阿仑膦酸钠对卵巢切除大鼠腰椎间盘退变的作用及其机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
腰椎间盘退变是导致下腰部疼痛的主要病因之一,下腰痛给患者带来巨大痛苦的同时,给家庭及社会带来沉重的经济负担。一些临床及流行病学研究认为,骨质疏松与脊柱退行性疾病或椎间盘退变呈负相关性,但最近的一项关于绝经期前后妇女椎体骨密度与腰椎间盘退变相关性的研究显示,腰椎骨密度与腰椎间盘退变呈正相关性,跟骨及桡骨的骨密度同样与椎间盘退变密切相关。此外,在前期研究中发现卵巢切除大鼠腰椎间盘退变与椎体骨量丢失密切相关,提示对骨质疏松的治疗可能会对椎间盘退变进程发挥一定的作用。骨质疏松与椎间盘退变关系仍存在争议,因此两者之间的关系还有待进一步研究。
     研究显示,椎间盘退变与脊柱结构完整有关,包括邻近的结构如椎体及终板。椎体及终板结构的破坏将导致异常力学负荷作用于椎间盘。对绝经期前后妇女骨密度变化的研究结果显示,骨密度与椎间盘的高度存在一定的相关性,说明椎体的结构特性与椎间盘退变程度密切相关,并且组织结构的改变同样会影响到其它结构进而出现改变。骨密度降低所引起的椎体骨折可导致椎间盘高度降低,并加速椎间盘的退变进程。软骨终板不仅是维持椎间盘正常功能的重要结构,同时还是髓核获取营养的重要途径。Nachemson等人发现,软骨终板钙化会导致软骨终板增厚,软骨终板内软骨层变薄,从而影响营养物质通过软骨终板向椎间盘的扩散,最终导致椎间盘早期出现退行性变。
     雌激素缺乏可引起绝经后妇女终板出现退行性改变,进而最终导致椎间盘发生退行性变。雌激素替代治疗被建议用于骨质疏松相关的椎间盘退变的治疗。然而,患者因雌激素治疗尚存在一些不良反应而拒绝用药,因此,当前迫切需要一种新的药物用于骨质疏松相关的椎间盘退变的治疗,如二膦酸盐类药物:阿仑膦酸钠、唑来膦酸钠等。阿仑膦酸钠作为一种潜在的二膦酸盐类药物,已广泛用于绝经后妇女骨质疏松的治疗。阿仑膦酸钠可提高患者骨密度,抑制骨转换率,降低骨折发生率。最近,Neogi等人的研究显示,阿仑膦酸钠可以抑制绝经后妇女椎间隙变窄,提示二膦酸盐类药物对椎间盘退变具有一定作用。阿仑膦酸钠对椎间盘退变的作用机制尚不清楚,因此本研究拟通过影像学、组织形态计量学、分子生物学等方法,探讨阿仑膦酸钠对卵巢切除大鼠腰椎间盘退变的作用及其相关作用机制,为临床治疗骨质疏松相关的腰椎间盘退变提供理论依据及临床用药指导。
     第一部分卵巢切除大鼠椎体骨量丢失与腰椎间盘退变关系的实验研究
     目的:探讨卵巢切除大鼠椎体骨量丢失与大鼠腰椎间盘退变的关系。
     方法:20只3月龄雌性Sprague-Dawley(SD)大鼠随机分为两组:假手术组(Sham)及卵巢切除组(OVX)。Sham组大鼠进行假手术,仅暴露卵巢组织但不切除。OVX组大鼠经卵巢切除术切除双侧卵巢组织,卵巢切除术后6个月,采用过量失血方法处死各组大鼠并收集L3-6节段及其椎间盘组织。椎体骨密度检测及椎体骨组织形态计量学检测用以评价大鼠椎体骨量及椎体微观结构的变化。对椎间盘进行van Gieson染色进行椎间盘组织学观察并进行组织学评分。
     结果:
     1骨密度检测结果
     OVX组大鼠L3-6椎体BMD显著低于Sham组(P<0.05)。
     2椎体骨组织形态计量学检测结果
     OVX组大鼠L4椎体骨小梁相对体积(BV/TV),骨小梁厚度(Tb.Th)及骨小梁数量(Tb.N)显著低于Sham组(P<0.05),而骨小梁分离度(Tb.Sp),荧光周长百分率(%L.Pm),矿化沉积率(MAR)及骨形成率(BFR/BV)显著高于Sham组(P<0.05)。
     3组织形态学观察及组织学评分结果
     OVX组大鼠椎间盘髓核内脊索细胞大量减少,软骨样细胞大量增殖,并可见粘液样变性。软骨终板可见大量骨样组织及髓腔生成。OVX组椎间盘组织学评分显著高于Sham组(P<0.05)。
     第二部分阿仑膦酸钠对卵巢切除大鼠腰椎间盘退变的预防作用的实验研究
     目的:本研究旨在应用骨质疏松大鼠模型探讨预防性应用阿仑膦酸钠对腰椎间盘退变的作用。
     方法:30只3月龄雌性Sprague-Dawley(SD)大鼠随机等分为三组:(1)假手术组(Sham);(2)卵巢切除+盐水组(OVX+V);(3)卵巢切除+阿仑膦酸钠组(OVX+ALN)。Sham组大鼠进行假手术,仅暴露卵巢组织但不切除。OVX+V组及OVX+ALN组大鼠经卵巢切除术切除双侧卵巢组织后,OVX+ALN组大鼠给予阿仑膦酸钠颈后皮下注射,剂量为15μg/kg,一周两次。OVX+V组大鼠给予等体积的生理盐水作为对照。卵巢切除术后6个月,采用过量失血方法处死各组大鼠并收集L3-6节段椎体及其间盘组织。椎体骨密度检测、micro-CT检测及椎体生物力学检测用以评价大鼠腰椎椎体骨组织特性及微观结构的变化。对椎间盘进行van Gieson染色进行椎间盘组织学观察并进行组织学评分。同时对各组大鼠椎间盘高度以及软骨终板厚度的变化进行分析比较。免疫组织化学染色及real-time PCR用于检测各组大鼠椎间盘中aggrecan、I型胶原、II型胶原、MMP-1、MMP-3及MMP-13表达的变化。
     结果:
     1椎体骨密度检测结果
     OVX+V组大鼠L3-4及L5-6椎体BMD显著低于Sham组(P<0.05)。OVX+ALN组大鼠L3-4及L5-6椎体BMD显著高于OVX+V组(P<0.05)
     2Micro-CT检测结果
     OVX+V组BV/TV、Tb.N显著低于Sham组,而Tb.Sp及SMI显著高于Sham组(P<0.05)。OVX+ALN组椎体BV/TV、Tb.N显著高于OVX+V组,Tb.Sp及SMI显著低于OVX+V组(P<0.05)。而Tb.Th在三组间无统计学差异(P>0.05)。
     3椎体生物力学检测结果
     OVX+V组椎体极限负荷(maximum load),屈服应力(yield stress),极限应力(maximum stress)及弹性模量(elastic modulus)均显著性低于Sham组(P<0.05)。OVX+ALN组椎体极限负荷,屈服应力,极限应力及弹性模量均显著高于OVX+V组(P<0.05)。
     4组织形态学观察及组织学评分结果
     OVX+V组椎间盘退变明显,而OVX+ALN组椎间盘髓核内仅出现少量的软骨样细胞,髓核未见粘液样变性,在纤维环与髓核交接处可见纤维软骨增殖现象。软骨终板内可见大量异常骨样组织及髓腔生成。而OVX+ALN组椎间盘退变程度较轻,仅在髓核内出现少量的软骨样细胞增殖,以及在髓核与纤维环交界处出现一些软骨细胞增殖,髓核内未出现粘液样变性。并且在软骨终板中段未发现有异常骨样组织生成。OVX+V组L5-6椎间盘组织学评分显著高于Sham组,而OVX+ALN组组织学评分显著低于OVX+V组(P<0.05)。
     5椎间盘高度检测结果
     OVX+V组L5-6椎间盘高度显著低于Sham组(P<0.05),OVX+ALN组L5-6椎间盘高度显著高于OVX+V组(P<0.05),OVX+ALN组与Sham组L5-6椎间盘高度无显著性差异(P>0.05)。
     6软骨终板厚度及软骨终板内骨样组织面积检测结果
     OVX+V组软骨终板厚度及软骨终板内骨样组织与软骨终板面积比值均显著高于Sham组(P<0.05),OVX+ALN组大鼠软骨终板厚度显著低于OVX+V组(P<0.05),且软骨终板内骨样组织与软骨终板面积比值显著低于OVX+V组(P<0.05)。
     7椎间盘免疫组织化学检测结果
