IL-23R遗传变异、Th17细胞与强直性脊柱炎相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
强直性脊柱炎(Ankylosing Spondylitis,AS)是一种致病机理不明的慢性炎症性疾病,在人群中的发病率约千分之三,仅次于类风湿关节炎。该病具有明显的家族聚集现象,并与HLA-B27密切相关。其主要侵犯中轴骨骼,以骶髂关节炎和附着点炎为特征,炎症累及滑膜关节和软骨关节以及肌腱、韧带附着于骨的部位(肌腱端),常引起纤维性和骨性强直。其他器官亦常累及,如25%~30%的患者可在病程中出现急性前色素膜炎。AS的致残率极高,给患者、家庭及社会带来了沉重的精神和经济负担。
     众所周知,HLA-B27是AS最主要的易感基因,但孪生子及家族调查研究显示,这种疾病是寡基因型的,且HLA-B27只能解释该病的遗传度中小于50%的部分。有研究报道IL-23R基因的多态性与AS高度相关,在该病的人群归因危险度中发挥了近12%的作用。
     尽管目前该病的致病机制不明,但普遍认为AS患者体内免疫功能失衡与其病理、临床表现密切相关,其中T细胞免疫功能异常在其发病中起着尤为重要的作用。越来越多的证据显示,细胞因子的分泌特点也可以影响脊柱关节病的临床进程。Th17细胞是近年新发现的一种辅助性T细胞,其各种特性与Th1和Th2细胞不同,产生的细胞因子包括IL-17、IL-21和IL-22等等。已有研究证实,Th17细胞在自身免疫性疾病如实验性自身免疫性脑脊髓炎(Experimental autoimmune encephalomyelitis,EAE)、炎性肠病(Inflammatory bowel disease,IBD)等的致病机制中都发挥了重要作用,其分化和功能受各种细胞因子的调控。而IL-23R对一个Th17细胞来说是一个关键的作用因子。
     本研究拟在中国汉族人群中鉴定与AS相关的IL-23R基因的变异体区域,同时研究IL-23R基因的遗传变异体是否能影响Th17细胞数量和功能,进而导致AS发病。具体分为以下三个部分:
     第一部分IL-23R单核苷酸多态性在强直性脊柱炎疾病中国汉族人群的研究
     目的:在中国人群中对IL-23R的8个SNP位点(rs11209026、rs1004819、rs10489629、rs11465804、rs1343151、rs10889677、rs11209032、rs1495965)进行检测,研究IL-23R单核苷酸多态性与AS易感性的关系。
     方法:参考1984年修订的纽约标准,从门诊及住院病人中收集AS患者109例,正常对照者150例。运用TagMan MGB探针法对AS患者及正常对照IL-23R的8个SNP位点进行检测。多态性及其单倍型与AS相对危险度等数据处理均采用SPSS软件系统进行。
     结果:IL-23R SNPs相关的8个位点(rs11209026、rs1004819、rs10489629、rs11465804、rs1343151、rs10889677、rs11209032、rs1495965)在中国汉族人群中与AS具有显著相关性(P<0.001)。其中,相关性最强的SNP为rs11209032(优势比1.3,95%CI 1.2-1.4,P=3.5×10~(-8))。本部分针对这一基因结合临床AS病例分析,发现rs11209032A/G基因型、rs11209032A/A基因型和rs11209032G/G基因型在强直性脊柱炎患者中有62例(56.1%)、32例(29.4%)和15例(13.8%),正常对照组分别有71例(47.3%)、45例(30%)和34例(22.7%),两组间比较无显著性差异(P>0.05)。
     第二部分Th17细胞相关细胞因子检测及功能的初步探讨
     第一节Th17细胞相关细胞因子检测
     目的:通过检测外周血中IL-17、IL-23、IL-1β、IL-6以及TGFβ-1的水平,明确AS患者与正常人之间、不同病情分级AS患者之间Th17细胞相关细胞因子的差异,以期探寻Th17细胞在AS致病机理中发挥的作用。
     方法:参考1984年修订的纽约标准,从门诊及住院病人中收集AS患者87例,正常对照者91例。运用酶联免疫吸附测定(ELISA)以及实时荧光定量PCR(Real-timePCR)的方法分别从蛋白水平和mRNA水平在AS患者和正常人中对IL-17、IL-23、IL-1β、IL-6以及TGFβ-1进行检测。同时将AS患者根据BASDAI≤4静止期和BASDAI>4活动期分为两组,进行AS患者组间各细胞因子水平的比较。运用独立样本t检验以及SPSS11.5统计学软件对结果进行统计分析。
     结果:①AS患者IL-17蛋白水平和mRNA水平检测均明显高于正常对照组(75.45±6.46 vs 41.97±2.27,P<0.001;0.003240±0.000872 vs 0.007643±0.001656,P<0.05);将AS患者根据BASDAI≤4静止期和BASDAI>4活动期分为两组,进行AS患者组间IL-17mRNA水平比较,活动期AS患者IL-17mRNA水平高于静止期AS患者(0.001213±0.000765 vs 0.004561±0.001404,P<0.05)。②AS患者IL-23蛋白水平和mRNA水平检测均明显高于正常对照组(61.85±2.61 vs 54.45±2.54,P<0.05;0.038562±0.013772 vs 0.078789±0.014030,P<0.05);AS患者分级比较IL-23 mRNA水平,活动期AS患者IL-23mRNA水平高于静止期AS患者(0.010229±0.001813 vs0.067947±0.027626,P<0.05)。③AS患者IL-1β蛋白水平和mRNA水平检测均明显高于正常对照组(28.45±0.87 vs 22.25±0.60,P<0.001;0.324742±0.128426 vs1.426351±0.464371,P<0.05);AS患者分级比较IL-1βmRNA水平,活动期AS患者水平与静止期AS患者无显著性差异(P>0.05)。④AS患者IL-6蛋白水平和mRNA水平检测均明显高于正常对照组(5.10±0.52 vs 2.79±0.31,P<0.001;0.013524±0.005065vs 0.058685±0.015024,P<0.05);AS患者分级比较IL-6 mRNA水平,活动期AS患者IL-6mRNA水平高于静止期AS患者(0.003831±0.001475 vs 0.044567±0.013595,P<0.05)。⑤AS患者TGFβ-1蛋白水平和mRNA水平检测均明显高于正常对照组(14.09±1.76 vs 3.59±0.60,P<0.001;0.200738±0.048957 vs 1.098782±0.318909,P<0.05);AS患者分级比较TGFβ-1 mRNA水平,活动期AS患者TGFβ-1 mRNA水平高于静止期AS患者(0.058109±0.017780 vs 0.256579±0.075089,P<0.05)。
