液压振动台振动环境模拟的控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
振动环境模拟被广泛应用于航空、航天和国防军事等领域,目前已成为检测和提高装备可靠性的必备手段。通过使用特定的振动模拟设备和控制技术模拟产品在使用,运输以及存储等过程中所受到的振动激励,可以检测设计上的不足和缺陷,为及时地修正设计提供依据。
     本文以哈尔滨工业大学电液伺服仿真及试验系统研究所承接的“单水平向液压振动台数控系统改造”为项目背景,对模拟随机和正弦两类振动环境涉及的关键控制技术进行理论和实验研究,其研究成果对于充分发挥液压振动台在振动环境模拟方面的潜力具有重要的指导意义。
     液压振动台实时控制单元由伺服控制器和振动控制器两部分组成。伺服控制器实现运动平台的数字闭环控制,它是实现各类振动环境模拟的控制基础。本文针对液压振动台动力机构固有频率比较低、阻尼比很小的特点,引入三参量控制策略,提高系统稳定性和拓展系统频宽。同时,文中应用根轨迹设计法对控制器参数进行设计,充分考虑了伺服阀动态特性对激振器性能的影响,并通过实验验证了该方法的有效性。
     高斯随机振动环境是实际工程中经常遇到的一类振动环境,功率谱密度通常作为此类振动环境模拟的等价条件。而驱动平台运动的激励信号必须为时域信号,因此如何完成功率谱密度至时域信号的转换是此类振动环境模拟的首要工作。本文首先对该类振动环境的数值模拟技术进行了系统地论述,提出了基于自回归(Auto-Regressive,AR)参数模型和Ziggurat高斯随机数生成算法的数值模拟方法。实时构造的AR模型对平稳、各态历经和独立的高斯白噪声进行滤波,从而实现了对驱动功率谱密度的精确时域模拟。仿真结果表明这种方法不仅模拟精度高,而且计算量小,计算简单,同时能够保证时域驱动信号的各项统计特征要求。另外,该方法支持xPc Target快速控制原型技术,极大地简化了驱动信号的生成过程。在随机过程数值模拟的基础上,考虑到激振器和负载特性的影响,为保证足够的功率谱密度再现精度,需要对驱动功率谱进行迭代控制。控制点处的响应功率谱密度估计值是迭代控制过程中的反馈量(也称为被控制量),其估计精度与响应信号测量的统计自由度密切相关。为此,通过详细分析响应信号功率谱密度估计时的统计特性,提出了一种优化的功率谱平均方法,,该方法不仅提高了响应信号功率谱估计的置信度和精度,而且缩短了功率谱再现迭代控制中的回路时间,进而提高了控制过程的实时性。
     传统的频谱均衡控制算法(无论是线性域积分控制还是对数域积分控制)均采用控制误差直接补偿的闭环控制策略,其稳定性受到反馈增益和外界干扰的影响。为了保证系统的稳定性,通常需要选择较小的反馈增益,但是这样做却导致均衡时间变得很长。为了克服这种缺陷,本文提出了频域X滤波变步长LMS算法,基于此算法构造了随机振动功率谱再现的自适应控制律。在实时闭环控制的同时,阻抗函数(系统频响函数的逆)在频域内被不断修正,改善的阻抗函数可以允许更高的反馈增益,从而使均衡时间缩短而又不失稳定性。仿真结果表明,该方法相对传统的频谱均衡算法具有更好的稳定性、更快的收敛速度和更高的控制精度。
     正弦扫频振动试验既可以确定样品的共振频率和导致样品失效的危险频率,还可以进行扫频耐久性试验。本文针对正弦扫频信号实质上为瞬态信号的本质特性,提出了基于相位函数解析解的信号综合算法,并基于此信号综合算法设计了一种数字跟踪滤波器。该信号综合算法不仅可以提高输出波形的精度,而且可以与外差操作紧密结合,将响应信号在当前频率点的频谱平移至直流分量附近,该直流分量包含响应信号在当前频率点的基频幅度信息。直流中频检测器通过选择适当的低通滤波器释放出直流分量,即可实现跟踪滤波处理。仿真表明这种数字跟踪滤波器特别适合于正弦扫频信号的时变谱分析。另外,传统的幅度控制算法采用固定的压缩比,它无法解决对不同频段和不同系统特性的适应性问题。为此,本文通过引入优化概念,设计了一种分频段变压缩比积分控制器,提高了的正弦扫频振动控制的精度。仿真结果验证了这种控制技术的优越性。
     基于xPc Target快速控制原型技术开发了用于随机振动功率谱再现和正弦扫频振动的多级计算机控制系统,并针对各种控制策略进行了一系列的实验研究。实验结果进一步证明了仿真研究的结论,验证了本文所提出的各种控制技术的有效性和先进性。
Vibration environment simulation has been applied in the fields of the aspects of aeronautics, astronautics, national defense and so on. Now the vibration environment simulation is an important means for increasing the reliability of the products. By simulating the particular vibration environment that products will exposed to in use, transform and storage using the specific test equipments and the control technologies, weakness of design can be early found and the information for correcting design is obtained in time.