     OVX+V组髓核内,aggrecan及II型胶原染色强度显著低于Sham组。然而,OVX+ALN组aggrecan及II型胶原染色强度显著高于OVX+V组。OVX+V组髓核内MMP-1、MMP-3及MMP-13染色强度显著高于Sham组,而OVX+ALN组髓核内MMP-1、MMP-3及MMP-13染色强度显著低于OVX+V组。
     OVX+V组纤维环中MMP-1、MMP-3及MMP-13表达增高,其IOD值显著高于Sham组(P<0.05)。但OVX+ALN组纤维环中MMP-1、MMP-3和MMP-13的表达显著降低,其IOD值显著低于OVX+V组(P<0.05)。
     OVX+V组纤维环中I型胶原表达增高及Ⅱ型胶原表达降低,其IOD值显著高于或低于Sham组(P<0.05)。而OVX+ALN组纤维环中I型胶原表达降低及Ⅱ型胶原表达增强,其IOD值显著低于或高于OVX+V组(P<0.05)。OVX+V组软骨终板区域可见X型胶原免疫组织化学染色程度强于Sham组,而OVX+ALN组X型胶原染色强度低于OVX+V组。
     8Real-time PCR检测结果
     与Sham组相比,OVX+V组Col2α1mRNA表达降低(P>0.05),而aggrecan及Col1α1mRNA表达显著增高(P<0.05)。而OVX+ALN组aggrecan及Col2α1mRNA显著高于OVX+V组(P<0.05),Col1α1mRNA表达显著低于OVX+V组(P<0.05)。OVX+V组MMP-1、MMP-3及MMP-13mRNA表达显著高于Sham组(P<0.05)。而阿仑膦酸钠可有效抑制由卵巢切除引起的MMP-1、MMP-3及MMP-13mRNA表达的增高(P<0.05)。
     第三部分阿仑膦酸钠治疗卵巢切除大鼠腰椎间盘退变作用效果的实验研究
     目的:探讨阿仑膦酸钠对卵巢切除大鼠腰椎间盘退变的治疗作用。
     方法:30只3月龄雌性SD大鼠随机分为三组:(1)假手术组(Sham);(2)卵巢切除+盐水治疗组(OVX+V);(3)卵巢切除+阿仑膦酸钠治疗组(OVX+ALN)。OVX+V组及OVX+ALN组大鼠行双侧卵巢切除术切除双侧卵巢组织,Sham组大鼠仅暴露卵巢组织但不切除。OVX+ALN组大鼠于卵巢切除术3个月后给予阿仑膦酸钠颈后皮下注射,剂量为15μg/kg,一周两次。OVX+V组大鼠给予等体积的生理盐水作为对照。卵巢切除术后6个月,过量失血处死各组大鼠并收集L3-6椎体标本。椎体骨密度检测及Micro-CT检测用以评价大鼠腰椎椎体骨骼特性及微观结构的变化。应用van Gieson染色进行椎间盘组织学检测及组织学评分。免疫组织化学染色用于检测各组大鼠椎间盘中aggrecan、I型胶原、II型胶原、MMP-1及MMP-13表达的变化。
     结果:
     1椎体BMD检测结果
     OVX+V组大鼠L3-4及L5-6椎体BMD显著低于Sham组(P<0.05),而OVX+ALN组大鼠L3-4及L5-6椎体BMD显著高于OVX+V组(P<0.05)。
     2Micro-CT检测结果
     OVX+V组BV/TV、Tb.N显著低于Sham组,而Tb.Sp显著高于Sham组(P<0.05)。而OVX+ALN组椎体BV/TV、Tb.Th显著高于OVX+V组,Tb.Sp显著低于OVX+V组(P<0.05)。
     3椎间盘组织形态学观察及评分结果
     OVX+V组髓核内,脊索细胞数量显著减少,并出现大量软骨样细胞增殖,髓核内可见粘液样变性。在纤维环与髓核的过渡区出现大量体积较小的软骨细胞增殖。软骨终板内异常钙化现象较为明显,并且在软骨终板的中段出现大量的异位骨样组织及髓腔。OVX+ALN组髓核内脊索细胞数量未出现显著性减少,髓核中出现一定量的软骨样细胞,并出现轻度的黏液样变性。在纤维环与髓核交接处可见纤维软骨细胞增殖现象。
     OVX+V组椎间盘组织学评分显著高于Sham组(P<0.05),而OVX+ALN组椎间盘组织学评分显著低于OVX+V组(P<0.05),但Sham组与OVX+ALN组椎间盘组织学评分无显著性差异(P>0.05)。4免疫组织化学染色结果
     OVX+V组髓核内aggrecan及II型胶原表达较Sham组显著降低,MMP-1及MMP-13表达增强,而OVX+ALN组aggrecan及II型胶原表达高于OVX+V组,并且MMP-1及MMP-13表达弱于OVX+V组。OVX+V组纤维环中MMP-1及MMP-13表达增高,其IOD值显著高于Sham组(P<0.05)。但OVX+ALN组纤维环中MMP-1和MMP-13的表达显著降低,其IOD值显著低于OVX+V组(P<0.05)。
     OVX+V组纤维环中Ⅱ型胶原表达降低,而I型胶原表达增高,其IOD值分别显著低于或高于Sham组(P<0.05)。而OVX+ALN组纤维环中Ⅱ型胶原表达增强,I型胶原表达减弱,其IOD值显著高于或低于OVX+V组(P<0.05)。
     OVX+V组软骨终板内X型胶原表达显著高于Sham组,而OVX+ALN组软骨终板内X型胶原表达较OVX+V组显著降低。
     结论:
     1卵巢切除大鼠椎体发生骨质疏松同时可合并出现腰椎间盘的退行性改变。
     2阿仑膦酸钠可有效延缓卵巢切除大鼠腰椎间盘退变进程。其具体作用机制一方面可能与维持椎体及软骨终板结构的完整性及功能有关,另一方面与调控细胞外基质代谢,保护椎间盘的功能有关。
     3阿仑膦酸钠是一种防治与骨质疏松相关的腰椎间盘退变的潜在性药物。
Lumbar intervertebral disc degeneration (LVD) is the leading cause oflow back pain and other disc disorders, which are responsible for enormoushuman suffering, high health care costs, and significant socioeconomic losses.Although some clinical and epidemiological studies observed thatosteoporosis was inversely related to spinal degeneration diseases orintervertebral disc degeneration, a recent correlation study of BMD and LVDin premenopausal and postmenopausal women showed that the BMD of notonly the lumbar vertebrae but also the calcaneus and radius were associatedwith LVD. In addition, in a previous study, we found a strong associationbetween osteopenia and disc degeneration in ovariectomized (OVX) rats,suggesting that measures to reduce osteoporotic changes might have inhibitoryeffects on disc degeneration. These variant consequences indicate that thecontraversial relationship between osteoporosis and LVD remains to be furtherclarified.
