茶黄蓟马危害对银杏生长及生理生化的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
茶黄蓟马Scirtothrips dorsalis Hood,又名茶叶蓟马、茶黄硬蓟马,属缨翅目Thusanoptera,蓟马科Thripidae。植食性昆虫,主要寄主有:茶叶、花生、草莓、葡萄、芒果。1989年在银杏Ginkgo biloba L.上大爆发,现已成为银杏生产上发生普遍的一种害虫。本文在室内观察其形态特征,于田间设置不同虫口密度,研究了在不同密度下危害不同天数对银杏生长量、叶片化学物质、光合指标等方面的影响,结果摘要如下:
     1不同密度茶黄蓟马危害不同天数对银杏生长量的影响
     研究了茶黄蓟马危害对银杏叶面积、单位叶面积鲜重、新梢长、新梢基部粗度4个生长指标的影响,其中对单位叶面积鲜重影响最大,其次是新梢长、叶面积,对新梢基部粗度影响较小。危害40d后,0、5、10、15、20头/叶,5个处理的叶面积增长率分别为8.0%、5.2%、3.6%、2.8%、1.9%,后4个处理与对照之间均存在显著性差异,15头/叶与20头/叶这两个处理之间无差异;单位叶面积鲜重分别增加了18.1%、11.5%、5.8%、0.8%、-0.8%,前4个处理存在显著性差异,15头/叶与20头/叶的处理无差异;新梢增长率分别为13.8%、4.5%、4.9%、3.0%、0.9%,除5头/叶与10头/叶两个处理之间无差异,其他各组均存在显著性差异;新梢基部粗度分别增加了2.0%、1.1%、1.4%、0.7%、0.3%,除10头/叶的处理,对照与其他各组均存在显著性差异。
     2不同密度茶黄蓟马危害不同天数对银杏叶片主要化学物质的影响
     危害一定天数后,叶绿素、可溶性糖、可溶性蛋白质含量均呈递减趋势。其中叶绿素与可溶性糖的含量降低较快,可溶性蛋白质前期降低较缓慢,受害40d后,密度为20头/叶的处理,叶绿素、可溶性糖、可溶性蛋白质含量分别减少了48.9%、37.3%、33.3%;单宁的含量前期骤减,危害10d,密度为20头/叶的银杏叶片,单宁含量减少了50.7%,但在危害30d后,单宁含量有不同程度的回升,且速度随着虫口密度增大而递增。
     3不同密度茶黄蓟马危害不同天数对银杏叶片光合指标的影响
     茶黄蓟马危害银杏叶片后,光合速率、气孔导度和蒸腾速率均减少,危害30d后,细胞间CO2浓度有所增大。其中,危害10d后,光合速率与气孔导度两个指标的处理中出现显著性差异;危害20d后,蒸腾速率各处理中出现显著性差异;危害30d后,细胞间CO2浓度各处理出现显著性差异。危害40d后,密度为20头/叶的处理,光合速率、气孔导度、蒸腾速率分别降低了63.3%、58.5%、55.5%;细胞间CO2浓度,各处理与对照相比分别增加了2.8%、8%、10%、20%。这4个光合指标中,光合速率变化最大,细胞间CO2浓度变化最小。
Yellow tea thrips, Scirtothrips dorsalis Hood, also known as tea thrips, belongs to Thysanoptera, Thripidae. It is one of the most important leaf-eating insects to Ginkgo biloba L. .The main hosts are tea, peanuts, strawberries, grapes, mangoes. Outbreak in 1989. The author observed the morphological features indoor and set up in different densities, and effects of infesting in different S. dorsalis densities and damaged different days on plant growth, physiological and photosynthetic index of G. biloba were studied. The major results were listed as follows:
     1 Effects of infesting in different S. dorsalis densities on the plant growth of G. biloba
     In this section the leaf area, the fresh weihgt of unit area, the length of new wattle, the width at base of new wattle were studied. In these 4 indexes the thrips damaged fresh weight per unit area of greatest, followed by the length of new wattle, the leaf area, the width at base of new wattle of the smallest impact.After damaging 40d, five groups of the leaf area with the growth rate are 8.0%, 5.2%, 3.6%, 2.8%, 1.9% respectively, the latter 4 groups between the treated and control are significant differences, the 15/leaf and 20/leaf groups are no differences. The growth rate of the length of new wattle respectively, are 18.1%, 11.5%, 5.8%, 0.8% -0.8%, the first 4 groups were significant differences, 15/leaf and 20/leaf are no difference; new wattle growth rates are 13.8%, 4.5%, 4.9%, 3.0%, 0.9%, with the exception of 5/leaf and 10/leaf are no differences, other groups are significant differences; new wattle base diameter increased by 2.0%, 1.1%, 1.4%, 0.7%, 0.3%. In addition to 10/leaf processing, control and other groups are significant differences(p≤0.05). 2 Effects of infesting in different S. dorsalis densities on the physiological index of G. biloba
