Shp2在口腔鳞癌中的表达及对其生物学行为的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     头颈部鳞状细胞癌(Head and neck squamous cell carcinoma, HNSCC)主要影响口腔、舌咽、口咽、喉部及涎腺等,在常见的恶性肿瘤类型中位居第六,而口腔颌面部恶性肿瘤中约80%以上为口腔鳞状细胞癌(oral squamous cell carcinoma, OSCC)。尽管近几年我们在OSCC的治疗以及发病机制研究方面取得了一定的进展,但是在过去的几十年中其存活率仍没有明显改善,平均每年确诊的病例中仍有约50%的死亡率。蛋白酪氨酸磷酸酶Shp2(Src homology phosphotyrosyl phosphatase2)由PTPN11基因编码,广泛地表达于机体各种组织和细胞中,其含有2个SH2结构区域,分别为N-SH2、C-SH2,及一个PTP结构区域,其作为细胞因子、生长因子及其他胞外刺激因素的下游信号分子,参与细胞增殖、分化、迁移等诸多细胞重要的生命活动。研究表明,Shp2的编码基因PTPN11存在大量与人类疾病相关的遗传多态性与突变位点,作为重要的节点分子,Shp2在血液系统恶性肿瘤如白血病及实体肿瘤如乳腺癌、肺癌、胃癌、肝癌等的发生发展过程中发挥着重要的调控作用,是其肿瘤治疗的潜在分子靶点。目前国内外关于Shp2在口腔鳞癌中的表达及作用的研究鲜见报道。因此,本实验从临床标本、体外细胞和分子机制三个层面研究Shp2在口腔鳞癌中的表达及对其生物学行为的影响。首先通过临床病例标本检测口腔鳞癌组织及癌旁组织中Shp2的表达差异,并进一步分析其表达水平与患者的临床资料之间的关系,探讨Shp2在口腔鳞癌中的临床意义。其次,应用RNA干扰(RNA interference, RNAi)技术,构建Shp2慢病毒干扰载体,抑制舌鳞状细胞癌细胞SCC-4的Shp2基因表达,探讨Shp2基因沉默后对SCC-4细胞增殖、凋亡及侵袭能力的作用。同时研究Shp2基因沉默后对细胞凋亡相关蛋白的影响,初步阐明Shp2在口腔鳞癌细胞凋亡发生中的分子机制。本研究将为口腔鳞癌临床诊断、预后及治疗的新靶点提供新的思路和理论基础。
     方法:
     1.收集临床口腔鳞癌组织蜡块及临床有关资料,采用免疫组织化学染色方法观察Shp2蛋白在口腔鳞癌组织中的表达,并对免疫组化结果进行评分,评估Shp2的表达与患者的年龄、性别、烟酒暴露、肿瘤部位、肿瘤大小、临床分期、淋巴转移及病理分级等的相关性。
     2.收集18例临床手术中新鲜的口腔鳞癌及相应的癌旁正常组织,采用WesternBlot方法,进一步验证Shp2蛋白在口腔鳞癌组织及癌旁正常组织中的表达差异。
     3.于Shp2PTPN11基因编码区选择4个siRNA靶点合成4对shRNA干扰序列,分别与慢病毒载体连接,构建Shp2基因RNA干扰慢病毒载体,筛选出最佳干扰组,显微镜下观察Shp2慢病毒干扰载体感染目的细胞人舌鳞状细胞癌细胞SCC-4的效率。应用Real Time PCR及Western blot检测其干扰效率,筛选出最佳干扰组,建立稳定抑制Shp2基因表达的SCC-4细胞株,为探讨Shp2在口腔鳞癌发生中的作用提供细胞模型。
     4.采用四甲基偶氮唑盐(MTT)比色法观察Shp2基因沉默后对SCC-4细胞24h、48h、72h及96h增殖率的影响。5.应用流式细胞技术(Annexin V-APC/7-ADD染色法)及Westen Blot方法研究Shp2基因沉默后对SCC-4细胞凋亡的影响及其凋亡相关蛋白p53、Bax及Bcl-2的变化。6.采用Transwell小室侵袭实验,通过苏木精染色和细胞计数观察Shp2基因沉默后对SCC-4细胞体外侵袭能力的影响。结果:1.免疫组化结果发现,在口腔正常黏膜组织中,Shp2表达阴性或者呈弱表达,而在口腔鳞癌临床样本中高表达;进一步临床资料统计分析表明,在口腔鳞癌中Shp2蛋白的表达与患者的性别、年龄、是否吸烟、饮酒无关,与肿瘤的发生部位和体积大小亦无关。然而,临床分期在III/IV期的肿瘤Shp2的表达较Ⅰ/Ⅱ期的强,在有淋巴转移的病例中,Shp2的表达显著增加,统计学上均有显著性差异(p<0.05)。
     2.临床新鲜口腔鳞癌组织进一步证明,除一例以外,Shp2在口腔鳞癌组织中的表达明显高于癌旁正常组织中的表达(p<0.05),进一步验证了免疫组化结果。
     3. Real-time PCR和Western blot检测结果显示Shp2-shRNA3干扰效率最佳,SCC-4细胞中Shp2基因及蛋白表达明显降低,应用RNAi设计的慢病毒干扰载体具有较好的干扰效果。
     4.MTT法测定发现,Shp2基因沉默后,96h内SCC-4细胞的生长明显慢于对照组,出现明显的增殖抑制。
     5.采用nnexin-V-APC/7-ADD双荧光标记,流式细胞仪检测细胞凋亡发现,转染Shp2慢病毒于扰载体72h后的SCC-4细胞中,细胞凋亡率明显增加,同对照组正常细胞相比,差异具有显著性(p<0.05)。Western Blot结果显示,凋亡相关通路蛋白p53、Bax表达增加,Bcl-2表达下降。
     6.[ranswell小室侵袭实验结果显示,转染Shp2慢病毒干扰载体72h后的SCC-4细胞的侵袭能力与对照组相比较明显下降,差异具有显著性(p<0.05)。
     结论:
     Shp2在口腔鳞癌组织中的表达明显高于癌旁正常组织,过表达的Shp2与口腔鳞癌的临床分期及淋巴转移密切相关;Shp2基因对口腔鳞癌细胞的生长起促进作用,同时可提高肿瘤细胞的侵袭能力;Shp2能抑制口腔鳞癌细胞凋亡,凋亡相关蛋白p53、Bax及bcl-2可能参与其凋亡调控机制。以上结果提示,Shp2与口腔鳞癌的进展和转移有关,在口腔鳞癌可能发挥重要的促癌基因作用,是口腔鳞癌淋巴结转移的危险因子,可作为口腔鳞癌临床诊断、判断预后、诊疗方案制定及肿瘤靶向治疗的潜在生物标记物和分子指标。
Objective:
     Head and neck squamous cell carcinoma (HNSCC) is a devastating disease, which accounts for3%f all malignancies and is the sixth most common cancer worldwide. It is a disease primarily affecting the oral cavity, hypopharynx, oropharynx, larynx, and salivary glands. More than80%f HNSCC are oral squamous cell carcinoma (OSCC), which is one of the undertreated and understudied cancer types and remains a lethal disease in over50%of the cases diagnosed annually. Although we made appreciable advances in the treatment and understanding of the underlying molecular pathogenesis of OSCC, survival rates have not improved significantly over the last several decades. Therefore, there is increasing concern about determining novel molecular targets for the treatment of OSCC. Cellular activities, such as cell survival, proliferation, and differentiation, are tightly controlled by intracellular signaling processes initiated by extracellular signals, in which protein phosphorylation (conducted by protein kinases) and dephosphorylation (conducted by protein phosphatases) are necessary events. Src homology phosphotyrosyl phosphatase2(Shp2) encoded by the PTPN11gene in humans, is a ubiquitously expressed protein tyrosine phosphatase (PTP) with two N-terminal Src homology2(SH2) domains (N-SH2, C-SH2, respectively) and a catalytic (PTP) domain that acts as an important transducer of the MAPK pathway by growth factors, cytokines, and hormones. Autosomal-dominant mutations in the human gene PTPN11have been detected in nearly50%of patients with Noonan syndrome who have higher risk of suffering juvenile myelomonocytic leukemia (JMML), and somatic mutations constitutively activating Shp2have also been detected in several types of leukemias. Meanwhile, high level of Shp2expression has been reported in several types of cancers, such as breast cancer, gastric cancer, cervical cancer, prostate cancer, and melanomas, which indicated that Shp2functions as a proto-oncogene. Interestingly, the opposite effect of Shp2on tumorigenesis was found in hepatocellular carcinoma, implying that Shp2acted as a tumor suppressor. However, so far there is a lack of information concerning the expression and clinical significance of Shp2in OSCC. Therefore, this study investigated the clinical significance of Shp2protein expression in OSCC and elucidated the effect of Shp2gene on biological behaviours of in vitro. The correlation between the expression level and clinical parameters in OSCC tissues was analyzed. The biological significance in OSCC cells was elucidated preliminarily.
     Methods:
     1. Seventy paraffin-embedded specimens were retrospectively recruited and immunohistochemical method was used to detect the expression of Shp2in OSCC. Based on the score of immunochemistry, the correlation between the expression of Shp2and various clinicopathologic parameters (age, sex, tumor size, tumor location, clinical stage, histological grade and lymphatic metastasis) was investigated.
     2. Eighteen cases of cancerous and normal tissues were obtained from patients with OSCC. These samples were histologically confirmed by frozen sections to have OSCC and used for Western blot analysis of Shp2expression.