     Increasing evidence indicates that disc degeneration is associated with thedisruption of an intact spinal structure, including adjacent structures, such asthe vertebral body and endplate, which might result in imbalanced mechanicalloading on the disc. BMD assays in both pre-and postmenopausal womenrevealed a correlation between BMD and disc height, suggesting that thevertebral structural propoties are closely related to the degree of discdegeneration, and the milieu influencing one structure may similarly influenceothers. Vertebral fractures caused by low BMD can result in decreased discheight and exacerbate disc degeneration. The endplate is not only anotheressential structure in maintaining the integrity and physiological function ofthe avascular intervertebral disc, but also acts as a gateway for nutrient supplyto the nucleus. Nachemson found that calcification of the endplate may impede nutrient diffusion into disc, leading to thinner cartilage, but increasedthickness of the endplate, and consequently premature disc degeneration.Estrogen deficiency also might influence the severity of disc degeneration inpostmenopausal females, by negatively affecting endplate quality andinducing endplate degeneration. Estrogen replacement therapy is suggested asan alternative treatment for disc degeneration related to osteoporosis. However,many patients refuse estrogens for various reasons, which drove us to seeknew drug targets for the treatment of osteoporosis related disc degeneration,such as bisphosphonates, including alendronate (ALN) and zoledronate. ALN,a potent bisphosphonate, has widely been used as a first line drug in thetreatment of osteoporosis in postmenopausal women, where it can increasebone mineral density (BMD), suppress bone turnover and reduce the incidenceof fractures. Most recently, a study by Neogi et al. showed that ALN mightlead to a reduction in disc space narrowing in postmenopausal women,suggesting a novel role for bisphosphonate in altering the pathological processof disc degeneration. We hypothesize that ALN may be an alternative drugtreatment for lumbar disc degeneration related to osteoporosis, although theunderlying mechanisms by which ALN impacts the process of discdegeneration remain unclear. In the present study, we intends to investigate theeffect of alendronate on lumbar intervertebral disc in OVX rats by radiology,histomorphometry, molecular biology, in order to provide clinical guidelinesfor treatment of osteoporosis related intervertebral disc degeneration in clinic.
     Part I Lumbar intervertebral disc degeneration can induced byosteoporosis in ovariectomized rats
     Objective: To investigate the relationship between osteoporosis andlumbar intervertebral disc degeneration in ovariectomized rats.
     Methods:Twenty female Sprague-Dawley rats aged3months underwenteither sham-operation (sham)(N=10) or bilateral ovariectomy (OVX)(N=10).After animals were sacrificed at6months post-OVX, the L3-6spinalsegments were harvested. Bone mineral density (BMD) and histomorphometryanalysis were performed to evaluate the bone mass and microstructural changes in the lumbar vertebral bodies. Histological analysis with van Giesonstain and the histological score were used to identify the characteristics of thedegenerative discs.
     Results:
     1Bone mineral density
     The BMD values of L3-6vertebral bodies in the OVX group weresignificantly decreased, when compared with the Sham group (P<0.05).
     2Bone histomorphometry
     In the OVX group, the value in bone volume fracture (BV/TV),trabecular bone thickness (Tb.Th), and trabecular number (Tb.N) weresignificantly decreased, and trabecular separation (Tb.Sp), percent labeledperimeter (%L.Pm), bone formation rate (BFR/BV) and mineral appositionrate (MAR) were significantly increased when compared with Sham group(P<0.05).
     3Histological findings and histological scores
     In the OVX+V group, the discs showed degenerative changes, where thenucleus pulposus comprised relatively few, clustered, doublets ofchondrocyte-like cells. Mucoid degeneration could be seen eroding thenucleus pulposus. Bony tissues became more obvious in the cartilage endplate.The histological score of the discs in the OVX group was significantly higherthan the Sham group (P<0.05).
     Part II The effect of alendronate sodium on degenerated intervertebraldisc tissue in ovariectomized rats
     Objective: This study aims to investigate the effects of ALN on lumbarintervertebral disc degeneration related to osteoporosis using anovariectomized (OVX) rat model.
     Methods: Thirty female Sprague-Dawley rats aged3months wererandomly divided into three groups (with10rats each) as follows: the Shamgroup underwent sham surgery; the OVX+ALN group had twice-a-weeksubcutaneous injections of ALN (15μg/kg) for6months. The OVX+V groupreceived an equivalent volume of saline solution as placebo post-OVX. After animals were sacrificed at6months post-OVX, the L3-6spinal segments wereharvested. Bone mineral density (BMD), micro-CT analysis andbiomechanical testing were performed to evaluate the bone quality andmicrostructural changes in the lumbar vertebral bodies. Histological analysiswith van Gieson stain and the histological score were used to identify thecharacteristics of the degenerative discs. The disc height and the thickness ofthe cartilage endplate were measured and compared. Immunohistochemistryand real-time PCR measurements for aggrecan, type I collagen, type IIcollagen, and matrix metalloprotease (MMP)-1, MMP-3and MMP-13expressions on the disc were performed to assess the underlying molecularsignaling changes in matrix metabolism during intervertebral discdegeneration.
     Results:
     1Bone mineral density
     The BMD values of L3-4and L5-6vertebral bodies in the OVX+V groupwere significantly decreased, when compared with the Sham group (P<0.05).However, the BMD values of L3-4and L5-6vertebral bodies in theOVX+ALN group were significantly increased, when compared with theOVX+V group (P<0.05)
     2Micro-CT measurements
     Quantification of three-dimensional trabecular structures revealed thatBV/TV and Tb.N in the OVX+V group was significantly decreased comparedwith the Sham group (P<0.05), and Tb.Sp and SMI was higher in the OVX+Vgroup than in the Sham group (P<0.05)(Table4). The BV/TV and Tb.N inALN group are significantly higher than their counterparts in OVX+V group(P<0.05). Meanwhile, the Tb.Sp and SMI was markedly lower in theOVX+ALN group than in the OVX+V group (P<0.05). There was nosignificant difference in Tb.Th among the three groups (P>0.05).
     3Mechanical testing for the lumbar vertebral body
     Compared with the Sham group, the values of maximum load, yieldstress, maximum stress and elastic modulus were significantly decreased in the OVX+V group (P<0.05). However, the values of maximum load, yield stress,maximum stress and elastic modulus were significantly higher in theOVX+ALN group than in the OVX+V group at6months post-surgery(P<0.05), suggesting that ALN could effectively maintain the biomechanicalstrength of the vertebrae.
     4Histological findings and histological scores
     In the OVX+V group, the discs showed degenerative changes, where thenucleus pulposus comprised relatively few, clustered, doublets ofchondrocyte-like cells. Mucoid degeneration could be seen eroding thenucleus pulposus, with clefts forming within them. An increased number ofsmall chondrocytes appeared in the inner layer of the annulus fibrosus, whichwas present in the form of fibers invading the nucleus pulposus.. Bony tissuesbecame more obvious in the deep zone of cartilage endplate. In contrast, thehistological morphology in the OVX+ALN group didn’t show obviouschanges, there was no significant difference in the OVX+ALN group in thenumber of the notochordal cells, where only a few of chondrocyte-like cellsappeared in the nucleus pulposus, and some small chondrocytes were observedin the inner layer of the annulus fibrosus. Mucoid degeneration was notobserved in most samples in the OVX+ALN group and there were no bonytissues formed in the middle cartilage endplate. The histological score of thediscs in the OVX+V group was significantly higher than the Sham group(P<0.05); however, the histological score of the discs in the OVX+ALN groupwas markedly lower than the OVX+V group (P<0.05).