     Upon the background of the project“Digital control system rebuilding of single horizontal direction hydraulic vibration table”which is developed by IEST (Institute of Electro-hydraulic Servo Simulation & Test System) of Harbin Institute of Technology, the key control technologies of the random and sine vibration environment simulation has been theoretically and experimentally studied,in order to enhance the capability of the hydraulic vibration table in the field of the vibration environment simulation.
     The real time control unit of the hydraulic vibration table consists of the servo controller and the vibration controller. The servo controller is the basic to provide vibration environment simulation by a digital closed loop. Due to the low resonance frequency and small damp ratio of the power element, the Three Variable Controller (TVC) is proposed in order to extent the frequency band and improve system stability. Considering the effect of the servo valve dynamic characteristics on the performace of the electro-hydraulic shaker, the root locus method is used to design the TVC parameters. And the validity of this method is confirmed by experiment.
     Gaussian random process is common in engineering. The power spectrum density (PSD) is equivalent condition. But the signal to excite vibration table must be in time-domain, therefore how to transform the PSD into the time-domain signal is the first work to simulate this kind of vibration environment. This paper firstly presents an overview of numerical simulation techniques to this kind of vibration environment. Then a numerical simulation method based on the Auto-Regressive (AR) model and the Ziggurat algorithm is proposed. The Stationary, ergodic and independent Gaussian White Noise is filtered by the AR model constructed in real-time, so that the accurate simulation of drive PSD is implemented. Simulation results show that this simulation algorithm has higher precision and low computation complexity, and it can also meet requirement about the statistics, besides, it can support xPc Target Rapid Control Prototyping (RCP) technology, so that the process generating time-domain drive signal is greatly simplified. On the basis of the numerical simulation, considering the effect of the dynamics of actuator and load on control accuracy, it is necessary to update drive PSD constantly. The PSD of the response signal at control points is not only the feedback quantity but also the control quantity. The estimated value of the quantity is closely related to the degree of freedom (DOF). So, the statistical characteristics about the response PSD estimation are analyzed in detail. An optimal method for averaging response PSD is proposed. The optimal method has increased confidence and accuray of the estimated response PSD, and has shortened the loop time,so that the real-time characteristics of the iterative process is increased.
     Classical spectrum equalization technique, either log-domain integral or linear- domain integral, corrects the control error by the closed loop feedback. In order to guarantee the stability, the feedback gain is usually enough small theorefore may result in very slow control system convergence. To solve the limitation, the frequency-domain filtered-X variable step-size least mean square (LMS) algorithm is introduced into control process, and thus adaptive control strategy of random vibration for PSD replication is proposed. The system impedence function,which is the inverse of the frequency response function, is refined in frequency-domain in real-time. The improved system impedance function has allowed a higher feedback gain parameter, which can speed up equalization process and guarantee the stability. The simulation results have validated that the control strategy has better stability, higher convergence rate and control precision.
     Swept sine testing can be used to determine resonance frequency and damage frequency, and to conduct durability testing. To non-stationary characteristics of the swept sinewave exciting signal, the swept-sine wave generation has been accomplished by solving the governing differential equation of the phase function associated with the linear sweep and the logarithmic sweep mode. The digital tracking filter is designed based on the signal synthesis method. This synthesis method has increased the accuracy of the output signal and has the suitability of heterodyne generation. The purpose of the heterodyne is to translate the response signal spectrum about 0-Hz. The term at DC represents the real and imaginary components of its AC amplitude.The 0-Hz intermediate frequency detector implements tracking filter by a low-pass filter that extracts the DC component. The simulation results have proved that the proposed digital tracking filter can be applied to time-variable spectral analysis of the swept-sine wave. On the other hand, the conventional amplitude control method can not be suitable for various frequency segment and various the system characteristics due to a fixed compression ratio. The optimal control concepts is applied to design an integral controller with a variable compression ratio (VCR) for frequency-devison section so as to provide better control accuracy. Simulation results have proved the effectiveness of the designed controller.