     3. To knockdown Shp2expression in cell lines, we designed and synthesized Shp2shRNAs according to Shp2cDNA sequences (Gen-Bank accession NM_002834) from Shanghai Genomeditech Co. Ltd. These oligonucleotides were then subcloned into a lentiviral vector (pGMLV-SB1RNAi) and after estimating a multiplicity of infection (MOI) using a standard procedure, these viruses were used to infect SCC-4cells using an oligofectamine transfection reagent. Thereafter, the cells were observed under a fluorescence microscope and harvested on the4th,7th and10th day after infection. The efficiency of Shp2knockdown in SCC-4cells was confirmed by using real time PCR and Western blot.
     4. The proliferation rate of SCC-4cells at24h,48h,72h and96h after Shp2-shRNA3lentivirus vector and empty vector infection was investigated by MTT dection.
     5. Cells were collected after lentivirus vector and empty vector infection for72h and then5μl PE Annexin V and5μl7-ADD were added into cell solutions and incubated in the dark for30min. The apoptotic rate was detected by a flow cytometer. P53, Bax and Bcl-2, were detected for further demonstrating the mechanism involved in apoptosis.
     6. SCC-4cells were transfected with Shp2lentiviral vector and empty vector for investigating the effect of Shp2on cell invasion ability by tumor cell transwell invasion assay.
     Results:
     1. Immunohistochemistry results showed that in the adjacent normal epithelia, Shp2protein was either absent or weakly expressed, whereas the average total score of Shp2protein levels in OSCC tissues was significantly higher than that in adjacent normal epithelia. Furthermore, there was significant association of Shp2expression with tumor clinical stage and lymph node metastasis.
     2. The expression of Shp2protein in the fresh OSCC tissues was higher than that in the adjacent non-tumor tissue, except in one sample.
     3. We produced lentiviruses carrying Shp2shRNA to knockdown Shp2expression in SCC-4cells. Real-time PCR data showed that the levels of Shp2expression in Shp2shRNA1,2, and3subgroups were remarkably reduced by39%,47%, and75%, respectively. Western blot analysis revealed that the levels of Shp2protein expression in these three subgroups were also significantly reduced.
     4. The effect of Shp2knockdown on regulation of SCC-4cell viability was determined by using MTT assay. The result showed that the Shp2shRNA3lentivirus-infected cell had a reduction in cell viability compared with the control cells (p<0.05).
     5. Annexin V/7-ADD staining by flow cytometry showed that the reduced cell viability was due to induction of apoptosis (p<0.05). The western blot results showed that the expression of p53protein was increased upon Shp2knockdown in SCC-4cells. Meanwhile, Shp2knockdown was able to induce increase in expression of Bax protein, but decreased the expression of Bcl-2protein.
     6. Knockdown of Shp2expression on SCC-4cells significantly reduced tumor cell invasive capacity compared to the control cells (p<0.05).
     Conclusions:
     Expression of Shp2protein was significantly upregulated in OSCC tissues compared to the normal tissues and Shp2overexpression was associated with advanced tumor clinical stages and lymph node metastasis in vivo. Knockdown of Shp2expression in vitro inhibited OSCC cell viability and invasion but induced apoptosis by regulating expression of the apoptosis-related proteins. In summary, these results demonstrated that Shp2may be an oncogene and promote OSCC lymph node metastasis. These data also suggest that Shp2might be further evaluated as a biomarker for prediction of OSCC progression and that target of Shp2may be a novel therapeutic strategy for clinical control of OSCC in future.
引文
1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D:Global cancer statistics. CA Cancer J Clin 2011,61(2):69-90.
    2. Oliveira LR, Ribeiro-Silva A, Costa JPO, Simoes AL, Matteo MASD, Zucoloto S:Prognostic factors and survival analysis in a sample of oral squamous cell carcinoma patients. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology 2008,106(5):685-695.
    3. Gonzalez-Moles MA, Scully C, Ruiz-Avila I:Molecular findings in oral premalignant fields:update on their diagnostic and clinical implications. Oral Dis 2012,18(1):40-47.
    4. Mehrotra R, Gupta DK:Exciting new advances in oral cancer diagnosis: avenues to early detection. Head Neck Oncol 2011,3:33.
    5. Lo Muzio L, Pannone G, Santarelli A, Bambini F, Mascitti M, Rubini C, Testa NF, Dioguardi M, Leuci S, Bascones A et al: Is expression of p120ctn in oral squamous cell carcinomas a prognostic factor? Oral Surg Oral Med Oral Pathol Oral Radiol 2013,115(6):789-798.
    6. Mashhadiabbas F, Mahjour F, Mahjour SB, Fereidooni F, Hosseini FS:The immunohistochemical characterization of MMP-2, MMP-10, TIMP-1, TIMP-2, and podoplanin in oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2012,114(2):240-250.
    7. Lee JI, Jin BH, Kim MA, Yoon HJ, Hong SP, Hong SD:Prognostic significance of CXCR-4 expression in oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009,107(5):678-684.
    8. Ogane S, Onda T, Takano N, Yajima T, Uchiyama T, Shibahara T:Spleen tyrosine kinase as a novel candidate tumor suppressor gene for human oral squamous cell carcinoma. Int.J Cancer 2009,124(11):2651-2657.
