架的不同情况对漏风流场解算结果的影响。结果表明采空区渗透率连续分布条件下的漏风分布与假设分段均匀分布和均匀分布条件下的漏风量、漏风风速分布和自燃三带的位置和宽度有很大的差别。当渗透率均匀分布时漏风量小,自燃带靠近工作面。而采空区分区处理时,由于渗透率在采空区分区界面上不连续,使速度在分区界面上产生跳跃;有综采支架时,工作面向采空区的漏风量过小,致使采空区的速度很小,自燃带靠近工作面。为了得到接近实际采空区的风流流动规律,解算采空区流场既要考虑综采支架,还要采用更能如实反映采空区岩石冒落和压实规律的渗透率分布。
Air leakage from coal mining face to gob has great influence on gas distribution and emission as well as spontaneous combustion in waste. Permeability is a key factor to air leakage, its value and distribution influences greatly the distribution of air leakage. The mechanized support influence air leakage from working face to gob.
     According to the percolation theory of porous media, computational fluid dynamics software Fluent is applied respectively to simulate the distribution of air leakage in gob at various supposes of permeability distribution, permeability magnitude and mechanized support. The paper analyses the influence factors on leakage flow field solution, such as gob permeability and fully mechanized support. It shows that the quantity of air leakage and distribution of air velocity, three zones of spontaneous combustion vary largely under condition of different distributions of permeability, that is, continuous distribution, three uniform distribution zones and one even distribution zone. When gob permeability is one even distribution zone, quantity of air leakage is small and spontaneous combustion zone is close to the working face. In case of dividing the gob into three zones, in each zone the permeability distributing uniformly, it leads that the air leakage velocity jump at the boundary of zones because the permeability distribution is not continuous. When working face has mechanized support, air leakage quantity is small, velocity is low in goaf, and spontaneous combustion zone is more approach to working face. Therefore, distribution of permeability and mechanized support should be considered carefully as precise as possible in order to get the distribution in gob.
引文
[1]谢振峰.浅谈煤矿安全管理的现状[J].科技创新导报,2008(18):91-91.
    [2]宋元明,任锦彪.煤矿井下灾害调查与研究[J].劳动保护,2005(3) :86-88.
    [3]国家安全生产监督管理总局,国家煤矿安全监察局.煤矿安全规程[M].北京:煤炭工业出版社,2007.
    [4]程伟.煤与瓦斯突出危险性预测及防治技术[M].徐州:中国矿业大学出版社,2003.
    [5]潘伟尔. 2007年煤矿安全状况评析[J].煤炭经济研究,2008(4):4-7.
    [6]余明高.煤矿火灾防治理论与技术[M].郑州:郑州大学出版社,2008.
    [7]蔡永乐.矿井内因火灾防治理论与实践[M].北京:煤炭工业出版社,2001.
    [8]张国枢.通风安全学(修订)[M].徐州:中国矿业大学出版社,2007.
    [9]苏文叔.高瓦斯矿井综采工作面合理通风方式的讨论[J].煤炭工程师,1989(4):22-27.
    [10]林柏泉,周世宁,张仁贵. U形通风工作面采空区上隅角瓦斯治理技术[J].煤炭学报,1997,22(5):509-513.
    [11]王文选.浅析宣东矿综采工作面瓦斯涌出规律及通风方式优选[J].河北煤炭,2007(6):16-17.
    [12]李宗翔,孙学强,贾进章. Y形通风采空区自燃与有害气体排放的数值模拟[J].安全与环境学报,2005,5(6):108-112.
    [13]王彦凯,李兵等. W型和U型通风方式的比较[J].煤,2000,9(6):46-47.
    [14]刘卫群,缪协兴.综放开采J型通风采空区渗流场数值分析[J].岩石力学与工程学报,2006,25(6):1152-1158.
    [15]简俊杰,吴增光.“J+E"型通风方式在王庄煤矿的应用[J].煤矿开采,2008,13(1):75-76.
    [16]王凯,吴伟阳. J型通风综放采空区流场与瓦斯运移数值模拟[J].中国矿业大学学报,2007,36(3):277-282.
    [17] Wesely R. Airflow at heading faces with forcing auxiliary ventilation [A]. Howes M. Proc. 3rd, Int. Mine Ventilation Congr. [C]. London: Institute of Mining and Metallurgy, 1984.
    [18] Uchino K. and Inoue, M. Auxiliary ventilation at heading faces by a fan[A]. Rava V.. Proc. 6th Int. Mine Ventilation Congr. [C]. Littleton: Society for Mining, Metallurgy, and Exploration, Inc., 1997, p493-496.
    [19] Paul, Bradley C.Procarione, J.A. McCarte .Prediction of air flows through broken rock by finite difference grids.M.K. Source: Proc 4th US Mine Vent Symp, 1988, p140-144.
    [20] Heerden, J. and Sullivan, P. (1993) The application of CFD for evaluation of dust suppression and auxiliary ventilating systems used with continuous miners, 6th US Mine Ventilation Symp., Salt Lake City, p293-297.
    [21] Moloney, K.W., Lowndes, I. S., Stockes, M. R. and Hargrave, G. (1997) Studies on alternative methods of ventilation using computational fluid dynamics, scale and full scale gallery tests, Proc. 6th Int. Mine Ventilation Congr., Pittsburgh, p497-503.
    [22]魏引尚,常心坦.瓦斯在通风巷道中流动分布情况研究[J].西安科技大学学报,2005,25(3):271-273.
    [23]高建良,王春霞,徐昆伦.贯通巷道风流流场数值模拟若干关键问题研究[J].中国安全科学学报,2009(8):21-27.