     The multi-level computer control system for the random vibration PSD replication and swept sine vibration is established using RCP technology based on xPc Target. A series of experiments are respectively carried out using various control strategies. Experimental results further proved the conclusions from the simulation study, and validated that the proposed control techniques are advanced and effective.
引文
1赵于鉴,马栋.多点控制在导弹随机振动试验中的应用.国外电子测量技术. 2005, 24(10): 37~40
    2韩增尧,曲广吉.航天器宽带随机振动响应分析.强度与环境. 2003, (02): 1~3
    3 Tony Keller, Marcos Underwood. An Application of MIMO Techniques to Satellite Testing. Proceedings-Institute of Environmental Sciences and Technology. 2001: 70~78
    4马辉,孙伟,刘杰,闻邦椿.旋转机械支座松动故障的实验.农业机械学报. 2007,38(6):134~137
    5佟富强,张勇,张飞虎,顾立志等.振动切削中应力波对裂纹及成屑机理影响研究.振动与冲击. 2008, 27(6):136~139
    6吴三灵.实用振动试验技术.兵器工业出版社, 1993: 69~97
    7周海亭,陈光治,林卫东等.汽车电子部件振动疲劳试验规范设计.振动与冲击. 2003, (1): 61~63
    8王坷晟,类勇军,朱晓莹.系统及产品振动试验的探讨与研究.振动与冲击. 2004, (4): 68~72
    9蒋瑜.频谱可控的超高斯随机振动环境模拟技术及其应用研究.国防科学技术大学博士论文. 2005:12~20
    10李大海.电液伺服振动台的随机振动控制.西安交通大学硕士学位论文. 2004: 1~4
    11张巧寿.振动试验系统现状与发展.航天技术与民品. 2000, (8):36~39
    12胡志强,法庆衍,洪宝林等.随机振动试验应用技术.中国计量出版社, 1996: 40~50
    13叶凌云.多轴向多激励随机振动高精度控制研究.浙江大学工学博士学位论文. 2006: 3~6
    14王刚.数字式随机振动控制技术.战术导弹技术. 1999, (3):54~60
    15 Edwin A. Sloane, Charles L. Heizman. System for Digitally Controlling a Vibration Testing Environment or Apparatus. United States Patent: 3710082. 1973-01-09
    16 Fisher D.K. Theoretical and Practical Aspects of Multiple-Actuator Shaker Control. 43th Shock and Vibration Bulletin. 1973: 153~174
    17 Fisher D.K. and Posehn M.R. Digital Control System for a Multiple-Actuator Shaker. 47th Shock and Vibration Bulletin. NM: Albuquerque, 1977: 79~96
    18 David O. Smallwood. Multiple Shaker Random Vibration with Cross Coupling. Proceedings of the IEST. 1978: 341~347
    19 Smallwood D O. Random Vibration Testing of a Single Test Item with a Multiple Input Control System. Proceedings of the Institute of Environmental Sciences’28th Annual Technical Meeting. USA, Dallas, TX, 1982: 42~49
    20 David O. Smallwood. Multiple Shaker Random Vibration Control-An Update. Proceedings of the IEST. 1999: 212~221
    21 Stroud R.C. and Hamma G.A. Multiexciter and Multiaxis Vibration Exciter Control Systems. Sound and Vibration. 1988, 22(4): 18~28
    22 Marcos A. Underwood. Digital Signal Synthesizer. United States Patent: 4782324. 1988-11-01
    23 Marcos A. Underwood. Calibration Method and Programmable Phase-Gain Amplifier. United States Patent: 4937535. 1990-06-26
    24 Underwood M.A. Adaptive Control Method for Multiexciter Sine Tests. United States Patent: 5299459. 1994-04-05
    25李玲珠. BH 14A振动、冲击数控系统总体方案设计.环境条件与试验, 1991 (1): 25~30
    26朱晓钢,高华. BH 14A振动、冲击数控系统软件设计.环境条件与试验, 1991 (1): 21~24
    27王述成.振动试验实时控制系统的研究.浙江大学博士学位论文. 2006: 53~70
    28韩军,陈怀海,许峰等.基于遗传算法的多振动台随机振动控制方法.航空学报. 2003, 24(1): 39~41