    9. Zhang J, Cao W, Xu Q, Chen WT:The expression of EMP1 is downregulated in oral squamous cell carcinoma and possibly associated with tumour metastasis. J Clin Pathol 2011,64(1):25-29.
    10. Dong Z, Liu S, Zhou C, Sumida T, Hamakawa H, Chen Z, Liu P, Wei F: Overexpression of Id-1 is associated with tumor angiogenesis and poor clinical outcome in oral squamous cell carcinoma. Oral Oncol 2010, 46(3):154-157.
    11. Pawson T, Kofler M:Kinome signaling through regulated protein-protein interactions in normal and cancer cells. Curr Opin Cell Biol 2009, 21(2):147-153.
    12. Lim WA, Pawson T:Phosphotyrosine signaling:evolving a new cellular communication system. Cell2010,142(5):661-667.
    13..
    14. Geest CR, Coffer PJ:MAPK signaling pathways in the regulation of hematopoiesis. JLeukoc Biol 2009,86(2):237-250.
    15. Kuida K, Boucher DM:Functions of MAP kinases:insights from gene-targeting studies. JBiochem 2004,135(6):653-656.
    16. Xu D, Qu CK:Protein tyrosine phosphatases in the JAK/STAT pathway. Front Biosci 2008,13:4925-4932.
    17. Gu J, Han T, Ma RH, Zhu YL, Jia YN, Du JJ, Chen Y, Jiang XJ, Xie XD, Guo X:SHP2 promotes laryngeal cancer growth through the Ras/Raf/Mek/Erk pathway and serves as a prognostic indicator for laryngeal cancer. Int J Oncol 2014,44(2):481-490.
    18. Dance M, Montagner A, Salles JP, Yart A, Raynal P:The molecular functions of Shp2 in the Ras/Mitogen-activated protein kinase (ERK1/2) pathway. Cell Signal 2008,20(3):453-459.
    19. Selimoglu-Buet D, Gallais I, Denis N, Guillouf C, Moreau-Gachelin F: Oncogenic kit triggers Shp2/Erkl/2 pathway to down-regulate the pro-apoptotic protein Bim and to promote apoptosis resistance in leukemic cells. PLoS One 2012,7(11):e49052.
    20. Chan G, Kalaitzidis D, Neel BG:The tyrosine phosphatase Shp2 (PTPN11) in cancer. Cancer Metastasis Rev 2008,27(2):179-192.
    21. Mohi MG, Neel BG:The role of Shp2 (PTPN11) in cancer. Curr Opin Genet Dev 2007,17(1):23-30.
    22. Keilhack H, David FS, McGregor M, Cantley LC, Neel BG:Diverse biochemical properties of Shp2 mutants. Implications for disease phenotypes. JBiol Chem 2005,280(35):30984-30993.
    23. Martinelli S, Carta C, Flex E, Binni F, Cordisco EL, Moretti S, Puxeddu E, Tonacchera M, Pinchera A, McDowell HP et al: Activating PTPN11 mutations play a minor role in pediatric and adult solid tumors. Cancer Genet Cytogenet 2006,166(2):124-129.
    24. Lee JS, Tartaglia M, Gelb BD, Fridrich K, Sachs S, Stratakis CA, Muenke M, Robey PG, Collins MT, Slavotinek A:Phenotypic and genotypic characterisation of Noonan-like/multiple giant cell lesion syndrome. J Med Genet 2005,42(2):ell.
    25. Tartaglia M, Gelb BD, Zenker M:Noonan syndrome and clinically related disorders. Best Pract Res Clin Endocrinol Metab 2011,25(1):161-179.
    26. Tartaglia M, Mehler EL, Goldberg R, Zampino G, Brunner HG, Kremer H, van der Burgt I, Crosby AH, Ion A, Jeffery S et al: Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat Genet 2001,29(4):465-468.
    27. Tartaglia M, Gelb BD:Noonan syndrome and related disorders:genetics and pathogenesis. Annu Rev Genomics Hum Genet 2005,6:45-68.
    28. Loh ML, Vattikuti S, Schubbert S, Reynolds MG, Carlson E, Lieuw KH, Cheng JW, Lee CM, Stokoe D, Bonifas JM et al: Mutations in PTPN11 implicate the SHP-2 phosphatase in leukemogenesis. Blood 2004, 103(6):2325-2331.
    29. Tartaglia M, Martinelli S, Iavarone I, Cazzaniga G, Spinelli M, Giarin E, Petrangeli V, Carta C, Masetti R, Arico M et al: Somatic PTPN11 mutations in childhood acute myeloid leukaemia. Br J Haematol 2005,129(3):333-339.
    30. Bentires-Alj M, Paez JG, David FS, Keilhack H, Halmos B, Naoki K, Maris JM, Richardson A, Bardelli A, Sugarbaker DJ et al: Activating mutations of the noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia. Cancer Res 2004,64(24):8816-8820.
