燃烧室的声学特性分析及声抑制装置的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃烧不稳定性问题是发动机燃烧室研制过程中所遇到的难题之一,它具有极强的破坏作用。而燃烧不稳定性的非稳态运动与燃烧室固有声学阵型之间存在着惊人的相似性,因此本文从声学的角度来对不稳定燃烧的抑制问题进行研究。
     本文选题于国家自然科学基金项目,以某型水下航行器的燃烧室为研究对象,采用理论分析、数值计算和实验研究相结合的方法,对燃烧室的声学特性进行了研究。研究结果对发动机的燃烧稳定性设计具有一定的参考价值。
     本文首先建立了发动机燃烧室的简化模型,通过燃烧室内基本方程的推导,建立了燃烧室内的声学波动方程,求解了常温常压条件下燃烧室内的声学共振频率的理论解。与此同时,利用有限元软件ANSYS建立了燃烧室的有限元模型,获得了燃烧室内的声学共振频率的数值解;建立了燃烧室结构的有限元模型,获得了燃烧室结构的共振频率。
     为了验证分析结果的合理性以及声学共振频率的特征,在常温常压下,对燃烧室的缩比模型进行了声学试验,获得了常温常压下燃烧室的声学共振频率的试验结果。并通过对上述理论解、数值解和实验结果的对比分析,获得了常温常压条件下燃烧室的声学共振频率。通过联合考虑燃烧室结构的共振频率和燃烧不稳定性的研究经验,预测了致使燃烧室发生不稳定燃烧的固有声学振型。
     论文还利用有限元软件ANSYS从声学的角度研究了声抑制装置—隔板抑制燃烧不稳定的机理,并对比分析了隔板的数目和长度分别变化时对其抑制作用的影响。文中还分析了赫姆霍兹谐振器和微穿孔板结构吸声体的吸声特性,并根据马大猷先生的微穿孔板理论给出了微穿孔板结构设计的步骤。研究表明:本文中所采用的隔板形式可以使燃烧室中的切向声学振型轴向化,并且切向声学共振频率也会降低。同时,隔板长度增加时,燃烧室内的切向振型轴向化进一步加剧,但是,当隔板增长到一定程度时,会形成隔板结构与燃烧室内声场的耦合振动,致使隔板在低频时的抑制效果减弱。隔板数目增加的时候,隔板的抑制频带会进一步的加宽。采用微穿孔板结构作为声抑制装置部件具有结构小、抑制频带较宽的优点。
Combustion instability, encountered in the development of researches of liquid propellant engines, is one of the significant challenges, which has tremendous destructivity. It can be characterized by an energy feedback loop between acoustic oscillations and transient combustion response.
    This thesis is supported by the project of National Nature Science Foundation of China (NSFC). In this paper, the combustion chamber of some underwater vehicle is taken as the object to be studied, and the study on the acoustic characteristic of the combustion chamber is performed by the theoretical analysis and numerical computation combined with the experimental measure. The result is significative as a reference for the engine designer.
    Firstly, the theoretical computation model of combustion chamber cavity is constructed in the paper, and the acoustic wave equation is obtained by the fundamental equations in the combustion chamber, thereby the theoretical results of the acoustic oscillation frequency are acquired.
    Secondly, the finite element method (FEM) models of combustion chamber cavity and combustion chamber structure are built, therefore the numerical results of acoustic oscillation frequency and the structure vibration frequency are acquired.
    Thirdly, in order to validate the validity of results of analysis and computation, under the circumstance of normal room temperature and pressure, the acoustic experiment for scaling model of combustion chamber is performed, thereby the experimental result of acoustic oscillation frequency is obtained.
    By comparing the above-mentioned theoretical results, numerical results with the experimental data and considering the experience of studying the combustion instability, the hazardous acoustic oscillation frequency is forecasted, which possibly lead to combustion instability.
    On the basis of the above-mentioned, the mechanisms of restraining the combustion instabilities with baffles in the marine engine combustion chamber has been studied by using FEM software ANSYS for two- and three-dimensional cases. When the length of baffles and the number of baffles are changed, the acoustic modes of the combustion chamber have been calculated, and the differences of these modes have been compared. The results show that the transverse mode shape is
引文
[1] 余永刚、周彦煌等,再生式液体炮压力振荡研究,弹道学报,2004(16)
    [2] 赵卫兵、史小峰、张忠义,鱼雷燃烧室低频不稳定燃烧分析,舰船科学技术,2003(25)
    [3] [美]V.Yang主编,液体火箭发动机燃烧不稳定性,科学出版社,2001
    [4] [美]D.T.哈杰等著,液体推进剂火箭发动机不稳定燃烧,国防工业出版社,1980
    [5] Larroche E, Habiballah M, Kuentamann P. Numerical analysis of liquid rocket combustion instability. Preliminary 3D acoustic calculations, AIAA 2000-3497, 2000
    [6] Liang P, Ungewitter R. Multi-phase simulation of coaxial injector combustion. AIAA 92-034,1992.
    [7] 刘卫东等,液体火箭发动机切向不稳定燃烧数值分析模型,推进技术,1998(1)
    [8] 聂万胜、庄逢辰,自然推进剂火箭发动机燃烧不稳定性研究,推进技术,2000(4)
    [9] 张宗美,航天故障手册,宇航出版社,1994
    [10] 聂万胜、庄逢辰,声腔应用于液体火箭发动机不稳定燃烧抑制中的特性研究,国防科技大学学报,20(2)
    [11] Wieber, P. R., Acoustic decay coefficients of simulated rocket chambers, 1966 NASA TN-D-3425.
    [12] Torda, T. P. and Patel, B. R., Analytical and experimental investigation of oscillations in rocket motor baffle cavities, 1968 AFOSR-68-1369.