     结论:这些结果提示AS患者外周血中IL-17、IL-23、IL-1β、IL-6以及TGFβ-1细胞因子水平均显著高于正常对照,且活动期AS患者外周血中IL-17、IL-23、IL-6以及TGFβ-1细胞因子水平均显著高于静止期AS患者,说明Th17细胞相关细胞因子可能在AS发病机制中发挥作用。
     第二节Th17细胞功能的初步探讨
     目的:检测AS患者和正常对照外周Th17细胞分布状态,并比较其差异;同时,观察不同细胞因子刺激对Th17分化的影响,探讨AS患者及正常人Th17细胞功能的异同。
     方法:收集AS患者10例,正常对照15例。Ficoll密度梯度离心法分离外周血单个核细胞(PBMC),用佛波酯和钙离子载体刺激5小时后,抗CD4-FITC和抗IL-17-PE、抗CD8-FITC和抗IL-17-PE标记,流式细胞仪检测CD4~+IL-17~+T、CD8~+IL-17~+T细胞的比例。将一部分PBMC加入不同的细胞因子组合IL-1β+IL-6、IL-1β+IL23、IL-6+IL23、IL-1β+IL23+IL-6进行培养5天,抗CD4-FITC和抗IL-17-PE标记,流式细胞仪检测IL-17的相对含量。
     结果:①AS患者外周血中CD4~+IL-17~+淋巴细胞高于正常人群(2.79±0.20 vs0.06±0.01 P<0.01),而且IL-17主要是由CD4~+T淋巴细胞分泌,CD8~+T淋巴细胞表达较少。②不同细胞因子对T细胞刺激培养后,结果显示IL-1β和IL-6细胞因子组合对细胞表达IL-17刺激作用较为明显。
     结论:AS患者外周血IL-17~+调节性T细胞外周血分布高于正常对照组,且以CD4~+IL-17~+细胞群为主。IL-1β和IL-6可有效的刺激人Th17细胞分化,诱导IL-17的表达。
Ankylosing spondylitis(AS) is a chronically inflammatory disease,which the pathogenic mechanism has not been clarified yet.The incidence of disease is about three in a thousand,which is a little bit inferior to rheumatoid arthritis.AS has obvious familial aggregation phenomenon which is related to HLA-B27 tightly.AS majorly affects axial skeleton,and its major characters are sacroiliitis which involved synovial joint,gristle joint and entheses that cause fibrosis and bone ankylosis often.Some other organs could be affected as well,for example,25%~30%patients may appear anterior uveitis.AS has very high disability rate,which brings extraordinary heavy psychological and economical burden.
     It is well known that HLA-B27 is the key susceptibility gene of AS.With the twins and familiy investigation we can see that this disease is oligo-genotype,and less than 50% part in the heritability can be explained by HLA-B27.Some report shows the polymorphism of IL-23R gene is highly related to AS,because it has 12%affection in the attributable risk in the patients group.
     Although the pathogenic mechanism has not been clarified,the common sense is the imbalance of immune system in the AS patient that has tight relationship with its pathology and clinic,in which the abnormity of T cell immune system plays an important role on its onset.More and more evidences show that the characters of cell excretion also affect the clinic process of spinal disease.Th17 cell is a helper T cell which is found in the recent years.All its characters are different from Th1 and Th2,and it produces cytokines include IL-17、IL-21和IL-22,etc.Some research proved that Th17 cell plays a vital roll in the pathogenic mechanism of autoimmune disease,such as experimental autoimmune encephalomyelitis,and inflammatory bowel disease and the polarization and functions are adjusted by different cytokines.IL-23R is a key gene to Th17 cell.