    31. Loh ML, Reynolds MG, Vattikuti S, Gerbing RB, Alonzo TA, Carlson E, Cheng JW, Lee CM, Lange BJ, Meshinchi S:PTPN11 mutations in pediatric patients with acute myeloid leukemia:results from the Children's Cancer Group. Leukemia 2004,18(11):1831-1834.
    32. Tartaglia M, Martinelli S, Cazzaniga G, Cordeddu V, Iavarone I, Spinelli M, Palmi C, Carta C, Pession A, Arico M et al: Genetic evidence for lineage-related and differentiation stage-related contribution of somatic PTPN11 mutations to leukemogenesis in childhood acute leukemia. Blood 2004,104(2):307-313.
    33. Tartaglia M, Kalidas K, Shaw A, Song X, Musat DL, van der Burgt I, Brunner HG, Bertola DR, Crosby A, Ion A et al: PTPN11 mutations in Noonan syndrome:molecular spectrum, genotype-phenotype correlation, and phenotypic heterogeneity. Am JHum Genet 2002,70(6):1555-1563.
    34. Kosaki K, Suzuki T, Muroya K, Hasegawa T, Sato S, Matsuo N, Kosaki R, Nagai T, Hasegawa Y, Ogata T:PTPN11 (protein-tyrosine phosphatase, nonreceptor-type 11) mutations in seven Japanese patients with Noonan syndrome. J Clin Endocrinol Metab 2002,87(8):3529-3533.
    35. Xu R, Yu Y, Zheng S, Zhao X, Dong Q, He Z, Liang Y, Lu Q, Fang Y, Gan X et al: Overexpression of Shp2 tyrosine phosphatase is implicated in leukemogenesis in adult human leukemia. Blood 2005,106(9):3142-3149.
    36. Broxmeyer HE, Etienne-Julan M, Gotoh A, Braun SE, Lu L, Cooper S, Feng GS, Li XJ, Chan RJ:Hematopoietic colony formation from human growth factor-dependent TF1 cells and human cord blood myeloid progenitor cells depends on SHP2 phosphatase function. Stem Cells Dev 2013, 22(6):998-1006.
    37. Nakata S, Fujita N, Kitagawa Y, Okamoto R, Ogita H, Takai Y:Regulation of platelet-derived growth factor receptor activation by afadin through SHP-2: implications for cellular morphology. J Biol Chem 2007, 282(52):37815-37825.
    38. Bentires-Alj M, Gil SG, Chan R, Wang ZC, Wang Y, Imanaka N, Harris LN, Richardson A, Neel BG, Gu H:A role for the scaffolding adapter GAB2 in breast cancer. Nat Med 2006,12(1):114-121.
    39. Zhou X, Coad J, Ducatman B, Agazie YM:SHP2 is up-regulated in breast cancer cells and in infiltrating ductal carcinoma of the breast, implying its involvement in breast oncogenesis. Histopathology 2008,53(4):389-402.
    40. Zhou XD, Agazie YM:Inhibition of SHP2 leads to mesenchymal to epithelial transition in breast cancer cells. Cell Death Differ 2008,15(6):988-996.
    41. Wang FM, Liu HQ, Liu SR, Tang SP, Yang L, Feng GS:SHP-2 promoting migration and metastasis of MCF-7 with loss of E-cadherin, dephosphorylation of FAK and secretion of MMP-9 induced by IL-lbeta in vivo and in vitro. Breast Cancer Res Treat 2005,89(1):5-14.
    42. Aceto N, Sausgruber N, Brinkhaus H, Gaidatzis D, Martiny-Baron G, Mazzarol G, Confalonieri S, Quarto M, Hu G, Balwierz PJ et al: Tyrosine phosphatase SHP2 promotes breast cancer progression and maintains tumor-initiating cells via activation of key transcription factors and a positive feedback signaling loop. Nat Med 2012,18(4):529-537.
    43. Tang C, Zhou X, Yang H, Wang Q, Zhang R:[Expression and its clinical significance of SHP2 in non-small cell lung cancer]. Zhongguo Fei Ai Za Zhi 2010,13(2):98-101.
    44. Tang C, Luo D, Yang H, Wang Q, Zhang R, Liu G, Zhou X:Expression of SHP2 and related markers in non-small cell lung cancer:a tissue microarray study of 80 cases. Appl Immunohistochem Mol Morphol 2013,21(5):386-394.
    45. Furcht CM, Munoz Rojas AR, Nihalani D, Lazzara MJ:Diminished functional role and altered localization of SHP2 in non-small cell lung cancer cells with EGFR-activating mutations. Oncogene 2013,32(18):2346-2355,2355 e2341-2310.
    46. Xu J, Zeng LF, Shen W, Turchi JJ, Zhang ZY:Targeting SHP2 for EGFR inhibitor resistant non-small cell lung carcinoma. Biochem Biophys Res Commun 2013,439(4):586-590.
    47. Zou GM, Maitra A:Small-molecule inhibitor of the AP endonuclease 1/REF-1 E3330 inhibits pancreatic cancer cell growth and migration. Mol Cancer Ther 2008,7(7):2012-2021.