     5Disc height
     The disc height in the OVX+V group was significantly decreasedcompared with the Sham group (P<0.05). The disc height in the OVX+ALNgroup was significantly higher than the OVX+V group (P<0.05), but there wasno significant difference between the OVX+ALN and Sham groups.
     6Thickness of the cartilage endplate
     Both the cartilage endplate thickness and the bony tissue area within thecartilage endplate, especially in the middle cartilage endplate, were markedly increased in the OVX+V group when compared with the Sham group(P<0.05). The thickness of cartilage endplate and the bony tissues area ofcartilage endplate in the OVX+ALN group were both significantly decreasedwhen compared with the OVX+V group (P<0.05).
     7Immunohistochemistry
     The density of aggrecan and type II collagen staining in the OVX+Vgroup markedly decreased compared with the Sham group. However, muchstronger immunostaining was observed for aggrecan and type II collagen inthe OVX+ALN group compared with the OVX+V group. Strongerimmunostaining for MMP-1, MMP-3and MMP-13could be observed in thechondrocyte-like cells in the OVX+V group. In the OVX+ALN group,immunostaining for MMP-1, MMP-3and MMP-13were much weaker than inthe OVX+V group.
     The IOD value of MMP-1, MMP-3, MMP-13positive cells in theannulus fibrosus was significantly higher in the OVX+V group than that in theSham group (P<0.05). The IOD values of type II and type I collagens weresignificantly lower and higher, respectively, in the OVX+V group comparedwith the Sham group (P<0.05). However, the IOD values of MMP-1, MMP-3and MMP-13were significantly lower in the OVX+ALN group comparedwith the OVX+V group (P<0.05), and the IOD values for type II and type Icollagens were significantly higher and lower, respectively (P<0.05). Type Xcollagen was observed in the cartilage endplate, with stronger positive stainingin the chondrocytes of the OVX+V group than in the Sham group, but weakerin the OVX+ALN group compared with the OVX+V group.
     8Real-time PCR
     The expression of Col2α1mRNA was decreased (P>0.05), and theexpressions of aggrecan and Col1α1mRNAs were significantly increased inthe OVX+V group compared with the Sham group (P<0.05). The expressionsof aggrecan and Col2α1mRNAs were significantly increased in theOVX+ALN group compared with the OVX+V group (P<0.05), and theexpression of Col1α1was significantly lower than in the OVX+V group (P<0.05).
     The expressions of MMP-1, MMP-3and MMP-13mRNAs weresignificantly higher in the OVX+V group than in the Sham group at6monthspost-surgery (P<0.05). ALN treatment significantly depressed theOVX-induced up-regulation of MMP-1, MMP-3and MMP-13mRNAexpressions (P<0.05).
     Part III The therapeutic effect of alendronate on degeneratedintervertebral disc tissue in ovariectomized rats
     Objective: The aim of the present study is to investigate the therapeuticeffect of alendronate on degenerated intervertebral disc tissue inovariectomized rats.
     Methods: Thirty female Sprague-Dawley rats aged3months wererandomly divided into three groups (with10rats each) as follows: the Shamgroup underwent sham surgery; the OVX+ALN group had twice-a-weeksubcutaneous injections of ALN (15μg/kg) at3months post-OVX. TheOVX+V group received an equivalent volume of saline solution as placebopost-OVX. After animals were sacrificed at6months post-OVX, the L3-6spinal segments were harvested. Bone mineral density (BMD) and micro-CTanalysis were performed to evaluate the bone quality and microstructuralchanges in the lumbar vertebral bodies. Histological analysis with van Giesonstain and the histological score were used to identify the characteristics of thedegenerative discs. Immunohistochemistry for aggrecan, type I collagen, typeII collagen, and matrix metalloprotease (MMP)-1and MMP-13expressions onthe disc were performed to assess the underlying molecular signaling changesin matrix metabolism during intervertebral disc degeneration.
     Results:
     1Bone mineral density
     The BMD values of L3-4and L5-6vertebral bodies in the OVX+V groupwere significantly decreased, when compared with the Sham group (P<0.05).However, the BMD values of L3-4and L5-6vertebral bodies in theOVX+ALN group were significantly increased, when compared with the OVX+V group(P<0.05)
     2Micro-CT measurements
     Quantification of three-dimensional trabecular structures revealed thatBV/TV and Tb.N in the OVX+V group was significantly decreased comparedwith the Sham group (P<0.05), and Tb.Sp was higher in the OVX+V groupthan in the Sham group (P<0.05). The BV/TV and Tb.Th in OVX+ALN groupare significantly higher than their counterparts in OVX+V group (P<0.05).Meanwhile, the Tb.Sp was markedly lower in the OVX+ALN group than inthe OVX+V group (P<0.05).
     3Histological findings and histological scores
     In the OVX+V group, the discs showed degenerative changes, where thenucleus pulposus comprised relatively few, clustered, doublets ofchondrocyte-like cells. Mucoid degeneration could be seen eroding thenucleus pulposus, with clefts forming within them. An increased number ofsmall chondrocytes appeared in the inner layer of the annulus fibrosus, whichwas present in the form of fibers invading the nucleus pulposus. Bony tissuesbecame more obvious in the deep zone of cartilage endplate. In contrast, thehistological morphology in the OVX+ALN group didn’t show obviouschanges, there was no significant difference in the OVX+ALN group in thenumber of the notochordal cells, where only a few of chondrocyte-like cellsappeared in the nucleus pulposus, and some small chondrocytes were observedin the inner layer of the annulus fibrosus. Mucoid degeneration was notobserved in most samples in the OVX+ALN group and there were no bonytissues formed in the middle cartilage endplate. The histological score of thediscs in the OVX+V group was significantly higher than the Sham group(P<0.05); however, the histological score of the discs in the OVX+ALN groupwas markedly lower than the OVX+V group (P<0.05).
     4Immunohistochemistry
     The density of aggrecan and type II collagen staining in the OVX+Vgroup markedly decreased compared with the Sham group. However, muchstronger immunostaining was observed for aggrecan and type II collagen in
     the OVX+ALN group compared with the OVX+V group. Strongerimmunostaining for MMP-1and MMP-13could be observed in thechondrocyte-like cells in the OVX+V group. In the OVX+ALN group,immunostaining for MMP-1and MMP-13were much weaker than in theOVX+V group.
     The IOD value of MMP-1, MMP-13positive cells in the annulusfibrosus was significantly higher in the OVX+V group than that in the Shamgroup (P<0.05). The IOD values of type II and type I collagens weresignificantly lower and higher, respectively, in the OVX+V group comparedwith the Sham group (P<0.05). However, the IOD values of MMP-1andMMP-13were significantly lower in the OVX+ALN group compared with theOVX+V group (P<0.05), and the IOD values for type II and type I collagenswere significantly higher and lower, respectively (P<0.05).
     Conclusions:
     1Lumbar intervertebral disc can induced by osteoporosis inovariectomized rats.
     2ALN can retard the progression of lumbar intervertebral discdegeneration in OVX rats. The underlying mechanisms might be related topreservation of the structural integrity and function of the adjacent structures,including the vertebrae and endplates, which further links with modulations inextracellular matrix metabolism to protect the disc from degeneration.
     3ALN might be a promising drug agent for preventing and curing lumbarintervertebral disc degeneration related to osteoporosis.