     Effects of infesting in different S. dorsalis densities and damaged days on physiological index of G. biloba leaves were determined. The results suggested that, compared with the control, chlorophyl, soluble sugar and soluble protein were all reduced slowly, decreased by 48.9%, 37.3% and 33.3%, respectively, after damaging 40d with the insect densities of 20/leaf. During infest period, the content of tannin showed a dramatic decreases with a 50.7% reduction after infesting 10d with the insect densities of 20/leaf. While the content of tannin increased in different degree with the rising of the thrip densities after infesting 20d.
     3 Effects of infesting in different S. dorsalis densities on the photosynthetic index of G. biloba
     In this section photosynthetic index of G. biloba were stuied. After damaging, the photosynthetic rate, stomatal conductance and transpiration rate were reduced, intercellular CO2 concentration has increased. After damaging 10d ,there are significant differences in photosynthetic rate and stomatal conductance; after damaging 20d , there are significant differences in transpiration rate ; after damaging 30d, there is significant differences in intercellular CO2 concentration .After damaging 40d, the photosynthetic rate, stomatal conductance and transpiration rate decreased by 63.3%, 58.5%, 55.5%; intercellular CO2 concentration, as compared with the control with an increase of 2.8%, 8 %, 10%, 20%.Four photosynthetic indicators, the greatest changes in photosynthetic rate, intercellular CO2 concentration in the changed smallest.
引文
[1]蔡双虎.二斑叶螨对各种寄主植物叶绿素含量的影响[J].热带作物学报,2003,24(5):25-29.
    [2]陈鹅,陶俊,周宏根等.银杏雄株叶片类黄酮含量及其相关因子的变化研究[J].扬州大学学报:自然科学版,2000,3(4):40-43.
    [3]陈杰林.害虫综合防治.农业出版社.
    [4]陈建明,俞晓平,陈俊伟等.水稻植株光合作用能力的变化与其抗白背飞虱的关系[J].核农学报, 2003, 17(6): 423-426.
    [5]陈建明,俞晓平,程家安等.不同水稻品种受褐飞虱危害后体内生理指标的变化[J].植物保护学报,2003,30(3):225-231.
    [6]陈清林,张飞萍,陈式斌.毛竹尖胸沫蝉危害对毛竹枝、叶蛋白质及可溶性糖含量的影响[J].武夷科学,2002,18:51-54.
    [7]陈玉.泰山古松柏叶螨类景观防治指标的确定及化学防治[J].山东林业科技,2003,(3):11-12.
    [8]陈应武,窦彩虹.梨瘿螨的危害对梨叶片几种生理生化指标的影响[J].兰州大学学报,2004,40(2):68-71.
    [9]陈良昌,李美娥,李伯瑾等.马尾松毛虫危害对松树生长量影响的研究[J].湖南林业科技,2001,28(4):49-51.
    [10]丁岩钦.害虫管理学-理论与方法[M].科学出版社.
    [11]戴沿海.松突圆蚧为害对马尾松针叶主要次生物质的影响[J].华东昆虫学报,2006,15(2):103-106.
    [12]吕凤鸣.台湾蓟马种类及其寄主植物名录[M].台湾农业委员会,1993.
    [13]李景明.危害荔枝的茶黄蓟马的生物学特性及防治[J].昆虫知识,2004,42(2):172-173
    [14]刘友森.银杏蓟马调查与无公害防治技术研究[J].现在农业科技,2005,(5):22-23.