    48. Connelly SF, Isley BA, Baker CH, Gallick GE, Summy JM:Loss of tyrosine phosphatase-dependent inhibition promotes activation of tyrosine kinase c-Src in detached pancreatic cells. Mol Carcinog 2010,49(12):1007-1021.
    49. Gomes EG, Connelly SF, Summy JM:Targeting the yin and the yang: combined inhibition of the tyrosine kinase c-Src and the tyrosine phosphatase SHP-2 disrupts pancreatic cancer signaling and biology in vitro and tumor formation in vivo. Pancreas 2013,42(5):795-806.
    50. Higashi H, Nakaya A, Tsutsumi R, Yokoyama K, Fujii Y, Ishikawa S, Higuchi M, Takahashi A, Kurashima Y, Teishikata Y et al: Helicobacter pylori CagA induces Ras-independent morphogenetic response through SHP-2 recruitment and activation. JBiol Chem 2004,279(17):17205-17216.
    51. Kim JS, Shin OR, Kim HK, Cho YS, An CH, Lim KW, Kim SS: Overexpression of protein phosphatase non-receptor type 11 (PTPN11) in gastric carcinomas. Dig Dis Sci 2010,55(6):1565-1569.
    52. Dong S, Li FQ, Zhang Q, Lv KZ, Yang HL, Gao Y, Yu JR:Expression and clinical significance of SHP2 in gastric cancer. J Int Med Res 2012, 40(6):2083-2089.
    53. Jiang J, Jin MS, Kong F, Wang YP, Jia ZF, Cao DH, Ma HX, Suo J, Cao XY: Increased expression of tyrosine phosphatase SHP-2 in Helicobacter pylori-infected gastric cancer. World J Gastroenterol 2013,19(4):575-580.
    54. Lindberg N, Holland EC:PDGF in gliomas:more than just a growth factor? Ups J Med Sci 2012,117(2):92-98.
    55. Liu KW, Feng H, Bachoo R, Kazlauskas A, Smith EM, Symes K, Hamilton RL, Nagane M, Nishikawa R, Hu B et al: SHP-2/PTPN11 mediates gliomagenesis driven by PDGFRA and INK4A/ARF aberrations in mice and humans. J Clin Invest2011,121(3):905-917.
    56. Sturla LM, Zinn PO, Ng K, Nitta M, Kozono D, Chen CC, Kasper EM:Src homology domain-containing phosphatase 2 suppresses cellular senescence in glioblastoma. Br J Cancer 2011,105(8):1235-1243.
    57. Tao XH, Shen JG, Pan WL, Dong YE, Meng Q, Honn KV, Jin R:Significance of SHP-1 and SHP-2 expression in human papillomavirus infected Condyloma acuminatum and cervical cancer. Pathol Oncol Res 2008, 14(4):365-371.
    58. Meng F, Zhao X, Zhang S:SHP-2 phosphatase promotes cervical cancer cell proliferation through inhibiting interferon-beta production. J Obstet Gynaecol Res 2013,39(1):272-279.
    59. Soong J, Scott G:Plexin B1 inhibits MET through direct association and regulates Shp2 expression in melanocytes. J Cell Sci 2013,126(Pt 2):688-695.
    60. Win-Piazza H, Schneeberger VE, Chen L, Pernazza D, Lawrence HR, Sebti SM, Lawrence NJ, Wu J:Enhanced anti-melanoma efficacy of interferon alfa-2b via inhibition of Shp2. Cancer Lett 2012,320(1):81-85.
    61. Tassidis H, Brokken LJ, Jirstrom K, Bjartell A, Ulmert D, Harkonen P, Wingren AG:Low expression of SHP-2 is associated with less favorable prostate cancer outcomes. Tumour Biol 2013,34(2):637-642.
    62. Li S, Hsu DD, Wang H, Feng GS:Dual faces of SH2-containing protein-tyrosine phosphatase Shp2/PTPN11 in tumorigenesis. Front Med 2012, 6(3):275-279.
    63. Bard-Chapeau EA, Li S, Ding J, Zhang SS, Zhu HH, Princen F, Fang DD, Han T, Bailly-Maitre B, Poli V et al: Ptpn11/Shp2 acts as a tumor suppressor in hepatocellular carcinogenesis. Cancer Cell 2011,19(5):629-639.
    64. Jiang C, Hu F, Tai Y, Du J, Mao B, Yuan Z, Wang Y, Wei L:The tumor suppressor role of Src homology phosphotyrosine phosphatase 2 in hepatocellular carcinoma. J Cancer Res Clin Oncol 2012,138(4):637-646.
    65. Feng GS:Conflicting roles of molecules in hepatocarcinogenesis:paradigm or paradox. Cancer Cell 2012,21(2):150-154.
    66. Kikkawa N, Hanazawa T, Fujimura L, Nohata N, Suzuki H, Chazono H, Sakurai D, Horiguchi S, Okamoto Y, Seki N:miR-489 is a tumour-suppressive miRNA target PTPN11 in hypopharyngeal squamous cell carcinoma (HSCC). Br J Cancer 2010,103(6):877-884.