引文
1肖建德.实用骨质疏松学[M].北京:科学出版社,2004,5
    2Burton A K, Clarke RD, McClune TD, et al. The natural history of lowback pain in adolescents. Spine,1996,21(20):2323-2328
    3Gilgil E, Kacar C, Bütün B, et al. Prevalence of low back pain in adeveloping urban setting. Spine,2005,30(9):1093-1098
    4Barrero LH, Hsu YH, Terwedow H, et al. Prevalence and physicaldeterminants of low back pain in a rural Chinese population. Spine,2006,31(23):2728-2734
    5Hoy D, Toole MJ, Morgan D, et al. Low back pain in rural Tibet. Lancet,2003,361(9353):225-226
    6Margulies JY, Payzer A, Nyska M, et al. The relationship betweendegenerative changes and osteoporosis in the lumbar spine. Clin OrthopRelat Res,1996,(324):145-152
    7Verstraeten A, Van Ermen H, Haghebaert G, et al. Osteoarthrosis retardsthe development of osteoporosis. Observation of the coexistence ofosteoarthrosis and osteoporosis. Clin Orthop Relat Res,1991,(264):169-177
    8Wronski TJ, Dann LM, Horner SL. Time course of vertebral osteopenia inovariectomized rats. Bone,1989,10(4):295-301
    9Raj PP. Intervertebral disc: anatomy-physiology-pathophysiology-treat-ment. Pain Pract,2008,8(1):18-44
    10Boos N, Weissbach S, Rohrbach H, et al. Classification of age-relatedchanges in lumbar intervertebral discs:2002Volvo Award in basic science.Spine (Phila Pa1976),2002,27(23):2631-2644
    11Urban JP, Roberts S. Degeneration of the intervertebral disc. Arthritis ResTher,2003,5(3):120-130
    12Richardson SM, Mobasheri A, Freemont AJ, et al. Intervertebral discbiology, degeneration and novel tissue engineering and regenerativemedicine therapies. Histol Histopathol,2007,22(9):1033-1041
    13Humzah MD, Soames RW. Human intervertebral disc: structure andfunction. Anat Rec,1988,220(4):337-356
    14Cassidy JJ, Hiltner A, Baer E. Hierarchical structure of the intervertebraldisc. Connect Tissue Res,1989,23(1):75-88
    15Marchand F, Ahmed AM. Investigation of the laminate structure of lumbardisc anulus fibrosus. Spine (Phila Pa1976),1990,15(5):402-410
    16Rajasekaran S, Babu JN, Arun R, et al. ISSLS prize winner: A study ofdiffusion in human lumbar discs: a serial magnetic resonance imagingstudy documenting the influence of the endplate on diffusion in normaland degenerate discs. Spine (Phila Pa1976),2004,29(23):2654-2667
    17Urban JP, Smith S, Fairbank JC. Nutrition of the intervertebral disc. Spine(Phila Pa1976),2004,29(23):2700-2709
    18Humzah MD, Soames RW. Human intervertebral disc: structure andfunction. Anat Rec,1988,220(4):337-356
    19Griffith JF, Yeung DK, Antonio GE, et al. Vertebral bone mineral density,marrow perfusion, and fat content in healthy men and men withosteoporosis: dynamic contrast-enhanced MR imaging and MRspectroscopy. Radiology,2005,236(3):945-951
    20Griffith JF, Yeung DK, Tsang PH, et al. Compromised bone marrowperfusion in osteoporosis. J Bone Miner Res,2008,23(7):1068-1075
    21Liu YJ, Huang GS, Juan CJ, et al. Intervertebral disk degeneration relatedto reduced vertebral marrow perfusion at dynamic contrast-enhanced MRI.AJR Am J Roentgenol,2009,192(4):974-979
    22Shevde NK, Bendixen AC, Dienger KM, et al. Estrogens suppress RANKligand-induced osteoclast differentiation via a stromal cell independentmechanism involving c-Jun repression. Proc Natl Acad Sci U S A,2000,97(14):7829-7834
    23Zwerina J, Redlich K, Polzer K, et al. TNF-induced structural jointdamage is mediated by IL-1. Proc Natl Acad Sci U S A,2007,104(28):11742-11747
    24Shevde NK, Bendixen AC, Dienger KM, et al. Estrogens suppress RANKligand-induced osteoclast differentiation via a stromal cell independentmechanism involving c-Jun repression. Proc Natl Acad Sci U S A,2000,97(14):7829-7834
    25Zwerina J, Redlich K, Polzer K, et al. TNF-induced structural jointdamage is mediated by IL-1. Proc Natl Acad Sci U S A,2007,104(28):11742-11747
    26Rand N, Reichet F, Floman Y. Murine nucleus pulpous derived cellssecrete interleuk ins-1B-6and10and GM-CSF in cell culture. Spine,1997,22(22):2598-2602
    27Takashi H, Suguro T, Okazima Y, et al. Inflammatory Cytokines in theherniated disk of the lumber spine. Spine,1996,21(2):218-224
    28Kang JD, Stefanovic-RacicM, M cintyre LA. Toward a biochemicalunderstanding of human intervertebral disc degeneration andherniation.Contributions of nitric oxide, interleukins, pro staglandin E2,and matrix melallop roteinases. Spine,1997,22(10):1065-1073
    29Anderson DD, Brown TD, Radin EL. The influence of basal cartilagecalcification on dynamic juxtaarticular stress transmission. Clin OrthopRelat Res,1993,(286):298-307
    30Mizrahi J, Silva MJ, Keaveny TM, et al. Finite-element stress analysis ofthe normal and osteoporotic lumbar vertebral body. Spine (Phila Pa1976),1993,18(14):2088-2096
    1Bergknut N, Rutges JP, Kranenburg HJ, et al. The dog as an animal modelfor intervertebral disc degeneration? Spine (Phila Pa1976),2012,37(5):351-358
    2Hunter CJ, Matyas JR, Duncan NA. Cytomorphology of notochordal andchondrocytic cells from the nucleus pulposus: a species comparison. JAnat,2004,205(5):357-362
    3Urban JP, Roberts S. Degeneration of the intervertebral disc. Arthritis ResTher,2003,5(3):120-130
    4Roberts S. Disc morphology in health and disease. Biochem Soc Trans,2002,30(Pt6):864-869
    5Stokes IA, Iatridis JC. Mechanical conditions that accelerate intervertebraldisc degeneration: overload versus immobilization. Spine (Phila Pa1976),2004,29(23):2724-2732
    6Suri P, Miyakoshi A, Hunter DJ, et al. Does lumbar spinal degenerationbegin with the anterior structures? A study of the observed epidemiologyin a community-based population. BMC Musculoskelet Disord,2011,12:202
    7Sornay-Rendu E, Munoz F, Duboeuf F, et al. Disc space narrowing isassociated with an increased vertebral fracture risk in postmenopausalwomen: the OFELY Study. J Bone Miner Res,2004,19(12):1994-1999
    8Garnero P, Sornay-Rendu E, Arlot M, et al. Association between spine discdegeneration and type II collagen degradation in postmenopausal women:the OFELY study. Arthritis Rheum,2004,50(10):3137-3144
    9Muscat Baron Y, Brincat MP, Galea R, et al. Low intervertebral disc heightin postmenopausal women with osteoporotic vertebral fractures comparedto hormone-treated and untreated postmenopausal women andpremenopausal women without fractures. Climacteric,2007,10(4):314-319
    10Baron YM, Brincat MP, Galea R, et al. Intervertebral disc height in treatedand untreated overweight post-menopausal women. Hum Reprod,2005,20(12):3566-3570
    11Kim KW, Ha KY, Park JB, et al. Expressions of membrane-type I matrixmetalloproteinase, Ki-67protein, and type II collagen by chondrocytesmigrating from cartilage endplate into nucleus pulposus in ratintervertebral discs: a cartilage endplate-fracture model using anintervertebral disc organ culture. Spine (Phila Pa1976),2005,30(12):1373-1378
    12Kim KS, Yoon ST, Li J, et al. Disc degeneration in the rabbit: abiochemical and radiological comparison between four disc injury models.Spine (Phila Pa1976),2005,30(1):33-37
    13Norcross JP, Lester GE, Weinhold P, et al. An in vivo model ofdegenerative disc disease. J Orthop Res,2003,21(1):183-188
    14Greg Anderson D, Li X, Tannoury T, et al. A fibronectin fragmentstimulates intervertebral disc degeneration in vivo. Spine (Phila Pa1976),2003,28(20):2338-2345
    15Yamada K, Tanabe S, Ueno H, et al. Investigation of the short-term effectof chemonucleolysis with chondroitinase ABC. J Vet Med Sci,2001,63(5):521-525
    16Moore RJ. The vertebral endplate: disc degeneration, disc regeneration.Eur Spine J,2006,15Suppl3: S333-S337
    17Roberts S, Menage J, Urban JP. Biochemical and structural properties ofthe cartilage end-plate and its relation to the intervertebral disc. Spine(Phila Pa1976),1989,14(2):166-174
    18Swischuk LE, John SD, Allbery S. Disk degenerative disease in childhood:Scheuermann's disease, Schmorl's nodes, and the limbus vertebra: MRIfindings in12patients. Pediatr Radiol,1998,28(5):334-338
    19Koltai JL, Rothmund M, Schranz D, et al.[Surgical therapy of primaryhyperparathyroidism in newborn infants]. Z Kinderchir,1988,43(4):236-238.