     The research will identify IL-23R gene variant or areas that related to AS in Han nationalities in China.At the same time,whether the IL-23R gene variant may affect Th17 cell's amount and functions and then cause AS will also be researched.The details are shown as the following three parts:
     PartⅠ:Research of single nucleotide porlimorphism in the Chinese group of Ankylosing Spondylitis.
     Objective:8 SNP sites(rs11209026、rs1004819、rs10489629、rs11465804、rs1343151、rs10889677、rs11209032、rs1495965) of IL-23R will be inspected in the Chinese group.The purpose is to get the relationship of IL-23R single nucleotide porlimorphism with AS affectability.
     Patients and Methods:Refer to 1984 amended New York standard.109 AS patients are collected from clinic and in-patients,normal collators are 150 samples.8 SNP sites of IL-23R will be inspected by TagMan MGB probe methods on the patients.Porlimorphism, its hyploit,AS relative dangerous rate and date analysis are implemented by SPSS sys.
     Results:IL-23R SNPs related 8 sites rs11209026、rs1004819、rs10489629、rs11465804、rs1343151、rs10889677、rs11209032、rs1495965) has obvious correlation with AS in Chinese(P<0.001).The strongest pertinent SNP is rs11209032(OR 1.3,95% CI 1.2-1.4,P=3.5×10~(-8)).According to this gene related to the analysis of AS clinic,we find rs11209032A/G gene,rs11209032A/A gene,and rs11209032G/G gene in the patients of AS stands separately are 62 samples(56.1%),32 samples(29.4%),and 15 samples(13.8%).Regular comparison group stands separately are 71 samples(47.3%),45 samples(30%),and 34 samples(22.7%).No obvious difference between these two groups (P>0.05).
     PartⅡ:Th17 cell related cytokines inspection and functions initial discuss
     1.Inspection of Th17 cell related cytokines
     Objective:Through inspecting IL-17、IL-23、IL-1β、IL-6,and TGFβ-1 level in the peripheral blood,identify Th17 cell related cytokines difference between AS patient and normal people and between different levels AS patients,in order to find out the effectiveness of Th17 cell in the AS pathogenic mechanism.
     Patients and Methods:Refer to 1984 amended New York standard.87 AS patients are collected from clinic and in-patients,normal collators are 91 samples.ELISA and Real-timer RT-PCR are used for inspection of IL-17、IL-23、IL-1β、IL-6,and TGFβ-1 from protein level and mRNA level to AS patients.AS patients are separated into two groups based on BASDAI≤4 in-active period and BASDAI>4 active period for a comparison of all the cytokine level in AS patients.Independent sample t analysis and SPSS11.5 statistic software are used for statistic and analysis.
     Results:①IL-17 protein level and mRNA level of AS patients is much higher than normal control group(75.45±6.46 vs 41.97±2.27,P<0.001;0.003240±0.000872 vs 0.007643±0.001656,P<0.05);AS patients are separated into two groups based on BASDAI≤4 in-active period and BASDAI>4 active period,for the comparison of IL-17 mRNA level between AS patients.IL-17mRNA level of active period AS patients is higher than in-active patients(0.001213±0.000765 vs 0.004561±0.001404,P<0.05).②IL-23 proteinlevel and mRNA level of AS patients is much higher than normal control group (61.85±2.61 vs 54.45±2.53,P<0.05;0.038562±0.013772 vs 0.078789±0.014030, P<0.05);Classified comparison of IL-23mRNA level of AS patients shows,IL-23mRNA level of active period AS patients is higher than in-active patients(0.010229±0.001813 vs 0.0679466±0.027626,P<0.05).③IL-1βprotein level and mRNA level of AS patients is much higher than normal control group(28.45±0.866 vs 22.25±0.603,P<0.001; 0.324742±0.128426 vs 1.426351±0.464371,P<0.05);Classified comparison of IL-1βmRNA level of AS patients shows,no obvious difference between active period and in-active patients(P>0.05).④IL-6 protein level and mRNA level of AS patients is much higher than normal control group(5.10±0.52 vs 2.79±0.31,P<0.001;0.013524±0.005065 vs 0.058685±0.015024,P<0.05);Classified comparison of IL-6 mRNA level of AS patients shows,IL-6 mRNA level of active period AS patients is higher than in-active AS patients (0.003831±0.001475 vs 0.044567±0.013595,P<0.05).⑤TGFβ-1 protein level and mRNA level of AS patients is much higher than normal control group(14.09±1.76 vs 3.59±0.60,P<0.001;0.200738±0.048957 vs 1.098782±0.318909,P<0.05);Classified comparison of TGFβ-1 mRNA level of AS patients shows,TGFβ-1 mRNA level of active period AS patients is higher than in-active AS patients(0.058109±0.017780 vs 0.256579±0.075089,P<0.05).