    67. Banin Hirata BK, Oda JM, Losi Guembarovski R, Ariza CB, de Oliveira CE, Watanabe MA:Molecular Markers for Breast Cancer:Prediction on Tumor Behavior. Dis Markers 2014,2014:513158.
    68. Gorges TM, Pantel K:Circulating tumor cells as therapy-related biomarkers in cancer patients. Cancer Immunol Immunother 2013,62(5):931-939.
    69. Herreros-Villanueva M, Gironella M, Castells A, Bujanda L:Molecular markers in pancreatic cancer diagnosis. Clin Chim Acta 2013,418:22-29.
    70. Stenvang J, Kumler Ⅰ, Nygard SB, Smith DH, Nielsen D, Brunner N, Moreira JM:Biomarker-Guided Repurposing of Chemotherapeutic Drugs for Cancer Therapy:A Novel Strategy in Drug Development. Front Oncol 2013,3:313.
    71. Feng M, Ho M:Glypican-3 antibodies:a new therapeutic target for liver cancer. FEBS Lett 2014,588(2):377-382.
    72. Montemurro F, Scaltriti M:Biomarkers of drugs targeting HER-family signalling in cancer. JPathol 2014,232(2):219-229.
    73. Kudo M:Molecular targeted therapy for hepatocellular carcinoma:bench to bedside. Dig Dis 2011,29(3):273-277.
    74. Hamakawa H, Nakashiro K, Sumida T, Shintani S, Myers JN, Takes RP, Rinaldo A, Ferlito A:Basic evidence of molecular targeted therapy for oral cancer and salivary gland cancer. Head Neck 2008,30(6):800-809.
    75. Brinkman BM, Wong DT:Disease mechanism and biomarkers of oral squamous cell carcinoma. Curr Opin Oncol 2006,18(3):228-233.
    76. Kharitonenkov A, Chen Z, Sures Ⅰ, Wang H, Schilling J, Ullrich A:A family of proteins that inhibit signalling through tyrosine kinase receptors. Nature 1997,386(6621):181-186.
    77. Poole AW, Jones ML:A SHPing tale:perspectives on the regulation of SHP-1 and SHP-2 tyrosine phosphatases by the C-terminal tail. Cell Signal 2005, 17(11):1323-1332.
    78. Feng GS, Hui CC, Pawson T:SH2-containing phosphotyrosine phosphatase as a target of protein-tyrosine kinases. Science 1993,259(5101):1607-1611.
    79. Yu B, Liu W, Yu WM, Loh ML, Alter S, Guvench O, Mackerell AD, Jr., Tang LD, Qu CK:Targeting protein tyrosine phosphatase SHP2 for the treatment of PTPN11-associated malignancies. Mol Cancer Ther 2013,12(9):1738-1748.
    80. Yoshimi A, Kojima S, Hirano N:Juvenile myelomonocytic leukemia: epidemiology, etiopathogenesis, diagnosis, and management considerations. Paediatr Drugs 2010,12(1):11-21.
    81. Muller PJ, Rigbolt KT, Paterok D, Piehler J, Vanselow J, Lasonder E, Andersen JS, Schaper F, Sobota RM:Protein tyrosine phosphatase SHP2/PTPN11 mistargeting as a consequence of SH2-domain point mutations associated with Noonan Syndrome and leukemia. J Proteomics 2013, 84:132-147.
    82. Matozaki T, Murata Y, Saito Y, Okazawa H, Ohnishi H:Protein tyrosine phosphatase SHP-2:a proto-oncogene product that promotes Ras activation. Cancer Sci 2009,100(10):1786-1793.
    83. Mohi MG, Williams IR, Dearolf CR, Chan G, Kutok JL, Cohen S, Morgan K, Boulton C, Shigematsu H, Keilhack H et al: Prognostic, therapeutic, and mechanistic implications of a mouse model of leukemia evoked by Shp2 (PTPN11) mutations. Cancer Cell 2005,7(2):179-191.
    84. Voena C, Conte C, Ambrogio C, Boeri Erba E, Boccalatte F, Mohammed S, Jensen ON, Palestro G, Inghirami G, Chiarle R:The tyrosine phosphatase Shp2 interacts with NPM-ALK and regulates anaplastic lymphoma cell growth and migration. Cancer Res 2007,67(9):4278-4286.
    85. Stewart RA, Sanda T, Widlund HR, Zhu S, Swanson KD, Hurley AD, Bentires-Alj M, Fisher DE, Kontaridis MI, Look AT et al: Phosphatase-dependent and-independent functions of Shp2 in neural crest cells underlie LEOPARD syndrome pathogenesis. Dev Cell 2010, 18(5):750-762.
    86. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC:Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998,391(6669):806-811.
    87. Zamore PD, Tuschl T, Sharp PA, Bartel DP:RNAi:double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 2000,101(1):25-33.