    20Nguyen C, Poiraudeau S, Rannou F. Vertebral subchondral bone.Osteoporos Int,2012,23Suppl8:857-860
    21Lin JT, Lane JM. Bisphosphonates. J Am Acad Orthop Surg,2003,11(1):1-4
    22Rogers MJ, Gordon S, Benford HL, et al. Cellular and molecularmechanisms of action of bisphosphonates. Cancer,2000,88(12Suppl):2961-2978
    23Fuchs RK, Shea M, Durski SL, et al. Individual and combined effects ofexercise and alendronate on bone mass and strength in ovariectomized rats.Bone,2007,41(2):290-296
    24Margulies JY, Payzer A, Nyska M, et al. The relationship betweendegenerative changes and osteoporosis in the lumbar spine. Clin OrthopRelat Res,1996,(324):145-152
    25Verstraeten A, Van Ermen H, Haghebaert G, et al. Osteoarthrosis retardsthe development of osteoporosis. Observation of the coexistence ofosteoarthrosis and osteoporosis. Clin Orthop Relat Res,1991,(264):169-177
    26Jones G, Nguyen T, Sambrook PN, et al. A longitudinal study of the effectof spinal degenerative disease on bone density in the elderly. J Rheumatol,1995,22(5):932-936
    27Dai LY. The relationship between osteoarthritis and osteoporosis in thespine. Clin Rheumatol,1998,17(1):44-46
    28Nanjo Y, Morio Y, Nagashima H, et al. Correlation between bone mineraldensity and intervertebral disk degeneration in pre-and postmenopausalwomen. J Bone Miner Metab,2003,21(1):22-27
    29Yang Z, Griffith JF, Leung PC, et al. Effect of osteoporosis on morphologyand mobility of the lumbar spine. Spine (Phila Pa1976),2009,34: E115-E121
    30Wang T, Zhang L, Huang C, et al. Relationship between osteopenia andlumbar intervertebral disc degeneration in ovariectomized rats. CalcifTissue Int,2004,75(3):205-213
    31Homminga J, Aquarius R, Bulsink VE, et al. Can vertebral density changesbe explained by intervertebral disc degeneration? Med Eng Phys,2012,34(4):453-458
    32Wang Y, Battie MC, Boyd SK, et al. The osseous endplates in lumbarvertebrae: thickness, bone mineral density and their associations with ageand disk degeneration. Bone,2011,48(4):804-809
    33Haschtmann D, Stoyanov JV, Gedet P, et al. Vertebral endplate traumainduces disc cell apoptosis and promotes organ degeneration in vitro. EurSpine J,2008,17(2):289-299
    34Wang Y, Videman T, Battie MC. ISSLS prize winner: Lumbar vertebralendplate lesions: associations with disc degeneration and back pain history.Spine (Phila Pa1976),2012,37(17):1490-1496
    35Mizrahi J, Silva MJ, Keaveny TM, et al. Finite-element stress analysis ofthe normal and osteoporotic lumbar vertebral body. Spine (Phila Pa1976),1993,18(14):2088-2096
    36Hu ZJ, Zhao FD, Fang XQ, et al. Modic changes, possible causes andpromotion to lumbar intervertebral disc degeneration. Med Hypotheses,2009,73(6):930-932
    37Urban JP, Smith S, Fairbank JC. Nutrition of the intervertebral disc. Spine(Phila Pa1976),2004,29(6):2700-2709
    38Turgut M, Uslu S, Uysal A, et al. Changes in vascularity of cartilageendplate of degenerated intervertebral discs in response to melatoninadministration in rats. Neurosurg Rev,2003,26(2):133-138
    39Holm S, Holm AK, Ekstrom L, et al. Experimental disc degeneration dueto endplate injury. J Spinal Disord Tech,2004,17(1):64-71
    40Sztrolovics R, Alini M, Roughley PJ, et al. Aggrecan degradation inhuman intervertebral disc and articular cartilage. Biochem J,1997,326(Pt1):235-241
    41Weiler C, Nerlich AG, Zipperer J, et al.2002SSE Award Competition inBasic Science: expression of major matrix metalloproteinases is associatedwith intervertebral disc degradation and resorption. Eur Spine J,2002,11(4):308-320
    42Griffith JF, Yeung DK, Tsang PH, et al. Compromised bone marrowperfusion in osteoporosis. J Bone Miner Res,2008,23(7):1068-1075
    43Roberts S, Caterson B, Menage J, et al. Matrix metalloproteinases andaggrecanase: their role in disorders of the human intervertebral disc. Spine(Phila Pa1976),2000,25(23):3005-3013
    44Inkinen RI, Lammi MJ, Lehmonen S, et al. Relative increase of biglycanand decorin and altered chondroitin sulfate epitopes in the degeneratinghuman intervertebral disc. J Rheumatol,1998,25(3):506-514
    45Longo UG, Ripalda P, Denaro V, et al. Morphologic comparison ofcervical, thoracic, lumbar intervertebral discs of cynomolgus monkey(Macaca fascicularis). Eur Spine J,2006,15(12):1845-1851
    46Roughley PJ. Biology of intervertebral disc aging and degeneration:involvement of the extracellular matrix. Spine (Phila Pa1976),2004,29(23):2691-2699
    47Gruber HE, Hanley EN, Jr. Recent advances in disc cell biology. Spine(Phila Pa1976),2003,28(2):186-193
    48Le Maitre CL, Freemont AJ, Hoyland JA. Localization of degradativeenzymes and their inhibitors in the degenerate human intervertebral disc. JPathol,2004,204(1):47-54
    49Lauer-Fields JL, Tuzinski KA, Shimokawa K, et al. Hydrolysis oftriple-helical collagen peptide models by matrix metalloproteinases. J BiolChem,2000,275(18):13282-13290
    50Teronen O, Heikkila P, Konttinen YT, et al. MMP inhibition anddownregulation by bisphosphonates. Ann N Y Acad Sci,1999,878:453-465
    51Heikkila P, Teronen O, Moilanen M, et al. Bisphosphonates inhibitstromelysin-1(MMP-3), matrix metalloelastase (MMP-12), collagenase-3(MMP-13) and enamelysin (MMP-20), but not urokinase-typeplasminogen activator, and diminish invasion and migration of humanmalignant and endothelial cell lines. Anticancer Drugs,2002,13(3):245-254
    1Raj PP. Intervertebral disc:anatomy-physiology-pathophysiology-treatment.Pain Pract,2008,8(1):18-44
    2Urban JP, Roberts S. Degeneration of the intervertebral disc. Arthritis ResTher,2003,5(3):120-130
    3Boos N, Weissbach S, Rohrbach H, et al. Classification of age-relatedchanges in lumbar intervertebral discs:2002Volvo Award in basic science.Spine (Phila Pa1976),2002,27(23):2631-2644
    4Richardson SM, Mobasheri A, Freemont AJ, et al. Intervertebral discbiology, degeneration and novel tissue engineering and regenerativemedicine therapies. Histol Histopathol,2007,22(9):1033-1041
    5Le Maitre CL, Pockert A, Buttle DJ, et al. Matrix synthesis anddegradation in human intervertebral disc degeneration. Biochem Soc Trans,2007,35(Pt4):652-655
    6Turgut M, Uslu S, Uysal A, et al. Changes in vascularity of cartilageendplate of degenerated intervertebral discs in response to melatoninadministration in rats. Neurosurg Rev,2003,26(2):133-138