     Conclusions:These results show that cell gene level of IL-17、IL-23、IL-1β、IL-6, and TGFβ-1 in the peripheral blood of AS patients is higher than normal controls.That is to say,Th17 cell related cytokines should be working in the AS pathogenic mechanism.
     2.Th17 cell function initial discussion
     Objective:Inspect Th17 cell distribution status of AS patients and normal controls and make comparison.At the same time,observe the affection of different cytokines stimulation to Th17 polarization,and discuss the difference of Th17 cell functions between AS patients and normal people.
     Patients and Methods:Collect 10 AS patients,and 15 normal collators.Ficoll desity gradient centrifugation methods is used for isolating PBMC first,then five hours stimulation has to be implemented by phorbol ester and calcium ionophore,anti CD4-FITC, anti IL-17-PE,anti CD8-FITC,and anti IL-17-PE has to be marked,and the rate of CD4~+IL-17~+T cell and CD8~+IL-17~+T cell has to be inspected by Flow Cytometry.Part of PBMC should be added in different cell gene IL-1β+IL-6、IL-1β+IL23、IL-6+IL23、 IL-1β+IL23+IL-6 and should be maintained for five days,anti CD4-FITC and anti IL-17-PE should also be marked,and the relative contents should be inspected by Flow Cytometry.
     Results:①CD4~+IL-17~+ lymphocyte in the peripheral blood of AS patients is higher than normal controls(2.79±0.20 vs 0.06±0.01 P<0.01),and IL-17 are mainly excreted by CD4~+T lymphocyte,but CD8~+T lymphocytes do not excrete much.②after the stimulation of different cell gene to T cell,the results show IL-1βand IL-6 cell gene have obvious result to the stimulation of IL-17.
     Conclusions:Peripheral blood IL-17+ and T cell peripheral blood distribution of AS patients are higher than normal collators group,and CD4~+IL-17~+ cell group is the majority group.IL-1βand IL-6 may effectively stimulate Th17 cell polarizeation,and lead to the appearance of IL-17.
引文
[1] Moseley TA, Haudenschild DR, Rose L, Reddi AH. Interleukin-17 family and IL-17 receptors. Cytokine Growth Factor Rev 2003;2:155-74.
    [2] Zheng Y, Danilenko DM, Valdez P, Kasman I, Eastham-Anderson J, Wu J, et al. Interleukin-22, a T (H) 17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 2007; 445:648-51.
    [3] Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B. TGFbeta in the context of an inflammatory cytokine milieu supports de novo diferentiation of IL-17-producing T cells. Immunity, 2006; 2:179-89.
    [4] Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2~^[ -deltadelta C(T) ] Method." Methods 2001 Dec;25(4): 402-408
    [5] Annapula G, Lut O. An overview of real-time PCR: application to quantify cytokine gene expression. Method. 2001; 25: 386-401.
    [6] Harrington LE, Hatton RD, Mangan PR, et al. Interleukin 17-producing CD4 + effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages [J]. N at Imm unol, 2005, 6 (11):1123-1132.
    
    [7] Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, et al. Reciprocal developmental pathways for the generation of pathogenic effecter TH 17 and regulatory T cells. Nature 2006; 7090:235-8.
    [8] Wilson NJ, Boniface K, Chan JR, McKenzie BS, Blumenschein WM, Mattson JD, et al. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol, 2007;8:950-7.
    [9] Grogan WM, Collins JM. Guide to flow cytometry methods.New York:Marcel Dekker, 1990, 29-190.
    [10] Schnizlein-Bick CT, Spritzler J, Wilkening CL, et al. Evaluation of TruCount absolute-count tube for determining CD4and CD8cell num-bers in human immunodeficiency virus-positive adults.Clin Diagn Lab Immunol, 2000, 7:336-343.
    [11] Lee GR, Kim ST, Spilianakis CG, Fields PE, Flavell RA. T helper cell diVerentiation: regulation by cis elements and epigenetics. Immunity 2006; 4:369-79.
    [ 12] Abbas AK, Murphy KM, Sher A. Functional diversity of helper T lymphocytes. Nature 1996; 6603:787-93.
    [13] Murphy KM, Reiner SL. The lineage decisions of helper T cells. Nat Rev Immunol 2002; 12:933-44.
    [14] Chen Z, Tato C, Muul L, Laurence A, O'Shea JJ. Distinct regulation of IL-17 in human helper T lymphocytes. Arthritis Rheum 2007; 9:2936-46.
    [15] Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, et al. The orphan nuclear receptor RORgammat directs the diVerentiation program of proinflammatory IL-17+ T helper cells. Cell.2006; 6:1121-33.
    [16] Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, et al. Interleukin 17-producing CD4+ efector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 2005; 11:1123-32.
    [17] Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B. TGFbeta in the context of an inflammatory cytokine milieu supports de novo diferentiation of IL-17-producing T cells. Immunity.2006; 2:179-89.
    [18] Wilson NJ, Boniface K, Chan JR, McKenzie BS, Blumenschein WM, Mattson JD, et al. Development,cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol.2007; 8:950-7.