    29 Klaus L. Vibration Testing System. United States Patent: 4011749. 1977-03-15
    30夏益霖,吴家驹,李志绩.多轴低频振动试验技术与设备.航天出国考察技术报告. 1996, (1): 83~89
    31张正平,王宇宏,朱曦全.动力学综合环境试验技术现状和发展.装备环境工程. 2006, 3(4): 7~11
    32 A.R.Plummer. Modal Control for a Class of Multi-axis Vibration Table.UKACC Control 2004 Mini Symposia, 2004: 111~115
    33关广丰.六自由度液压振动试验系统控制策略研究.哈尔滨工业大学博士论文. 2007: 10~13
    34韩俊伟.三向六自由度大型地震模拟振动台的研制.哈尔滨工业大学博士后研究报告. 1996: 33~39
    35韩俊伟,于丽明,赵慧等.地震模拟振动台三状态控制的研究.哈尔滨工业大学学报. 1999, 31(3): 21~23, 28
    36姚建军.电液伺服振动台加速度谐波抑制研究.哈尔滨工业大学博士论文. 2007: 43~45
    37徐洋.结构主动控制的鲁棒策略研究.哈尔滨工业大学博士论文. 2006: 41~53
    38方重.模拟地震振动台的近况及其发展.世界地震工程. 1999,15(2):89~91
    39 Yao Jianjun, Cong Dacheng, Jiang Hongzhou. ANN-based acceleration harmonic identification for an electro-hydraulic servo system. 2007 IEEE International Conferenceon Integration Technology. China, Shenzhen, 2007: 398~402
    40 Yao Jianjun, Wang Liquan, Jiang Hongzhou. Adaptive feed-forward compensator for harmonic cancellation in electro-hydraulic servo system. Chinese Journal of Mechanical Engineering. 2008,21(1):77~81
    41 Yao Jianjun,Wu Zhenshun,Han Junwei. Adaptive harmonic cancellation applied in electro-hydraulic servo system with ANN. Chinese Journal of Mechanical Engineering.2004,17(4):628~630
    42延皓,叶正茂,张辉,韩俊伟,赵勇,李洪人.基于Widrow-Hoff学习算法的液压协调加载控制策略研究.地震工程与工程振动. 2006, 26(3):104-108
    43 Flex Test IIs MAST Controller. Manual. MTS Systems Corporation. 1999: 7~62
    44王宵锋.汽车车轴室内耐久性试验研究.清华大学学报(自然科学版). 1997, (12):85 ~87
    45杜永昌,管迪华.汽车道路模拟试验台计算机测控系统的研发.清华大学学报(自然科学版). 2002: 42(4):523~526
    46杜永昌,管迪华,宋健.汽车道路模拟算法研究.公路交通科技, 2001, 18(6): 10~13
    47杨云.电液道路模拟振动台及功率谱再现控制的研究.西安交通大学博士学位论文. 2003:9~10
    48杜永昌,管迪华.汽车道路动态试验模拟控制系统的研究与开发.汽车技术. 1999(3):16~18
    49 Sinusoidal Signal Amplitude and Phase Control for an Adaptive Feedback Control System. United States Patent.1992
    50覃欢.模拟地震平台随机振动信号功率谱估计及再现的研究.西安交通大学硕士学位论文.2002:14~44
    51齐华.单轴多点激励正弦振动控制算法研究及其实现:北京航空航天大学工程系统工程系, 2001: 6~27
    52 Niu Baoliang , Yan Xia. A FFT-BASED VARIETY-SAMPLING-RATE SINE SWEEP VIBRATION CONTROLLER.IEEE Int.Conf. Neural Networks & Signal Processing, Nanjing,China, 2003,14~17
    53袁宏杰,李传日,殷雪岩等.正弦振动控制技术的研究.电气自动化, 2001, 2:25~27
    54姜同敏,王德言.综合环境试验系统研制中的技术问题.北京航空航天大学学报. 1955, 21(4):112~118
    55薛定宇,陈阳泉.基于MATLAB/Simulink的系统仿真技术与应用.清华大学出版社. 2002: 406~420
    56 The MathWorks, Inc. Real-Time Workshop. Matlab Help Document. 2002
    57 The MathWorks, Inc. xPC Target. Matlab Help Document. 2002
    58 Low K.H., Heng Wang, Wang M.Y.. On the development of a real time control system by using xPC Target: solution to robotic system control. IEEE International Conference on Automation Science and Engineering. Edmonton, Canada, 2005:345~350
    59 The MathWorks, Inc. DSP Blockset. Matlab Help Document. 2002
    60 The MathWorks, Inc. Stateflow. Matlab Help Document. 2002
    61李洪人.液压控制系统.国防工业出版社. 1990: 162~167, 188~199