    7Sztrolovics R, Alini M, Roughley PJ, et al. Aggrecan degradation inhuman intervertebral disc and articular cartilage. Biochem J,1997,326(Pt1):235-241
    8Weiler C, Nerlich AG, Zipperer J, et al.2002SSE Award Competition inBasic Science: expression of major matrix metalloproteinases is associatedwith intervertebral disc degradation and resorption. Eur Spine J,2002,11(4):308-320
    9Roberts S, Caterson B, Menage J, et al. Matrix metalloproteinases andaggrecanase: their role in disorders of the human intervertebral disc. Spine(Phila Pa1976),2000,25(23):3005-3013
    10Nishida K, Suzuki T, Kakutani K, et al. Gene therapy approach for discdegeneration and associated spinal disorders. Eur Spine J,2008,17(Suppl4):459-466
    11Sakai D. Future perspectives of cell-based therapy for intervertebral discdisease. Eur Spine J,2008,17(Suppl4):452-458
    12Nagase H, Visse R, Murphy G. Structure and function of matrixmetalloproteinases and TIMPs. Cardiovasc Res,2006,69(3):562-573
    13Clark IM, Swingler TE, Sampieri CL, et al. The regulation of matrixmetalloproteinases and their inhibitors. Int J Biochem Cell Biol,2008,40(6-7):1362-1378
    14Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors ofmetalloproteinases: structure, function, and biochemistry. Circ Res,2003,92(8):827-839
    15Le Maitre CL, Freemont AJ, Hoyland JA. Localization of degradativeenzymes and their inhibitors in the degenerate human intervertebral disc. JPathol,2004,204(1):47-54
    16Lauer-Fields JL, Tuzinski KA, Shimokawa K, et al. Hydrolysis oftriple-helical collagen peptide models by matrix metalloproteinases. J BiolChem,2000,275(18):13282-13290
    17Liu J, Roughley PJ, Mort JS. Identification of human intervertebral discstromelysin and its involvement in matrix degradation. J Orthop Res,1991,9(4):568-575
    18Le Maitre CL, Freemont AJ, Hoyland JA. Human disc degeneration isassociated with increased MMP7expression. Biotech Histochem,2006,81(4-6):125-131
    19Le Maitre CL, Freemont AJ, Hoyland JA. Localization of degradativeenzymes and their inhibitors in the degenerate human intervertebral disc. JPathol,2004,204(1):47-54
    20Salo J, Mackiewicz Z, Indahl A, et al. Plasmin-matrix metalloproteinasecascades in spinal response to an experimental disc lesion in pig. Spine,2008,33(8):839-844
    21Anderson DG, Izzo MW, Hall DJ, et al. Comparative gene expressionprofiling of normal and degenerative discs: analysis of a rabbit annularlaceration model. Spine,2002,27(12):1291-1296
    22Fuchs RK, Shea M, Durski SL, et al. Individual and combined effects ofexercise and alendronate on bone mass and strength in ovariectomized rats.Bone,2007,41(2):290-296
    23Griffith JF, Yeung DK, Antonio GE, et al. Vertebral bone mineral density,marrow perfusion, and fat content in healthy men and men withosteoporosis: dynamic contrast-enhanced MR imaging and MRspectroscopy. Radiology,2005,236(3):945-951
    24Griffith JF, Yeung DK, Tsang PH, et al. Compromised bone marrowperfusion in osteoporosis. J Bone Miner Res,2008,23(7):1068-1075
    25Liu YJ, Huang GS, Juan CJ, et al. Intervertebral disk degeneration relatedto reduced vertebral marrow perfusion at dynamic contrast-enhanced MRI.AJR Am J Roentgenol,2009,192(4):974-97
    1Freemont AJ. The cellular pathobiology of the degenerate intervertebraldisc and discogenic back pain. Rheumatology (Oxford),2009,48(1):5-10
    2Bogduk N. The lumbar disc and low back pain. Neurosurg Clin N Am,1991,2(4):791-806
    3Andersson GB. Epidemiological features of chronic low-back pain. Lancet,1999,354(9178):581-585
    4Katz JN. Lumbar disc disorders and low-back pain: socioeconomic factorsand consequences. J Bone Joint Surg Am,2006,88Suppl2:21-24
    5Urban JP, Roberts S. Degeneration of the intervertebral disc. Arthritis ResTher,2003,5(3):120-130
    6Adams MA, Roughley PJ. What is intervertebral disc degeneration, andwhat causes it? Spine (Phila Pa1976),2006,31(18):2151-2161
    7Mirza SK, Deyo RA. Systematic review of randomized trials comparinglumbar fusion surgery to nonoperative care for treatment of chronic backpain. Spine (Phila Pa1976),2007,32(7):816-823
    8Hanley EN, Jr., Herkowitz HN, Kirkpatrick JS, et al. Debating the value ofspine surgery. J Bone Joint Surg Am,2010,92(5):1293-1304
    9Ghiselli G, Wang JC, Bhatia NN, et al. Adjacent segment degeneration inthe lumbar spine. J Bone Joint Surg Am,2004,86-A(7):1497-1503
    10Boos N, Weissbach S, Rohrbach H, et al. Classification of age-relatedchanges in lumbar intervertebral discs:2002Volvo Award in basic science.Spine (Phila Pa1976),2002,27(23):2631-2644
    11Stemple DL. Structure and function of the notochord: an essential organfor chordate development. Development,2005,132(11):2503-2512
    12Fleming A, Keynes RJ, Tannahill D. The role of the notochord in vertebralcolumn formation. J Anat,2001,199(Pt1-2):177-180
    13Walmsley R. The development and growth of the intervertebral disc. EdinbMed J,1953,60(8):341-364
    14Choi KS, Cohn MJ, Harfe BD. Identification of nucleus pulposusprecursor cells and notochordal remnants in the mouse: implications fordisk degeneration and chordoma formation. Dev Dyn,2008,237(12):3953-3958
    15Hunter CJ, Matyas JR, Duncan NA. The notochordal cell in the nucleuspulposus: a review in the context of tissue engineering. Tissue Eng,2003,9(4):667-677
    16Pazzaglia UE, Salisbury JR, Byers PD. Development and involution of thenotochord in the human spine. J R Soc Med,1989,82(7):413-415
    17Aszodi A, Chan D, Hunziker E, et al. Collagen II is essential for theremoval of the notochord and the formation of intervertebral discs. J CellBiol,1998,143(5):1399-1412
    18Placzek M. The role of the notochord and floor plate in inductiveinteractions. Curr Opin Genet Dev,1995,5(4):499-506
    19McMahon AP, Ingham PW, Tabin CJ. Developmental roles and clinicalsignificance of hedgehog signaling. Curr Top Dev Biol,2003,53:1-114
    20Ehlen HW, Buelens LA, Vortkamp A. Hedgehog signaling in skeletaldevelopment. Birth Defects Res C Embryo Today,2006,78(3):267-279
    21McMahon JA, Takada S, Zimmerman LB, et al. Noggin-mediatedantagonism of BMP signaling is required for growth and patterning of theneural tube and somite. Genes Dev,1998,12(10):1438-1452
    22DiPaola CP, Farmer JC, Manova K, et al. Molecular signaling inintervertebral disk development. J Orthop Res,2005,23(5):1112-1119