    [19] Paradowska A, Masliniski W, Grzybowska-Kowalczyk A. The function of interleukin 17 in the pathogenesis of rheumatoid arthritis.Arch Immunol Ther Exp. 2007 Sep-Oct; 55(5):329-34.
    [20] Kotake S, Udagawa N, Takahashi N, Matsuzaki K, Itoh K, Ishiyama S, et al. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest. 1999; 9:1345-52.
    [21] Lubberts, E., IL-17/Th17 targeting: On the road to prevent chronic destructive arthritis. Cytokine. 2008 Feb;41(2):84-91.
    
    [22] 蒋明,DAVID YU,林孝义,等.中华风湿病学.北:华夏出版社.2004:1010—1023.
    [23] Nakae, S., Nambu, A., Sudo, K. and Iwakura, Y. Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice. J Immunol 2003. 171: 6173-6177
    [24] Rudwaleit, M. and Hohler, T. Cytokine gene polymorphisms relevant for the spondyloarthropathies. Current opinion in rheumatology 2001. 13: 250-254.
    [25] Lubberts E, Joosten LA, Oppers B, van den Bersselaar L, Coenen-de Roo CJ, Kolls JK, et al. IL-1-independent role of IL-17 in synovial inflammation and joint destruction during collagen-induced arthritis. J Immunol 2001; 2:1004-13.
    [26] Kohno M, Tsutsumi A, Matsui H, et al. Interleukin-17 gene expression in patients with rheumatoid arthritis.Mod Rheumatol. 2008; 18(1):15-22.
    [27] Oppmann B, Lesley R, Blom B, Timans JC, Xu Y, Hunte B, et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity.2000; 5:715-25.
    [28] Yen D, Cheung J, Scheerens H, Poulet F, McClanahan T, McKenzie B, et al. IL-23 is essential for T cell-mediated colitis and promotes inXammation via IL-17 and IL-6. J Clin Invest 2006; 5:1310-6.
    [29] Aggarwal S, Ghilardi N, Xie MH, et al. Interleukin223 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17[J ]. J Biol Chem, 2003, 278 (3): 191021914.
    [30] Komiyama Y, Nakae S, Matsuki T, Nambu A, Ishigame H, Kakuta S, et al. IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J Immunol 2006; 1:566-73.
    [31] Richard H. Duerr, et al. A genome-wide association study identifies IL-23R as an inflammatory bowel disease gene. Science ;2006,314:1461-1462
    [32] Vaknin-Dembinsky A, Balashov K, Weiner HL. IL-23 is increased in dendritic cells in multiple sclerosis and down-regulation of IL-23 by antisense oligos increases dendritic cell IL-10 production. J Immunol.2006; 12:7768-74.
    [33] Mangan PR, Harrington LE, O'Quinn DB, Helms WS, Bullard DC, Elson CO, et al. Transforming growth factor-beta induces development of the T (H) 17 lineage. Nature 2006; 7090:231-4.
    [34] Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, et al. Reciprocal developmental pathways for the generation of pathogenic effecter TH17 and regulatory T cells. Nature 2006; 7090:235-8.
    [35] Fontenot JD, Rasmussen JP, Gavin MA, Rudensky AY. A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat Immunol 2005; 11:1142-51.
    [36] Wilson NJ, Boniface K, Chan JR, McKenzie BS, Blumenschein WM, Mattson JD, et al. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol, 2007;8:950-7.
    [37] Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A, Sallusto, F. Interleukins 1beta and 6 but not transforming growth factor-beta is essential for the diferentiation of interleukin 17-producing human T helper cells. Nat Immunol 2007; 8:942-9.
    [38] Bal A, Unlu E, Bahar G, et al. Comparison of serum IL-1β, sIL-2R, IL-6, and TNF-α levels with disease activity parameters in ankylosing spondylitis. Clin Rheumatol. 2007; 26: 211-215.
    [39] C Keller, A Webb, J Davis. Cytokines in the seronegative spondyloarthropathies and their modification by TNF blockade: a brief report and literature review. Ann Rheum Dis 2003; 62:1128-1132.
    [40] H. S. Howe, P. L. Cheung, K. O. Kong,et al. Transforming growth factor beta-1 and gene polymorphisms in oriental ankylosing spondylitis. Rheumatology 2005;44:51-54
    
    [41] Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A, Sallusto, F. Interleukins 1beta and 6 but not transforming growth factor-beta is essential for the diVerentiation of interleukin 17-producing human T helper cells. Nat Immunol 2007; 8:942-9.
    [1] Parham C, Chirica M, Timans J, et al. A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rβ1 and a novel cytokine receptor subunit, IL-23R. J Immunol, 2002;168 (11): 5699-5708
    
    [2] Casey T. Weaver, Robin D. Hatton, Paul R. Mangan, et al. IL-17 Family Cytokines and the Expanding Diversity of Effector T Cell Lineages.Annual Review of Immunology.2007; 25: 821-852
    [3] Annunziato F, Cosmi L, Santarlasci V,et al. Phenotypic and functional features of human Thl7 cells. J Exp Med. 2007 Aug 6; 204(8): 1849-61.
