微型支抗种植体即刻负载的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分 微型支抗种植体即刻负载的稳定性及界面研究
     一、微型支抗种植体即刻负载的稳定性研究
     目的 探讨微型支抗种植体即刻负载的稳定性。
     材料和方法 200g力值作用下,以微型种植体为支抗,牵拉犬上下颌第二前磨牙以及种植体间交互牵引,观察2月后牵引侧和对照侧牙齿及微型支抗种植体位移情况。
     结果 被牵引牙齿均较对照侧发生明显位移,实验结束时微型种植体无松动,大多微型种植体位移不显著。
     结论 微型种植体植入后可即刻施加200g水平力,用作正畸支抗。
     二、微型种植体即刻负载的界面研究
     目的 研究微型支抗种植体即刻负载的骨界面愈合情况。
     材料和方法 微型支抗种植体植入犬下颌骨,施以200g水平力,定期注射荧光标记物,73天后处死动物,制作种植体-骨标本切片,进行光镜、荧光镜、偏光镜、软x线片、扫描电镜等观察及x线能谱分析。
     结果 种植体-骨界面形成良好的骨性结合,动态荧光标记显示植入6周时有板层骨形成,9周时板层骨显著。
     结论 微型种植体植入后可即刻承载200g正畸力而不影响其骨性愈合过程。
     第二部分 微型支抗种植体不同承载方向的三维有限元研究
     一、微型种植体-骨有限元模型的建立
     目的 生成微型种植体-骨的三维有限元模型,为精确分析微型支抗种植体系统的生物力学特性奠定基础。
     材料和方法 在ANSYS软件内,运用参数化设计语言(APDL),生成三维实体模型,并定义单元属性和划分网格。
     结果 建立起有效的种植体三维有限元分析模型,节点总数为5164,
    
    南京医科大学硕士学位论文
    单元总数为29352。
    结论生成的模型准确的反映了种植体与骨的接触面情况,同时模型
    后期的运算量适中。
    二、微型支杭种植体不同承载方向的三维有限元研究
    目的探讨在不同临床应用中,微型支抗种植体承载不同方向2009正
    崎力时的应力分布情况。
    方法牙!」用微型支抗种植体一骨三维有限元分析模型,在与种植体长
    轴成0度角、30度角、45度角、60度角或90度角等加载条件下进
    行应力分析计算。
    结果承载不同方向力时,种植体一骨界面的最大应力均较小,应力
    大小随着角度的增大而增大,五种承载方向时种植体颈部均为应力集
    中区。
    结论种植体可比较安全承载不同方向的2009正崎力,特别是与长轴
    夹角较小的力,但结合动物实验和有限元分析的结果,在产品国产化
    时应尽可能改良种植体结构,特别是颈部结构。
Part I Stability and interface study on immediately loaded
    micro-implant
    1. Study on Stability of Micro-implant Anchorage Objective To study the stability of micro-implant anchorage which were loaded immediately.
    Methods After loaded with orthodontic force of 200g for 2 months, the movement of micro-implants and the dogs' second premolars anchored by micro-implant were studied.
    Results All the loaded premolars showed apparent displacement, while the micro-implants kept stabile and most of them moved little. Conclusion The micro-implant can withstand 200g of immediate horizontal loading as an orthodontic anchorage.
    2. Evaluation of the interface between immediately loaded micro-implant and bone
    Objective To study the peri-implant bone reaction to the immediately
    loaded micro-implant.
    Methods Micro-implants were implanted into dogs' mandibular bones, immediately loaded, with polyfluorochrome sequential labeling. Seventy-three days after implantation, the dogs were euthanized and dissected mandibles were prepared. The specimens were evaluated by light microscope, fluorescent microscope, polarized light microscope, microradiography, scanning electron microscope and energy dispersive x-ray spectroscope.
    Results All results suggested that osseointegrated interfaces were formed between micro-implants and bones. Fluorochrome labels hinted that lamellae bones appeared 6 weeks after implantation, and were formed more extensively another 3 weeks later.
    