    [24]赵阳升,秦惠增.煤层瓦斯流动的固—气耦合数学模型及数值解法的研究[J].固体力学学报,1994,15(1):49-57.
    [25]梁冰,刘建军.非等温条件下煤层中瓦斯流动的数学模型及数值解法[J].岩石力学与工程学报,2000,19(1):1-5.
    [26]高建良,吴金刚.煤层瓦斯流动数值解算时空步长的选取[J].中国安全科学学报,2006,16(7):9-12.
    [27]李云浩,杨清岭,杨鹏.煤层瓦斯流动的数值模拟及在煤壁的应用[J].中国安全生产科学技术,2007,3(2):74-77.
    [28] Nakayama, S., Uchino, K. and Inoue M. Analysis of ventilation air flow at heading face by computational fluid dynamics [J]. Shigen-To-Sozai, 1995,111 (4): 225-230.
    [29] Nakayama, S., Uchino, K. and Inoue M. 3 dimensional flow measurement at heading face and application of CFD [J]. Shigen-To-Sozai, 1996, 112(9): 639-644.
    [30] Nakayama S, Simulation of Methane Gas Distribution by Computational Fluid Dynamics. Proceeding in Mining Science and Technology, 1999.
    [31] Jianliang Gao.Simulation of Thermal Environment Conditions in Heading Face with Forcing Auxiliary Ventilation. Shigen-to-Sozaiv.2002.
    [32] Shinsuke,Nakayama Simulations of methane gas distribution at a heading face. Shigen-to-Sozaiv. 1998.
    [33] Tomita, S. Full-scale model experiment on the airflow at a driving face with forcing auxiliary ventilation [D]. Fukuoka: Kyushu University, 1995.
    [34] Rao, S., Baafi, E. Y., Aziz, N. I. and Singh, R. N. (1993) Three dimensional numerical modelingof air velocity and dust control techniques in a longwall face, 6th US Mine Ventilation Symp., Salt Lake City, p287-292.
    [35] T.X.Ren. CFD Modeling of Methane Flow around Longwall Coal Faces. Proceedings of the 6th international mine ventilation congress, 1997.
    [36] I.G.Ediz. A Numerical Prediction Method for Methane Flow through Strata adjacent to Longwall Coal Faces. Proceeding in Mining Science and Technology, 1999.
    [37]高建良,张生华.压入式局部通风工作面风流分布数值模拟研究[J].中国安全科学学报,2004,14(1):93-96.
    [38]张瑞林,高建良.设瓦斯巷综放工作面瓦斯分布及分流特征[J].煤炭科学技术,2001,29(7):24-26.
    [39]孙继平,唐亮,陈伟等.回采工作面瓦斯分布及传感器部署[J].系统仿真学报,2008,20(4):823-825,840.
    [40] Michael, Vlasseva. On void aerodynamics in a porous media of a gob area. Elena Source: Proceedings of the 7th US Mine Ventilation Symposium, 1995:275-280.
    [41] A.D.Jones. A Physical Scale Model of Flows in the Waste of a Retreat Longwall Coalface. Proceedings of the 6th international mine ventilation congress, 1997.
    [42]杜礼明,杨运良.采空区三维非稳定流场的数学模型及热力风压的计算[J].焦作工学院学报,1999,18(3):169-173.
    [43]柏发松.采空区流场的动力相似特性及应用研究[J].焦作工学院学报,1997,16(3):69-73.
    [44]柏发松.采空区瓦斯上浮问题的实验研究[J].阜新矿业学院学报,1997,16(4):412-416.
    [45]李宗翔,海国治,秦书玉.采空区风流移动规律的数值模拟与可视化显示[J].煤炭学报,2001,26(1):76-80.
    [46]郭嗣琮,陈刚.不规则介质采场模糊渗流的数学模型[J].辽宁工程技术大学学报,2001,20(5):666-668.
    [47]郭嗣琮.采场模糊渗流定解问题的可表示性[J].辽宁工程技术大学学报,2003,20(1):127-130.
    [48]郭嗣琮.不规则采场气体渗流问题的模糊数值解研究[J].科学技术与工程,2004,4(2):99-102.
    [49]陈东明,刘见中.煤矿采空区瓦斯流动分布规律分析[J].中国地质灾害与防治学报,2003,14(1):81-84.
    [50]李宗翔,纪书丽,题正义.采空区瓦斯与大气两相混溶扩散模型及其求解[J].岩石力学与工程学报,2005,24(16):2971-2976.
    [51]洪林,周西华,周令昌等.采空区气体二维流动的数学模型及其有限容积法[J].辽宁工程技术大学学报,2006,25:4-6.
    [52]李诚玉,周西华,张丽丽等.采空区瓦斯运移的数学模型[J].矿业快报,2007,23(8):17-19.
    [53] J·贝尔.多孔介质流体动力学[M].李竞生,陈崇希译.北京:中国建筑工业出版社,1983.
    [54]刘伟,范爱武,黄晓明.多孔介质传热传质理论与应用.北京:科学出版社,2006.12.
    [55]王福军.计算流体动力学分析-CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [56] Szlazak J. The determination of a co-efficient of longwall gob permeability[J].Archives of mining sciences, 2001,46(4):451-468.
    [57]邓军,徐精彩,文虎.采空区自然发火动态数学模型研究[J].湘潭矿业学院学报,1998,13(1):11-16.
    [58]周西华.双高矿井采场自燃与爆炸特性及防治技术研究[D].阜新:辽宁工程技术大学[博士论文], 2006.
    [59]徐精彩.煤自燃危险区域判定理念[M].北京:煤炭工业出版社,2001.12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700