    [15]林平,李吉跃,陈崇.银杏光合生理生态特性研究[J].北京林业大学学报,2008,30(6):22-29.
    [16]高海波,王文房.机械损伤与二点叶螨取食对烟草挥发性信息化合物的影响[J].西北农业学报,2007,16(6):246-249.
    [17]高宇,李凯,田恬.植物叶片在食叶昆虫胁迫下的正向效应及其机制[J].应用与环境生物学报, 2004,10(4):512-514.
    [18]戈峰,李典谟,邱业先.松树受害后一些化学物质含量的变化及其对马尾松毛虫种群关系的影响[J].昆虫学报.1997,40(4):337-341.
    [19]顾茂彬.茶黄蓟马的观察初报[J].热带林业科技,1985,(4):9-13.
    [20]黄永高,熊作明,逃俊等.银杏雄株光合与蒸腾特性的研究[J].2006,27(4):104-106.
    [21]胡家会.高等植物与昆虫的化学防卫[J].生物学通报.1998,33(8):20-22.
    [22]韩宝瑜.昆虫化学信息物质及其在害虫治理中的应用展望[J].安徽农学通报, 2002,8(1):12-13.
    [23]韩运发.中国经济昆虫志[M],第五十五册.科学出版社,1997.
    [24]金德锐,卜芸华,刘春原等.棉花叶螨危害对棉花生理和产量的影响[J].植物保护学报,1987,14(3):145~150.
    [25]李雪莹,王文杰.植物单宁的生理作用及经济价值[J].西部林业科学,2005,34(1):66-69.
    [26]李静,聂继飞.苹果果实单宁Folin-Denis测定法[J].中国果树,2006(5):57-59.
    [27]李凯,李镇宇,许志春等.松毛虫危害对油松光合作用几个因子的影响[J].北京林业大学学报,1997,19(1):58-62.
    [28]李典漠,周立阳.协同进化昆虫与植物的关系[J].昆虫知识, l997,34(l):45-49.
    [29]李水清,张钟宁.松墨天牛取食和人为损伤对马尾松针叶部分化学物质含量的影响[J].昆虫学报,2007,50(2):95-100.
    [30]李镇宇,王燕,陈华盛等.赤松毛虫的危害对小油松针叶内物质含量的影响[J].北京林业大学学报,1999,20(5):41-45.
    [31]刘兴平,戈峰,陈春平.我国松树诱导抗虫性的研究进展[J].林业科学,2003,39(5):119-128
    [32]刘英胜,程红,严善春.昆虫对植物挥发性信息化合物的影响与利用[J].中国森林病虫,2006,(3):24-28.
    [33]刘芳,娄永根,程家安.虫害诱导的植物挥发物:植物与植食性昆虫及其天敌相互作用的进化产物[J].昆虫知识,2003,40(6):481-486.
    [34]刘良才,周波,刘亚.蜀柏毒蛾危害对柏木生长的影响[J].四川林业科技,1992,13(4):61-64.
    [35]娄永根,程家安.稻虱缨小蜂对水稻品种挥发物的行为反应[J].华东昆虫学报,1996,5(1):61 -64
    [36]孟秀芹,李怀业,王英敏等.兴安落叶松鞘蛾危害对落叶松生长量影响的研究[J].辽宁林业科技,2005,(5):19-20.
    [37]彭方仁,李生平.银杏叶片蛋白质含量动态变化的电泳分析[J].南京林业大学学报(自然科学版),2006,30(4):114-119.
    [38]秦玉川,蔡宁华,胡敦孝等.山楂叶螨与苹果全爪螨混合为害对苹果叶片及果实的影响[J].植物保护学报,1990,17(4):347~353.
    [39]钦俊德,王琛柱.论昆虫与植物的相互作用和进化的关系[J].昆虫学报,2001,44(3):360-364.
    [40]钦俊德.昆虫与植物关系的研究进展和前景[J].动物学报,1995,41(1):12-18
    [41]史刚柔.次生物质在植物协同进化中的意义[J].生物学杂志.1994,60(4):11-13.