    
    Conclusions Micro-implants can be loaded immediately and the interfaces have normal turnovers of osseointegration.
    Part II Three dimensional FEM analysis of stress distribution around micro-implant loaded with different-directed force
    1. Establishment of three-dimentional finite element model for micro-implant and bone
    Objective To establish a three-dimentional finite element model for
    micro-implant and bone in mandible
    Methods In the software ANSYS, APDL was used to establish a
    three-dimentional model of micro-implant and bone, then element
    property was defined and the model was meshed
    Results An appropriate FEM model was established, with totally 5164
    nodes and 29352 elements.
    Conclusions The model precisely reflects the contact of micro-implant
    and bone, while it will not be too complicated for the solution after
    loading.
    2. Three dimensional FEM analysis of stress distribution around micro-implant loaded with different-directed
    force
    Objective To analyze the stress around micro-implant loaded with forces in different directions which may be used in clinical practice. Method Three dimensional finite element analysis software was used to setup micro-implant and bone FEM model. Forces in five directions were applied to the head of micro-implant, that is, referring to the axis of micro-implant and starting from the head of micro-implant, 0 degree, 30
    
    degree, 45 degree, 60 degree and 90 degree.
    Results On all the conditions, the maximum stress of Von Mises were
    very small with the neck of implant always being stress focused , and the
    stress increased with the angle of force.
    Conclusion The micro-implant can safely loaded with 200g force in
    different directions, especially the one in smaller angle, but combined
    with former animal test, when we intend to localize the product, we
    should consider to reform the neck of micro-implant.
引文
1. Kanomi R. Mini-implant for orthodontic anchorage[J]. J Clin Orthod, 1997;31(11):763-767.
    2. Costa A, Raffaini M, Melsen B. Miniscrews as orthodontic anchorage: A preliminary report[J]. Int J Adult Orthod Orthognath Surg, 1998;13(3): 201-209.
    3. Park HS. The skeletal cortical anchorage using titanium microscrew implants[J]. Korea J Orthod, 1999, 29(6): 699-706.
    4. Park HS. A new protocol of the sliding mechanics with Micro-Implant Anchorage(M.I.A)[J]. Korea J Orthod, 2000, 30(6): 677-685.
    5. Bae SM, Park HS, Kyung HM, et al. Clinical application of Micro-Implant Anchorage[J]. J Clin Orthod, 2002, 36(5):298-302
    6. Bae SM, Park HS, Kyung HM, et al.Ultimate anchorage control[J]. Texas Dent J, 2002, 119 ( 7 ): 580-591.
    7. Park HS. An anatomical study using CT images for the implantation of Micro-implant[J]. Korea J Orthod 2002, 32(6): 435-441.
    8. James Lin CY, Eric Liou JW, Liaw JL. The survey and evaluation for the implant-assisted orthodontics[J]. J Taiwan Assoc Orthod, 2001;13(1):14-21.
    9. Gray JB, Smith R. Transitional implants for orthodontic anchorage[J]. J Clin Orthod 2000, 34(11):659-666.
    10. Maino BG, Bednar J, Pagin P, et al.The spider screw for skeletal anchorage[J]. J Clin Orthod, 2003, 37(2): 90-97.
    11. Roberts WE, Smith RK, Zilberman Y, et al. Osseous adaptation to continuous loading of rigid endosseous implants[J]. Am J Orthod, 1984, 86[2]: 95-111
    12. Haanaes HR. Implants and infections with special reference to oral bacterial[J]. J Clin Periodontol, 1990, 17(2): 516-524.
    