    [4] Thakker P, Leach MW, Kuang W,et al. IL-23 is critical in the induction but not in the effector phase of experimental autoimmune encephalomyelitis. J Immunol. 2007 Feb 15;178(4):2589-98
    [5] Liu Y, Krueger J G, Bowcock A M. Psoriasis: genetic associations and immune system changes. Genes and Immunity.2007; 8:1-12.
    [6] Lee E, Trepicchio WL, Oestreicher JL, et al. Increased expression of interleukin 23 p19 and p40 in lesional skin of patients with psoriasis vulgaris. J Exp Med 2004, 199:125-130
    
    [7] Tsunemi Y, Saeki H, Nakamura ,et al. KInterleukin-12 p40 gene (IL12B) 3'-untranslated region polymorphism is associated with susceptibility to atopic dermatitis and psoriasis vulgaris. J Dermatol Sci. 2002 Nov; 30(2): 161-6.
    
    [8] Cargill M, Steven J., Chang M, et al. A large-scale genetic association study confirms IL12B and leads to the identification of IL23R as psoriasis-risk genes. The American Journal of Human Genetic,2007,80:273-290
    
    [9] Capon F, Di Meglio P, Szaub J,et al. Sequence variants in the genes for the interleukin-23 receptor (IL-23R) and its ligand (IL-12B) confer protection against psoriasis. Hum Genet. 2007 Sep; 122(2):201-206.
    [10] Ann Begovich, Director, Celera, Alameda, et al. Characterization of the Psoriasis-associated IL-12B and IL-23R Genes. Clinical Immunology.2007; 123:126
    [11] Richard H. Duerr, et al. A genome-wide association study identifies IL-23R as an inflammatory bowel disease gene. Science ;2006,314:1461-1462
    [12] Fraser Cummings JR, Ahmad T, et al. Contribution of the novel inflammatory bowel disease gene IL-23R to disease susceptibility and phenotype. Inflamm Bowel Dis. 2007 Sep; 13(9): 1063-8
    [13] Cummings F, Fisher SA, Mansfield J,et al. IL-23R variation determines susceptibility but not disease phenotype in inflammatory bowel disease. Gastroenterology. 2007 May; 132(5):2045-9.
    [14] Biining.C, H. H.-J. Schmidt, et al. Heterozygosity for IL23R p.Arg381Gln confers a protective effect against Crohn's disease but also against Ulcerative colitis. Alimentary Pharmacology & Therapeutics.2007; 10:1365-2036
    [15] Dubinsky MC, Wang D, Picornell Y, et al. IL-23 receptor (IL-23R) gene protects against pediatric Crohn's disease. Inflamm Bowel Dis. 2007 May; 13(5):511-5.
    [16] Van Limbergen JE, Russell RK, Nimmo ER,et al. IL23R Arg381Gln is associated with childhood onset inflammatory bowel disease in Scotland. Gut. 2007; 56(8): 1173-4
    [17] Yamazaki K, Onouchi Y, Takazoe M,et al. Association analysis of genetic variants in IL-23R, ATG16L1 and 5p13.1 loci with Crohn's disease in Japanese patients. J Hum Genet. 2007 May;52(7):575-583
    [18] Sanchez E, Rueda B, Callejas JL,et al. Analysis of interleukin-23 receptor (IL23R) gene polymorphisms in systemic lupus erythematosus. Tissue Antigens. 2007 Sep;70(3):233-7
    [19] Identification and expression analysis of alternatively spliced isofonns of human interleukin-23 receptor gene in normal lymphoid cells and selected tumor cells. Immunogenetics.2005;57: 934-943
    [1] Harrington LE, Hatton RD, Mangan PR, et al. Interleukin 17-producing CD4 + effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages[J]. N at Immunol, 2005, 6 (11):1123-1132.
    
    [2] Bettelli E, Carrier Y, GaoW, et al. Reciprocal developmental path 2 ways for the generation of pathogenic effect or TH17 and regulatory T cells [J]. Nature, 2006,441 (7090): 235 - 238.
    [3] Janette Furuzawa-Caralleda, Maria Ines, Antonio R.Cabbral, et al. Autoimmune inflammation from the Th17 perspective.Autoimmunity Reviews,2007,6:169-175
    
    [4] Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B. TGFbeta in the context of an inflammatory cytokine milieu supports de novo diferentiation of IL-17-producing T cells. Immunity, 2006;2:179-89.
    [5] Mangan PR, Harrington LE, O'Quinn DB, Helms WS, Bullard DC, Elson CO, et al. Transforming growth factor-beta induces development of the T (H) 17 lineage. Nature 2006; 7090:231-4.
    [6] Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, et al. Reciprocal developmental pathways for the generation of pathogenic effecter TH17 and regulatory T cells. Nature 2006; 7090:235-8.
    [7] Korn T, Bettelli E, Gao W, Awasthi A, Jager A, Strom TB, et al. IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature, 2007;7152:484-7.
    [8] Nurieva R, Yang XO, Martinez G, Zhang Y, Panopoulos AD, Ma L, et al. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature 2007; 7152:480-3.