    62 Y Tagawa, K Kajiwara. Controller development for the E-Defense shaking table. J.Systems and Control Engineering. Proc. IMechE Vol. 221 Part I.2007,171~181
    63 Katsuhiko Ogata. Modern Control Engineering.电子工业出版社. 2000: 375~433
    64戴诗亮.随机振动实验技术.清华大学出版社, 1984: 134~169
    65国际电工学会.“IEC68-2-34基本环境随机振动试验”. 1973: 1~12
    66国家计量局.随机振动试验系统.中华人民共和国国家计量检定规程JJG529-88. 1988
    67星谷胜.随机振动分析.地震出版社. 1977: 42~89
    68 Goto H, Toki K. Structural response to non stationary random excitation.4th Proc.World.Conf.Earthq.Eng.Santiago,Chile,1969:53~58
    69程伟,刘光栋,易伟建.平稳地震动过程功率谱拟合及收敛性分析.世界地震工程. 2002,18(2):43~47
    70 Shinozuka M. Simulation of multivariate and multidimensional random processes.Acou.Soc.Ame.1971,49(1):357~368
    71 Shinozuka M. Digital simulation of random processes and its application.J.Sound and Vib. 1972,25(1):111~128
    72候传亮,张永林.工程平稳随机过程的数值模拟研究.武汉工业大学学报. 2003, 22(3):27~29
    73施毅坚.具有特定功率谱形式的随机信号数字模拟.南京航空航天学报. 1991, 23(4):135~139
    74王述成,陈章位.随机振动试验中时域随机化技术的研究.机械工程学报. 2005, 41(5):230~233
    75蒋瑜,陈循,陶俊勇.基于时域随机化的超高斯真随机驱动信号生成技术研究.振动工程学报. 2005,18(4):491~494
    76 Bendat J S, Piersol A G.Measurement and analysis of random data. John Wiley, 1958: 23~27
    77陈循,温熙森,唐丙阳.驱动信号软件生成和随机化噪声抵消技术.振动工程学报. 1994, 7(3):217~222
    78李东风.频域再现式随机振动的信号综合.环境试验. 2007: 8~15.
    79孙宁,李瑰贤.随机振动信号的一种简单模拟计算方法.振动与冲击. 2000, 19(2):50~63
    80 S.Welaratna. A New Algorithm for Random Vibration Control. Evaluation Engineering. 1994:51~55
    81贺旭东,陈怀海.利用FIR滤波器生成随机振动试验驱动信号的新方法.航空学报. 2004,24(3):220~222
    82 Emmanuel C. Ifeachor, Barrie W. Jervis. Digital Signal Processing.2004, 252~324
    83盛骤.概率论与数理统计.高等教育出版社, 2001: 56~80
    84 G.Box and M. Muller. A note on the generation of random normal deviates.Annals of Mathematical Statistics, 1958, 29: 610~611
    85 C. Wallace. Fast pseudorandom generators for normal and exponential variates. ACM Transactions on Mathematical Software.1996, 22(1): 119~127
    86 G. Marsaglia and W.W. Tsang. The Ziggurat Method for Generating Random Variables. Journal of Statistical Software.2000, 5(8): 1~7
    87 G. Zhang, P.H.W. Leong, D. Lee, etc. Ziggurat-based hardware Gaussian random number generator. In Proc. IEEE International Conference on Field Programmable Logic and its Applications (FPL). Tampere. Finland, 2005: 55~61
    88胡广书.数字信号处理理论,算法与实现.清华大学出版社, 2003: 527~579
    89李志华. ARMA序列及其功率谱估计若干新的理论和方法.大连海事大学学报. 1997, 23(4):93~97
    90程广利,王平波. AR拟合指定功率谱技术功率等问题研究.声学技术. 2007, 26(5):185~186
    91杨叔子,吴雅等.时间序列分析的工程应用(上册).华中理工大学出版社, 1994.02
    92中国机械工业联合会. GB/T 8288-2001.中华人民共和国机械行业标准.液压振动台. 2001: 1~11
    93 MDOF Vibration Control System F2/multi-Random Vibration Instruction Manual,IMV CORPORATION
    94叶建华.多点激励随机振动试验控制技术及实现的研究.北京航空航天大学硕士学位论文. 2004: 25~29
    95 J.S. Bendat, A.G.Piersol.相关分析和谱分析的工程应用.国防工业出版社, 1983: 187~209
    96 J. S. Bendat, A. G. Piersol. Random Data Analysis and Measurement Procedures,
    3rd Edition. John Wiely & Sons, New York, 2000: 102~130