    [13] Hannum, N. P., Bloomer, H. E., and Goelz, R. R., Stability effects of several injectors face baffle configurations on screech in hydrogen-oxygen rocket, 1968 NASA-TN-D-4515.
    [14] Stow, Simon R. Dowling, Ann R, Modeling of circumferential modal coupling due to Helmholtz resonators, American Society of Mechanical Engineers, 2003 vol. 2
    [15] 聂万胜、庄逢辰、张中光,液体火箭发动机中声腔抑制不稳定燃烧的声学分析,应用声学,2001(4)
    [16] Galvin, S. Fitzpatrick, J. A. Thermo-acoustic interactions in a premixed dump combustor, American Society of Mechanical Engineers, Applied Mechanics Division, vol. 253 (2), 2003
    [17] 黄玉辉、王振国,火箭发动机高频燃烧不稳定非线性分析,推进技术,2000(5)
    [18] 黄玉辉、王振国、周进,燃烧时中的非线性声波,推进技术,2002(6)
    [19] Gary A. Flandro, Joseph Majdalani, and Joseph D. Sims, On nonlinear combustion instability in liquid propellant rocket engines, 40th AIAA Joint Propulsion Conference and Exhibit, AIAA 2004-3516, 2004
    [20] Vigor Yang, Seung-Ⅲ Kim, and F. E. C. Culick, Third-order nonlinear acoustic waves and triggering of pressure oscillations in combustion chambers, Part Ⅰ: longitudinal modes, 23rd AIAA /ASME/SAE/ASEE Joint Propulsion Conference, AIAA-87, 1873
    [21] F. E. C. Culick, Some recent results for nonlinear acoustics in combustion chambers, AIAA Journal, Vol. 32, No. 1, 1994
    [22] 聂万胜、庄逢辰,喷雾特性对液体火箭发动机燃烧稳定性的影响,推进技术,2000
    [23] 周进、胡小平、黄玉辉等,液体火箭发动机气液同轴式喷嘴声学特性的试验研究,推进技术,17(4),1996,
    [24] 黄玉辉等,液体火箭发动机气液同轴式喷嘴声学特性研究,声学学报,23(5),1998
    [25] 黄玉辉、王振国、周进等,液体火箭发动机燃烧稳定性数值仿真,中国科学(B辑),vol.32(4),2002.8
    [26] 刘卫东、王振国、周进、庄逢辰,液体火箭发动机径向不稳定燃烧数值分析模型,推进技术,Vol.18(6),1997
    [27] 赵文涛、王正华等,液体发动机燃烧室流场模拟的并行SMPLE算法,推进技术,vol.20(6),1999
    [28] U., Ingard, On the theory and design of acoustic resonators, Journal of the Acoustical Society of American, Vol. 25(6), 1953
    [29] 赵文涛、聂万胜、庄逢辰,液体火箭发动机带有隔板和无隔板的两相冷态解数值模拟,宇航学报,Vol.19(3),1998
    [30] 赵文涛、聂万胜、庄逢辰,液体火箭发动机有无隔板的热态解数值模拟,航空动力学报,Vol.12(1),1997
    [31] 庄逢辰、聂万胜、周进、赵文涛,应用隔板抑制液体火箭发动机不稳定燃烧的数值模拟,指挥技术学院学报,Vol.8(1),1997
    [32] V. Yang and F. E. Culick, On the existence and stability of limit cycles for transverse acoustic oscillations in a cylindrical combustion chamber, 1: standing modes, Combustion Science and Technology, 72, 37-65
    [33] 杜功焕,朱哲民,龚秀芬.声学基础,南京大学出版社,2001
    [34] 龚曙光,谢桂兰.ANSYS工程应用实例解析,机械工业出版社,2003.
    [35] 任重.ANSYS实用分析教程,北京大学出版社,2003
    [36] 宋勇,艾宴清等,精通ANSYS7.0有限元分析,清华大学出版社,2003
    [37] 龚曙光,谢桂兰.ANSYS操作命令与参数化编程,机械工业出版社,2004
    [38] J.C.Oefelein, and V.Yang, Comprehensive review of liquid propellant combustion instabilities in F-1 engines, Journal of Propulsion and Power, Vol.9 (5), 1993
    [39] T. Male, W. R. Kerslake, W. R. Tislake, A method for prevention of screaming in rocket engines, NASA RME54F28A,1954
    [40] J.M.Wicker, M.Y.Yoon,, and V.Yang, Linear and nonlinear pressure oscillations in baffled combustion chambers, Journal of Sound and Vibration, 184(1), 1995
    [41] M.R.Baer, and C.E.Mitchell, Theoretical evaluation of rigid baffles in the suppression of combustion instability, NASA CR-134986, 1976
    [42] O.C.,Zienkiewicz, R.L.Taylor, and J.Z.Zhu, The finite element method: Its basis and fundamentals (Sixth edition),ELSEVIER,Butterworth-Heinemann,2005
    [43] 庄逢辰、聂万胜、周进、赵文涛,应用隔板抑制液体火箭发动机不稳定燃烧的数值模拟,指挥技术学院学报,Vol.8(1),1997
    [44] 王敏庆、盛美萍等,厚壁短管内声场特性测试,振动、测试与诊断,2002增刊
    [45] 马大猷,微穿孔板结构的理论和设计,中国科学,Vol.18(1),1975
    [46] MAA Dah-You, Microperforated panel wideband absorbers, Noise Control Engineering Journal, Vol.29, No.3, 1983
    [47] 马大猷,微穿孔板吸声结构的设计,声学学报,Vol.13(3),1988
    [48] 马大猷,微穿孔板吸声体的准确理论和设计,声学学报,Vol.22(5),1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700