    [9] Zhou L, Ivanov II, Spolski R, Min R, Shenderov K, Egawa T, et al. IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol, 2007; 8:967-74.
    
    [10] Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A, Sallusto, F. Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the diferentiation of interleukin 17-producing human T helper cells. Nat Immunol 2007; 8:942-9.
    
    [11] Wilson NJ, Boniface K, Chan JR, McKenzie BS, Blumenschein WM, Mattson JD, et al. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol, 2007;8:950-7.
    [12] Chen Z, Tato C, Muul L, Laurence A, O'Shea JJ. Distinct regulation of IL-17 in human helper T lymphocytes. Arthritis Rheum 2007; 9:2936-46.
    
    [13] Yang XO, Panopoulos AD, Nurieva R, Chang SH, Wang D, Watowich SS, et al. STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J Biol Chem 2007; 13:9358-63.
    [14] Acosta-Rodriguez EV, Rivino L, Geginat J, Jarrossay D, Gattomo M, Lanzavecchia A, et al. Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat.Immunol 2007; 6:639-46.
    [15] Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang YH, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 2005; 11:1133-41.
    [16] Mathur AN, Chang HC, Zisoulis DG, Kapur R, Belladonna ML, Kansas GS, et al. T-bet is a critical determinant in the instability of the IL-17-secreting T-helper phenotype. Blood 2006; 5:1595-601.
    [17] Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, et al. Interleukin 17-producing CD4+ efector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 2005; 11:1123-32.
    [18] Batten M, Li J, Yi S, Kljavin NM, Danilenko DM, Lucas S, et al. Interleukin 27 limits autoimmune encephalomyelitis by suppressing the development of interleukin 17-producing T cells. Nat Immunol.2006; 9:929-36.
    [19] Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, et al. Interleukin 17-producing CD4+ eVector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 2005; 11:1123-32.
    [20] Harris TJ, Grosso JF, Yen HR, Xin H, Kortylewski M, Albesiano E, et al. Cutting edge: an in vivo requirement for STAT3 signaling in TH17 development and TH 17-dependent autoimmunity. J Immunol.2007; 7:4313-7.
    [21] Chen Z, Laurence A, Kanno Y, Pacher-Zavisin M, Zhu BM, Tato C, et al. Selective regulatory function of SOCS3 in the formation of IL-17-secreting T cells. Proc Natl Acad Sci USA 2006; 103:8137-42.
    [22] Wei L, Laurence A, Elias K, O'Shea J. IL-21 is produced by Th17 cells and drives IL-17 production in a Stat3-dependent manner. J Biol Chem 2007; 282:34605-10.
    [23] Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille 33, et al. The orphan nuclear receptor ROR gamma directs the differentiation program of proinflammatory IL-17(+) T helper cells. Cell.2006; 6:1121-33.
    [24] Yao Z, Painter SL, Fanslow WC, Ulrich D, MacduV BM, Spriggs MK, et al. Human IL-17: a novel cytokine derived from T cells. J Immunol 1995; 12:5483-6.
    [25] Mathur AN, Chang HC, Zisoulis DG, Stritesky GL, Yu Q, O'Malley JT, et al. Stat3 and Stat4 direct development of IL-17-secreting Th cells. J Immunol 2007; 8:4901-7.
    [26] Brustle A, Heink S, Huber M, Rosenplanter C, Stadelmann C, Yu P, et al. The development of inflammatory T (H)-17 cells requires interferon-regulatory factor 4. Nat Immunol 2007; 8:958-66.
    [27] Chen W, Jin W, Hardegen N, Lei KJ, Li L, Marinos N, et al. Conversion of peripheral CD4+CD25-naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 2003; 12:1875-86.
    
    [28] Wahl SM. Transforming growth factor-beta: innately bipolar. Curr Opin Immunol 2007; 1:55-62.
    [29] Fontenot JD, Rasmussen JP, Gavin MA, Rudensky AY. A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat Immunol 2005; 11:1142-51.
    [30] Yao Z, Kanno Y, Kerenyi M, Stephens G, Durant L, Watford WT, et al. No redundant roles for Stat5a/b in directly regulating Foxp3. Blood 2007; 109:4368-75.
    [31] Laurence A, Tato CM, Davidson TS, Kanno Y, Chen Z, Yao Z, et al. Interleukin-2 signaling via STAT5 constrains T helper 17 cell generations. Immunity 2007; 3:371-81.
    [32] Yen D, Cheung J, Scheerens H, Poulet F, McClanahan T, McKenzie B, et al. IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J Clin Invest 2006; 5:1310-6.
    [33] Benson MJ, Pino-Lagos K, Rosemblatt M, Noelle RJ. All-trans retinoic acid mediates enhanced T reg cell growth, diferentiation, and gut homing in the face of high levels of co-stimulation. J Exp Med.2007; 8:1765-74.
    [34] Mucida D, Park Y, Kim G, Turovskaya O, Scott I, Kronenberg M, et al. Reciprocal Th-17 and regulatory T cell differentiation mediated by retinoic acid. Science 2007; 317:256-60.