    97刘小勇.振动系统的实时信号处理与控制.西安交通大学博士学位论文. 2003: 66~83
    98袁宏洁,李传日.正弦加随机振动控制技术的研究.航空学报. 2000, 21(4): 383~384
    99袁宏洁,李传日. VCS振动控制系统控制算法研究.仪器仪表学表. 2002, 23(3):846~852
    100 Edwin A. Sloane, Charles L. Heizman. Vibration Control System. United StatesPatent: 3848115. 1974-11-12
    101 Edwin A. Sloane. System for Determinig Transfer Function. United States Patent: 3973112. 1976-08-03
    102 Edwin A. Sloane. Vibration Control System. United States Patent: 4989158. 1991-01-29
    103 Edwin A. Sloane. Vibration Control System. United States Patent: 4991107. 1991-02-05
    104 Fisher D.K. and Posehn M.R. Digital Control System for a Multiple-Actuator Shaker. 47th Shock and Vibration Bulletin. NM: Albuquerque, 1977: 79~96
    105 Smallwood D O. Random Vibration Testing of a Single Test Item with a Multiple Input Control System. Proceedings of the Institute of Environmental Sciences’28th Annual Technical Meeting. USA, Dallas, TX, 1982: 42~49
    106 Peeters B. and Debilie J. Multi-axial Random Vibration Testing: a 6 Degrees-of- freedom Test Case. Proceedings of the 21st Aerospace Testing Seminar, Manhattan Beach, CA, USA, 2003: 4.47~4.62
    107关广丰,丛大成,韩俊伟等.随机振动功率谱复现迭代算法的研究.地震工程与工程振动. 2006, 26(6): 71~76
    108 Guan Guangfeng, Cong Dacheng, Han Junwei, et al. Study of Power Spectrum Replication Algorithm of Random Vibration. Proceedings of ISFP’2007: 5th International Symposium on Fluid Power Transmission and Control, Beidaihe, China, 2007. International Academic Publishers Ltd, 2007: 494~497
    109 Bart Peeters and Jan Debille. MIMO Random Vibration Control Algorithm and Simulations. Proceedings of the 72nd Shock and Vbiration Symposium, San Destin, FL, USA, 2001: 1~11
    110 Bart Peeters, Jan Debille. MIMO Vibration Qualification Testing: Algorithm and Practical experience. Proceedings of ESTECH. Anaheim, CA, USA, 2002:5~15
    111 Yoshitaka Morimoto, Yoshio Ichida and Ryunosuke Sato et al. Estimation of Dynamic Characteristics of Machine Structure by Pseudo Inverse Matrix. SICE Annual Conference. Hokkaido Institude of Technology, Japan, 2004: 1005~1010
    112 Tadeusz P. DObrowiecki, Johan Schoukens and Patrick Guillaume. Optimized Excitation Signals for MIMO Frequency Response Function Measurements. IEEE Trans on Instrum and Meas. 2006, 55(6): 2072~2079
    113 Nele Dedene, Rik Pintelon. Measurement of Multivariable Frequency ResponseFunctions in the Presence of Nonlinear Distortions—Some Practical Aspects. IEEE Trans on Instrum and Meas. 2002, 51(4): 577~582
    114 Kazuyoshi Ueno, Yoshikado Yamauchi. Measuring System for Transfer Function Matrix of a System to Be Controlled in Multi-degree of Freedom Vibration Control. United States Patent: 6377900. 2002-04-23
    115 D.E.Adams and R.J.Allemang. A New Derivation of the Frequency Response Function Matrix for Vibrating Non-linear Systems. Journal of Sound and Vibration. 1999, 227(5): 1083~1108