    [42]孙绪艮.东方真叶螨对大叶黄杨危害的研究[J].植物保护,1996,(5):29-30.
    [43]孙亚萍.烟粉虱危害对番茄品质及生理生化的影响.扬州大学,硕士论文.
    [44]唐周怀,张雅莉,郭晓霞等.截形叶螨危害对国槐叶片生理的影响[J].西北农业大学学报, 2000,28(5):80-83.
    [45]陶俊,陈鹏,佘旭东.银杏光合特性的研究[J].园艺学报,1999,26(3): 157-160.
    [46]王琛柱,钦俊德.昆虫与植物的协同进化:寄主植物-铃夜蛾-寄生蜂相互作用[J].昆虫知识,2007,44(3):311-318.
    [47]王琛柱,钦俊德.植物蛋白酶抑制素抗虫作用的研究进展[J].昆虫学报,2007,40(2):212-218.
    [48]王琪,严善春,王艳军.剪叶及昆虫取食对兴安落叶松蛋白酶抑制剂的影响[J].昆虫学报,2008,51(8): 798 -803.
    [49]王宪泽.生物化学实验技术原理和方法[M].北京:中国农业出版社,2002,6.
    [50]吴兴德.栗瘿蜂危害下锥栗叶片中单宁含量的变化[J].福建林学院学报,2005,25(4):365-367.
    [51]王天龙,姚勤贵,骆大华.德清真片胸叶蜂为害对毛竹林生长量的影响[J]江西林业科技,2000(4):17-18.
    [52]王问学,莫建初.树木对昆虫的诱导抗性[J].森林病虫通讯,1998(4):35-37.
    [53]韦朝领,童鑫,高香凤等.茶树对茶尺蠖取食危害的补偿光合生理反应研究[J].安徽农业大学学报, 2007,34(3):355-359.
    [54]谢振伦.茶黄蓟马的生物学特性与防治[J].茶叶科学,1987,7(2):29-34.
    [55]邢世岩,孙霞,李可贵等.银杏叶生长发育规律的研究[J].林业科学,1997,33(3):267-273.
    [56]薛皎亮,谢映平,刘计权.鞘蛾危害后诱导华北落叶松体内化学物质变化的研究[J].林业科学,2000,36(4):46-50.
    [57]徐涛,周强,夏嫱.虫害诱导的水稻挥发物对褐飞虱寄主选择行为的影响[J].科学通报,2002, 47(11):849-852.
    [58]许志春,李镇宇,李友常等.不同油松林对赤(油)松毛虫自然控制能力的研究[J].森林病虫通讯,1996,(4):1-5.
    [59]杨世诚.虫害与植物的自我补偿[J].森林与人类.2000,(8):16-17.
    [60]杨广,尤民生,魏辉.小菜蛾咬食后青菜释放的挥发性物质成分和含量的变化[J].应用生态学报,2004,15(11):2157-2160.
    [61]叶峰.毛竹受密竹链蚧危害导致其生理生化指标影响的研究[J].华东昆虫学报,2002,11(1):44-47.
    [62]杨振德,朱麟,赵博光.昆虫化学生态学与植物保护[J].南京林业大学学报(自然科学版)2003,27(5):93-97.
    [63]殷海娣,黄翠虹,王戎疆等.昆虫唾液成分在昆虫与植物关系中的作用[J].昆虫学报,2006, 49(5):843-849.
    [64]邹波,李竹莹,余春香.红蜘蛛危害对柑桔叶片光合强度的影响[J].黔东南民族职业技术学院学报,2007,3(3):27-28.
    [65]赵世杰,史国安.植物生理学实验指导[M].中国农业科学技术出版社,2002.9.
    [66]张潮巨.毛竹受害后化学物质含量的变化及其对刚竹毒蛾种群参数的影响[J].华东昆虫学报.2006,16(4):281-283.
    [67]张潮巨.拉缘蝽为害对卵叶小蜡内含物含量的影响[J]福建林业科技, 2006,(03):60-64.
    [68]周成刚.茶黄蓟马在银杏上的发生与危害[J].山东林业科技,1994,(4),33-34.
    [69]周章义,苏西林,张佐双.林木营养与虫害-油松施氮肥的抗虫效应[J].昆虫学报,1986,29(3): 283-290.