    
    13. Park HS. The skeletal cortical anchorage using titanium microscrew implants[J]. Kor J Orthod, 1999, 29(6): 699-706
    14. Deguchi T, Yamamoto TT, Kanomi R, et al.The use of small titanium screws for orthodongtic anchorage[J]. J Den Res, 2003, 82(5): 377-381.
    15. Gapski R, Wang HL, Mascarenhas P, et al. Critical review of immediate implant loading[J]. Clin Oral Impl Res, 2003, 14(5):515-527
    16.闵少雄,靳安民.医用生物材料-组织界面研究[J].国外医学生物医学分册,2000,23(6):353-358
    17.梁星,唐思青,王虎,等.羟基磷灰石涂层钛种植支抗牵拉磨牙的动物试验初探[J].华西口腔医学杂志,1998,16(2):156-157
    18.兰泽栋,林珠,李宁.支抗种植体外形影响骨界面应力分布的研究[J].实用口腔医学杂志,2001,17(3):246-248
    19.梁星,赵志河,唐思青,等.羟基磷灰石涂层钛种植支抗的稳定性[J].华西口腔医学杂志,1998,16(2):153-155
    20.宋玉荣,胡康玲,李树莲.种植义齿失败病例的临床分析[J].2003,23(3):165-166
    21.卢宇,陶金兰.成骨细胞-种植体界面的研究进展[J].口腔医学,2003,23(1):53-54
    22. Brunski JB. Biomechanical factors affecting bone-dental implant interface[J]. Clin Mater, 1992, 10(3): 153-201.
    23. Roberts WE, Helm FR, Marshall KJ, et al. Rigid endosseous implants for orthodontic and orthopedic anchorage[j]. Angle Orthod, 1989, 59(4): 247-256.
    
    
    24.张玉梅.钛及钛合金在口腔科应用的研究方向[J].生物医学工程杂志,2000,17(2):206-208.
    25.夏荣.有限元法及其进展(一)[J].中国口腔种植学杂志,1997,2(2):96-100.
    26.刘国庆,杨庆东.ANSYS工程应用教程-机械篇[M].北京,中国铁道出版社,2002,1.
    27.于力牛,常伟,王成焘,等.基于实体模型的牙颌组织三维有限元建模问题探讨[J].机械设计与研究,2002,18(2):59-62.
    28. Akagama Y, Sato Y, Teixeira ER, et al. A mimic osseointegrated implant model for three-dimensional finite element analysis[J]. J Oral Rehabil. 2003, 30(1):41-45
    29. Murphy WH, Williams KR, Gregory MC. Stress in bone adjacent to dental implant[J]. J Oral Rehabil. 1995, 22 (12): 897-903.
    30.嘉木工作室.ANSYS 5.7有限元实例分析教程[M].北京,机械工程出版社,2002,120-121.
    31.任新见,江克斌,张光明.结构优化的APDL语言面向对象程序设计[J].四川建筑科学研究,2003,29(1):81-83.
    32.杨军,李峰.基于APDL语言模块的结构优化设计[J].建筑技术开发,2003,30(4):2-4.
    33.谭建国.使用ANSYS1.0进行有限元分析[M].北京,北京大学出版社,2002,5.
    34. Geng JP, Tan KB, Liu GR. Application of finite element analysis in implant dentistry: a review of the literature[J]. J Prosthet Dent. 2001, 85(6):585-598.
    35.丁永祥,夏巨谌,王英,等.有限元网格全自动生成过程的研究[J].自然科学进展,1995,5(5):576-580.
    
    
    36.王怀,葛如海,栗艳丽,等.网格密度对车辆碰撞仿真的影响与计算效率[J].江苏大学学报(自然科学版),2002,23(4):29-33.
    37. Yamada H. Strength of biological materials [M]. 1st ed. Huntinton: RE Krieger, 1973: 19-75.
    38.邹敬才,刘宝林,唐文杰,等.螺旋型种植牙受力角度对骨界面应力分布影响的三维有限元分析[J].医用生物力学,1998,13(1):40-43
    39. Barbier L, Vander SJ, Krzesinski G, et al. Finite element analysis of non-axial versus axial loading of oral implants in the mandible of the dog[J]. J Oral Rehabil, 1998, 25(11): 847-858.
    40. Joos U, Vollmer D, Kleinheinz J. Effect of implant geometry on strain distribution in peri-implant bone[J]. Mund Kiefer Gesichtschir. 2000, 4(3): 143-147.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700