    116 Tadeusz P.Dobrowiecki, Johan Schoukens. Practical Choices in the FRF Measurement in Presence of Nonlinear Distortions. IEEE Trans on Instrum and Meas. 2001, 50(1): 2~7
    117 Rik Pintelon and Johan Schoukens. Measurement of Frequency Response Functions in the Presence of Correlated Input/output Errors. IEEE Instrumentation and Measurement Technology Conference, Budapest, 2001: 2~7
    118 Patrick Guillaume, Rik Pintelon and Johan Schoukens. Nonparametric Frequency Response Function Estimators Based on Nonlinear Averaging Techniques. IEEE Trans on Instrum and Meas. 1992, 41(6): 739~746
    119 Johan Schoukens, Yves Rolain, and Rik Pintelon. Improved Frequency Response Function Measurements for Random Noise Excitations. IEEE Trans on Instrum and Meas. 1998, 47(1): 322~326
    120 John J. Dougherty and Hossny EL-Sherief. Modeling and Identification of a Triaxial Shaker Control System. IEEE Conference on Control Applications Proceedings, 1995: 884~889
    121何振亚.自适应信号处理.科学出版社, 2003: 21~62
    122 CHEN WD, GU ZQ. Frequency Domain Implementation of filtered-x algorithm with on line system identification for vibration control. Transaction of Nanjing University of Aeronautics & Astronautics,1995,12(1):100~103
    123 D.Mansour and A.H.Gray, Jr.Unconstrained Frequency-Domain Adaptive Filter. IEEE Trans. on ASSP. 1982, 30(5):726~734
    124 B.威德罗, E.瓦莱斯.自适应逆控制.西安交通大学出版社, 2000: 133~173
    125孙恩昌,李于衡,张冬英等.自适应变步长LMS滤波算法及分析.系统仿真学报. 2007, 19(14):3172~3175
    126邓江波,侯新国,吴正国.基于箕舌线的变步长LMS自适应算法.数据采集与处理, 2004, 19(3): 282-285.
    127张瑞金,刘侠. X滤波与ε滤波LMS算法性能分析.郑州大学学报(理学版). 2004,36(1):49~52
    128刘小勇,杨清宇,施仁.基于X滤波最小均方算法的冲击振动自适应逆控制.西安交通大学学报. 2004, 38(2):144~148
    129樊殊昱,窦衡.一种改进的变步长频域批处理LMS自适应算法.现代电子技术. 2007, (19):7~10
    130 Gelfand S B, Wei Y, Krogmeie J Vr. The stability of variable step-sizeLMS algorithms. IEEE Trans. on Signal Processing (S1053-587X), l999, 47(12): 3277~3288.
    131 Yasukawa H, Shimada S, Furukrawa I, et al. Acoustic Echo Canceller with High Speech Quality. Proceedings-ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing. United States: IEEE, 1987: 2125~2128.
    132叶华,吴伯修.变步长自适应滤波算法的研究.电子学报, 1990, 18(4): 63~69.
    133 Shan T J, Kailaith T. Adaptive algorithm with an automatic gain control feature. IEEE Trans. on Acoust, speech, and signal processing (S0096-3518), 1991, 35 (1): 122~127
    134罩景繁,欧阳景正.—种新的变步长自适应滤波算法.数据采集与处理, 1997, 12(3): 171~194
    135高鹰,谢胜利.一种变步长LMS自适应滤波算法及分析.电子学报, 2001, 29(7): 1094~1097
    136兰瑞明,唐普英.一种新的变步长LMS自适应算法.系统工程与电子技术, 2005, 27(7): 1307~1310
    137罗小东,贾振红,王强.一种新的变步长LMS自适应滤波算法.电子学报, 2006, 34(6): 1123~1126
    138 Karm S, Zeng G. A new convergence factor for adaptive filters .IEEE Trans. on Circuits and Systems (S1057-7130), 1989, 36(7):1011~1012
    139中国国家标准化管理委员会. GB/T 5170.15-2005.中华人民共和国机械行业标准.电工电子产品环境试验设备基本参数检定方法振动(正弦)试验用液压振动台. 2005: 1~10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700