    [35] Denning TL, Wang YC, Patel SR, Williams IR, Pulendran B. Lamina propria macrophages and dendritic cells deferentially induce regulatory and interleukin 17-producing T cell responses. Nat Immunol.2007; 10:1086-94.
    [36] Aggarwal S, Ghilardi N, Xie MH, de Sauvage FJ, Gurney AL. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J Biol Chem 2003; 3:1910-4.
    [37] Komiyama Y, Nakae S, Matsuki T, Nambu A, Ishigame H, Kakuta S, et al. IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J Immunol 2006; 1:566-73.
    [38] Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang YH, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 2005; 11:1133-41.
    [39] Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 2005; 2:233-40.
    [40] Vaknin-Dembinsky A, Balashov K, Weiner HL. IL-23 is increased in dendritic cells in multiple sclerosis and down-regulation of IL-23 by antisense oligos increases dendritic cell IL-10 production. J Immunol.2006; 12:7768-74.
    [41] Murphy CA, Langrish CL, Chen Y, Blumenschein W, McClanahan T, Kastelein RA, et al. Divergent pro- and anti-inflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med.2003; 12:1951-7.
    [42] Lubberts E, Joosten LA, Oppers B, van den Bersselaar L, Coenen-de Roo CJ, Kolls JK, et al. IL-1-independent role of IL-17 in synovial inflammation and joint destruction during collagen-induced arthritis. J Immunol 2001;2:1004—13.
    [43] Sato K, Suematsu A, Okamoto K, Yamaguchi A, Morishita Y, Kadono Y, et al. Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J Exp Med.2006; 12:2673-82.
    [44] Ziolkowska M, Koc A, Luszczykiewicz G, Ksiezopolska-Pietrzak K, Klimczak E, Chwalinska-Sadowska H, et al. High levels of IL-17 in rheumatoid arthritis patients: IL-15 triggers in vitro IL-17 production via cyclosporine A-sensitive mechanism. J Immunol 2000; 5:2832-8.
    [45] Kotake S, Udagawa N, Takahashi N, Matsuzaki K, Itoh K, Ishiyama S, et al. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest. 1999; 9:1345-52.
    [46] Fujino S, Andoh A, Bamba S, Ogawa A, Hata K, Araki Y, et al. Increased expression of interleukin 17 in inflammatory bowel disease. Gut 2003; 1:65-70.
    [47] Kullberg MC, Jankovic D, Feng CG, Hue S, Gorelick PL, McKenzie BS, et al. IL-23 plays a key role in Helicobacter hepaticus-induced T cell-dependent colitis. J Exp Med 2006; 11:2485-94.
    [48] Moseley TA, Haudenschild DR, Rose L, Reddi AH. Interleukin-17 family and IL-17 receptors.Cytokine Growth Factor Rev 2003;2:155-74.
    [49] Zheng Y, Danilenko DM, Valdez P, Kasman I, Eastham-Anderson J, Wu J, et al. Interleukin-22,a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 2007; 445:648-51.
    [50] Wolk K, Witte E, Wallace E, Docke WD, Kunz S, Asadullah K, et al. IL-22 regulates the expression of genes responsible for antimicrobial defense, cellular diferentiation, and mobility in keratinocytes: a potential role in psoriasis. Eur J Immunol 2006; 5:1309-23.
    [51] Wolk K, Kunz S, Witte E, Friedrich M, Asadullah K, Sabat R. IL-22 increases the innate immunity of tissues. Immunity 2004; 2:241-54.
    [52] Kebir H, Kreymborg K, Ifergan I, Dodelet-Devillers A, Cayrol R, Bernard M, et al. Human T(H)17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat Med.2007; 13:1173-5.
    [53] Zenewicz LA, Yancopoulos GD, Valenzuela DM, Murphy AJ, Karow M, Flavell RA. Interleukin-22 but not interleukin-17 provides protection to hepatocytes during acute liver inflammation. Immunity.2007; 27:647-59.
    [54] Ye P, Rodriguez FH, Kanaly S, Stocking KL, Schurr J, Schwarzenberger P, et al. Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J Exp Med 2001; 4:519-27.
    [55] Fedele G, Stefanelli P, Spensieri F, Fazio C, Mastrantonio P, Ausiello CM. Bordetella pertussis-infected human monocyte-derived dendritic cells undergo maturation and induce Th1 polarization and interleukin-23 expression. Infect Immun 2005; 3:1590-7.
    [56] Happel KI, Lockhart EA, Mason CM, Porretta E, Keoshkerian E, Odden AR, et al. Pulmonary interleukin-23 gene delivery increases local T-cell immunity and controls growth of Mycobacterium tuberculosis in the lungs. Infect Immun 2005; 9:5782-8.
    [57] Goldsack L, Kirman JR. Half-truths and selective memory: interferon gamma, CD4 (+) T cells and protective memory against tuberculosis. Tuberculosis (Edinb) 2007; 87:465-73.
    [58] Infante-Duarte C, Horton HF, Byrne MC, Kamradt T. Microbial lipopeptides induce the production of IL-17 in Th cells. J Immunol 2000; 11:6107-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700