    [70]朱麟,古德祥,吴海昌.昆虫对植物次生性物质的生态适应机制[J].福建林业科技.1998,25(2):59-62.
    [71]朱麟,古德祥.昆虫对植物次生性物质的适应策略[J].生态学杂志2000,19(3):36-45.
    [72]朱庆法.银杏叶部害虫-茶黄蓟马的初步研究[J].山西果树,1997,(1):28-29.
    [73]张蓉.蓟马危害苜蓿的产量损失及防治指标研究[J].植物保护,2005,(3):47-48.
    [74]张华峰,陈顺立,朱建华.松墨天牛为害对马尾松针叶化学成分的影响[J].福建林学院学报,2004,24(1):28-31.
    [75]张维球.荷花一种新害虫――茶黄蓟马及其防治对策[J].中国园林,2004,(44):33-35.
    [76]Ally Rachel Harari, David Ben-Yakir, Michael Chen. Economic injury levels for the scarabaeid Maladera matrida infesting peanut fields in Israel[J].Entomologia Experimentalis et Applicata 98: 79-84, 2001.
    [77]Azab A.K., Megahed M.M., Mirawi D.H. On the biology of Bemisia tabaci (Genna.)(Homoptera: Aleyrodidae) [J]. Bull. Soc. Entomol. Egypt,1971, 55: 305-315.
    [78]Berenbaum M R, Zangerl A R.. Chemical phenotype matching between a plant and its insect herbivore. Proc Natl Acad Sci USA, 95:13743-13748.
    [79]Darvill A.G. and Albersheim P.. Phytoalexins and their elicitor. A defence against microbial infection in plants[J]. Ann. Rev.Plant Physiol.,1984, 35: 243-275
    [80]Dethier, V. G. Chemical factors determining the choice of food plants by Papilio larvae[J]. Amer. Nat.,1941,75:61-73.
    [81]Derridj, S. Chemicals on the leaf surface, information about the plant available to insects[J]. Ent. Exp. Appl.,1996,(80):197-201.
    [82]Greece Ms. Predatory effect of Orius niger (Wolff) (Hem., Anthocoridae) on Frankliniella occidentalis (Pergande) and Thrips tabaci Lindeman (Thysan., Thripidae) [J]. J. Appl. Ent. 2002, 126, 82-85 ..
    [83]Gunasingham Mikunthan,M. Manjunatha.Impact of habitat manipulation on mycopathogen, Fusarium semitectum to control Scirtothrips dorsalis and Polyphagotarsonemus latus of chilli[J].BioControl(2008) 53:403-412
    [84]Gotoh T.Life-history parameters of the hawthorn spider mite, Tetranychus viennensis Zacher(Acarina: Tetranychidae), on deciduous oak[J]. Appl. Ent. Zool.,1986,21(3): 389-393.
    [85]Kennedy, J. S. & C. O. Booth. Host alternation in Aphis fabae Scop. I. Feeding preferences and fecundity in relation to the age and kind of leaves[J]. Ann. appl. Biol. ,1951, 38:25.
    [86]Mckey D.,Rosenthal, G.A. and Janzen D.H.(eds.), Herbivores: Their interaction with secondary Plant Metabolites[J]. Academic Press, New York. 1979:55-133.
    [87]Metcalf, L.R., Metcalf, E.R. Plant kairomones in insect ecology and control [M]. Chapnan and Hall,1992.
    [88]M attiacci L, Dicke M, Posthumus MA. Inuction of parasitoid attracting synomone in Brussels sproutsplants by feeding of Pieris brassicae larvae:Role ofmechanical damage and herbivore elicitor[J]. J Chem Ecol, 1994, 20: 2229- 2247.
    [89]Moura D S, Ryan C A. 2001. Wound_inducible proteinase inhibitors inpepper: Differential regulation upon wounding, systemin, and methyl jasmonate. Plant Physiology, 126:289-298
    [90]Odd J.L.,Phelan P.L.,Nault L.R..Interacton between visual and olfactory stimuli during host finding by leafhopper,Dalbulus maidis (Homoptera:Cicadellidae) [J].J.Chem.Ecol,1990,16(7):2121-2133
    [91]Painter R.H. Insect Resistance in Crop Plants[J]. New York: The Macmillan Co.,1951.