    88. Hutvagner G, Zamore PD:RNAi:nature abhors a double-strand. Curr Opin Genet Dev 2002,12(2):225-232.
    89. Elbashir SM, Lendeckel W, Tuschl T:RNA interference is mediated by 21-and 22-nucleotide RNAs. Genes Dev 2001,15(2):188-200.
    90. Rand TA, Petersen S, Du F, Wang X:Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell 2005,123(4):621-629.
    91. Pushparaj PN, Melendez AJ:Short interfering RNA (siRNA) as a novel therapeutic. Clin Exp Pharmacol Physiol 2006,33(5-6):504-510.
    92. Sijen T, Fleenor J, Simmer F, Thijssen KL, Parrish S, Timmons L, Plasterk RH, Fire A:On the role of RNA amplification in dsRNA-triggered gene silencing. Cell2001,107(4):465-476.
    93. Lipardi C, Wei Q, Paterson BM:RNAi as random degradative PCR:siRNA primers convert mRNA into dsRNAs that are degraded to generate new siRNAs. Cell 2001,107(3):297-307.
    94. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T: Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001,411(6836):494-498.
    95. Chen L, Gu J, Xu L, Qu C, Zhang Y, Zhang W:RNAi-mediated silencing of ATP-binding cassette C4 protein inhibits cell growth in MGC80-3 gastric cancer cell lines. Cell Mol Biol (Noisy-le-grand) 2014,60(1):1-5.
    96. Ku SH, Kim K, Choi K, Kim SH, Kwon IC:Tumor-Targeting Multifunctional Nanoparticles for siRNA Delivery:Recent Advances in Cancer Therapy. Adv Healthc Mater 2014.
    97. Wang Q, Wang X, Zhang CB:Lentivirus mediated GOLPH3 shRNA inhibits growth and metastasis of esophageal squamous cancer. Asian Pac J Cancer Prev 2013,14(9):5391-5396.
    98. Lee JM, Yoon TJ, Cho YS:Recent developments in nanoparticle-based siRNA delivery for cancer therapy. Biomed Res Int 2013,2013:782041.
    99. Katzourakis A, Tristem M, Pybus OG, Gifford RJ:Discovery and analysis of the first endogenous lentivirus. Proc Natl Acad Sci U S A 2007, 104(15):6261-6265.
    100. Cockrell AS, Kafri T:Gene delivery by lentivirus vectors. Mol Biotechnol 2007,36(3):184-204.
    101. Loewen N, Poeschla EM:Lentiviral vectors. Adv Biochem Eng Biotechnol 2005,99:169-191.
    102. Escors D, Breckpot K:Lentiviral vectors in gene therapy:their current status and future potential. Arch Immunol Ther Exp (Warsz) 2010,58(2):107-119.
    103. Upreti D, Pathak A, Kung SK:Lentiviral vector-based therapy in head and neck cancer (Review). Oncol Lett 2014,7(1):3-9.
    104. Hutson TH, Foster E, Moon LD, Yanez-Munoz RJ:Lentiviral vector-mediated RNA silencing in the central nervous system. Hum Gene Ther Methods 2014, 25(1):14-32.
    105. Di Pasquale E, Latronico MV, Jotti GS, Condorelli G:Lentiviral vectors and cardiovascular diseases:a genetic tool for manipulating cardiomyocyte differentiation and function. Gene Ther 2012,19(6):642-648.
    106. Schubbert S, Shannon K, Bollag G:Hyperactive Ras in developmental disorders and cancer. Nat Rev Cancer 2007,7(4):295-308.
    107. Wang AX, Qi XY:Targeting RAS/RAF/MEK/ERK signaling in metastatic melanoma. IUBMB Life 2013,65(9):748-758.
    108. Lo HW:Targeting Ras-RAF-ERK and its interactive pathways as a novel therapy for malignant gliomas. Curr Cancer Drug Targets 2010, 10(8):840-848.
    109. Feng GS:Shp2-mediated molecular signaling in control of embryonic stem cell self-renewal and differentiation. Cell Res 2007,17(1):37-41.
    110. Thompson CB:Apoptosis in the pathogenesis and treatment of disease. Science 1995,267(5203):1456-1462.
    111. Hainaut P:The tumor suppressor protein p53:a receptor to genotoxic stress that controls cell growth and survival. Curr Opin Oncol 1995,7(1):76-82.
    112. Shaw PH:The role of p53 in cell cycle regulation. Pathol Res Pract 1996, 192(7):669-675.
    113. Larsen CJ:[The BCL2 gene, prototype of a gene family that controls programmed cell death (apoptosis)]. Ann Genet 1994,37(3):121-134.
    114. Miyashita T, Krajewski S, Krajewska M, Wang HG, Lin HK, Liebermann DA, Hoffman B, Reed JC:Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene 1994,9(6):1799-1805.
    115. Yu WM, Hawley TS, Hawley RG, Qu CK:Role of the docking protein Gab2 in beta(1)-integrin signaling pathway-mediated hematopoietic cell adhesion and migration. Blood 2002,99(7):2351-2359.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700