    [92]P. N. Deligeorgidis and C. G. Ipsilandis. Determination of soil depth inhabited by Frankliniella occidentalis (Pergande) and Thrips tabaci Lindeman (Thysan., Thripidae) under greenhouse cultivation[J]. J. Appl. Ent. 2004,108-111 .
    [93]Deligeorgidis P. N., Athanassiou C. G.and Kavallieratos N. G..Seasonal abundance, spatial distribution and sampling indices of thrip populations on cotton; a 4-year survey from central Greece[J]. J.Appl.Ent. 2002, 343-348.
    [94]Sances P V.Spider mite interactions with photosynthesis transpiration and productivity of strawberry[J].Environmental Entomology,1981,10(2):442-448.
    [95]Seizi Suzuki, Masahiro Nagano, and Stephen T. Trumbo.Intrasexual Competition and Mating Behavior in Ptomascopus morio (Coleoptera: Silphidae Nicrophorinae) [J]. Ent. Exp. Appl.2004.9:233-242.
    [96]Stacey E. Brautigam and Matthew H. Persons.The Effect of Limb Loss on the Courtship and Mating Behavior of the Wolf Spider Pardosa milvina (Araneae: Lycosidae)[J].Journal of Insect Behavior, Vol. 16, No. 4, July 2003,16,(4):571-583.
    [97]Turlings T. C. J., Alborn H. T., Loughrin J.H.et al. Volicitin, an elicitor of maize volatiles in oral secrection of Spodoptera exigua: isolation and bioactivity. [J]. J. of Chem. Ecol.,2000,26(1):189-202.
    [98]Toshink I.,Yukio L.,Yoshiharu M. Behavior and EAG synergism of various compounds to dipropyl disulfide in ovipositional attraction of the onion fly,Hylemya antique Meigen(Diptera:Anthomyiidae) [J].Appl. EntZool,1981,6(4):432-442
    [99]Tsai J. H. and Wang K.H. Development and reprodution of Bemisiaar gentifolii(Homoptera:Aleyrodidae) on five host plants[J]. Environ Entomol., 1996, 25(4):810-816.
    [100]Visser J.H. Host odor perception in phytophagous insects[J].Annu. Rev.Entomol.1986,31:121-144.
    [101]Visson S.B. Parasitoid~host relationship. In:W.J.Bell and R.T.Carde. Chemical ecology of insects [J].London,Chapman and Hall,1984,205-236
    [102]Willem Jande Kogel & Peter van Deventer.Intraspecific attraction in the western flower thrips, Frankliniella occidentalis; indications for a male sex pheromone[J]. Ent. Exp. Appl.2003,1.
    [103]Willem Jan de Kogel & Peter van Deventer .Intraspecific attraction in the western flower thrips, Frankliniella occidentalis; indications for a male sex pheromone, 2003 The Netherlands Entomological Society Entomologia [J].Experimentalis et Applicata ,2003,107: 87-89.
    [104]Yoshitaka Nakashima. Cage evaluation of augmentative biological control of Thrips palmi with Wollastoniella rotunda in winter greenhouses. Entomologia Experimentalis et Applicata.2003,11:73-77.
    [105]Zanger A R, Hamilton JG, MillerT J, et a.l Impact of folivory on photosynthesis is greater than the sum of its holes[C]Proceedings of the National Academy of Sciences of the USA. 2002, 99: 1088-1091.
    [106]Zehnder G W, Trumble J T. Host selection of Lirimyza species (Diptera: Agromyzidae) and associated parasited in adjacent plantings of tomato and celery[J]. Environ. Entomol.,1984, 13: 492-496.
    [107]Marilyn Y Steiner, Stephen Goodwin. Management of western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), in hydroponic strawberry crops: using yellow sticky traps to determine action thresholds[J]. Australian Journal of Entomology ,2005,44:288-292.
    [108]Welters S C.Arthropod impact on plant gas exchange.In Insect plant Interactions(ed.E.A.Bernays),1989,135-151.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700