    23Peters H, Wilm B, Sakai N, et al. Pax1and Pax9synergistically regulatevertebral column development. Development,1999,126(23):5399-5408
    24Wallin J, Wilting J, Koseki H, et al. The role of Pax-1in axial skeletondevelopment.Development,1994,120(5):1109-1121
    25Smith CA, Tuan RS. Human PAX gene expression and development of thevertebral column. Clin Orthop Relat Res,1994(302):241-250
    26Frost V, Grocott T, Eccles MR, et al. Self-regulated Pax gene expressionand modulation by the TGFbeta superfamily. Crit Rev Biochem Mol Biol,2008,43(6):371-391
    27Fan CM, Tessier-Lavigne M. Patterning of mammalian somites by surfaceectoderm and notochord: evidence for sclerotome induction by a hedgehoghomolog. Cell,1994,79(7):1175-1186
    28Furumoto TA, Miura N, Akasaka T, et al. Notochord-dependent expressionof MFH1and PAX1cooperates to maintain the proliferation of sclerotomecells during the vertebral column development. Dev Biol,1999,210(1):15-29
    29Wegner M. All purpose Sox: The many roles of Sox proteins in geneexpression. Int J Biochem Cell Biol,2010,42(3):381-390
    30Schepers GE, Teasdale RD, Koopman P. Twenty pairs of sox: extent,homology, and nomenclature of the mouse and human sox transcriptionfactor gene families. Dev Cell,2002,3(2):167-170
    31Smits P, Lefebvre V. Sox5and Sox6are required for notochordextracellular matrix sheath formation, notochord cell survival anddevelopment of the nucleus pulposus of intervertebral discs. Development,2003,130(6):1135-1148
    32Barrionuevo F, Taketo MM, Scherer G, et al. Sox9is required fornotochord maintenance in mice. Dev Biol,2006,295(1):128-140
    33Bi W, Deng JM, Zhang Z, et al. Sox9is required for cartilage formation.Nat Genet,1999,22(1):85-89
    34Millan FA, Denhez F, Kondaiah P, et al. Embryonic gene expressionpatterns of TGF beta1, beta2and beta3suggest different developmentalfunctions in vivo. Development,1991,111(1):131-143
    35Pelton RW, Dickinson ME, Moses HL, et al. In situ hybridization analysisof TGF beta3RNA expression during mouse development: comparativestudies with TGF beta1and beta2.Development,1990,110(2):609-620
    36Baffi MO, Slattery E, Sohn P, et al. Conditional deletion of the TGF-betatype II receptor in Col2a expressing cells results in defects in the axialskeleton without alterations in chondrocyte differentiation or embryonicdevelopment of long bones. Dev Biol,2004,276(1):124-142
    37Baffi MO, Moran MA, Serra R. Tgfbr2regulates the maintenance ofboundaries in the axial skeleton. Dev Biol,2006,296(2):363-374
    38Sohn P, Cox M, Chen D, et al. Molecular profiling of the developingmouse axial skeleton: a role for Tgfbr2in the development of theintervertebral disc. BMC Dev Biol,2010,10:29
    39Dahia CL, Mahoney EJ, Durrani AA, et al. Intercellular signalingpathways active during intervertebral disc growth, differentiation, andaging. Spine (Phila Pa1976),2009,34(5):456-462
    40Urban JP, Smith S, Fairbank JC. Nutrition of the intervertebral disc. Spine(Phila Pa1976),2004,29(23):2700-2709
    41Rajasekaran S, Babu JN, Arun R, et al. ISSLS prize winner: A study ofdiffusion in human lumbar discs: a serial magnetic resonance imagingstudy documenting the influence of the endplate on diffusion in normaland degenerate discs. Spine (Phila Pa1976),2004,29(23):2654-2667
    42Heuer F, Schmidt H, Wilke HJ. Stepwise reduction of functional spinalstructures increase disc bulge and surface strains. J Biomech,2008,41(9):1953-1960
    43Johannessen W, Cloyd JM, O'Connell GD, et al. Trans-endplatenucleotomy increases deformation and creep response in axial loading.Ann Biomed Eng,2006,34(4):687-696
    44O'Connell GD, Johannessen W, Vresilovic EJ, et al. Human internal discstrains in axial compression measured noninvasively using magneticresonance imaging. Spine (Phila Pa1976),2007,32(25):2860-2868
    45Roughley PJ, Melching LI, Heathfield TF, et al. The structure anddegradation of aggrecan in human intervertebral disc. Eur Spine J,2006,
    15Suppl3: S326-332
    46Vresilovic EJ, Johannessen W, Elliott DM. Disc mechanics withtrans-endplate partial nucleotomy are not fully restored following cycliccompressive loading and unloaded recovery. J Biomech Eng,2006,128(6):823-829
    47Schmidt H, Kettler A, Heuer F, et al. Intradiscal pressure, shear strain, andfiber strain in the intervertebral disc under combined loading. Spine (PhilaPa1976),2007,32(7):748-755
    48Guerin HL, Elliott DM. Quantifying the contributions of structure toannulus fibrosus mechanical function using a nonlinear, anisotropic,hyperelastic model. J Orthop Res,2007,25(4):508-516
    49Nerlich AG, Schaaf R, Walchli B, et al. Temporo-spatial distribution ofblood vessels in human lumbar intervertebral discs. Eur Spine J,2007,16(4):547-555
    50Maroudas A, Stockwell RA, Nachemson A, et al. Factors involved in thenutrition of the human lumbar intervertebral disc: cellularity and diffusionof glucose in vitro. J Anat,1975,120(Pt1):113-130
    51Ohshima H, Urban JP, Bergel DH. Effect of static load on matrix synthesisrates in the intervertebral disc measured in vitro by a new perfusiontechnique. J Orthop Res,1995,13(1):22-29
    52Horner HA, Urban JP.2001Volvo Award Winner in Basic Science Studies:Effect of nutrient supply on the viability of cells from the nucleus pulposusof the intervertebral disc. Spine (Phila Pa1976),2001,26(23):2543-2549
    53Roberts S, Urban JP, Evans H, et al. Transport properties of the humancartilage endplate in relation to its composition and calcification. Spine(Phila Pa1976),1996,21(4):415-420
    54Kurunlahti M, Kerttula L, Jauhiainen J, et al. Correlation of diffusion inlumbar intervertebral disks with occlusion of lumbar arteries: a study inadult volunteers. Radiology,2001,221(3):779-786
    55Roughley PJ. Biology of intervertebral disc aging and degeneration:involvement of the extracellular matrix. Spine (Phila Pa1976),2004,29(23):2691-2699
    56Antoniou J, Steffen T, Nelson F, et al. The human lumbar intervertebraldisc: evidence for changes in the biosynthesis and denaturation of theextracellular matrix with growth, maturation, ageing, and degeneration. JClin Invest,1996,98(4):996-1003
    57Buckwalter JA. Aging and degeneration of the human intervertebral disc.Spine (Phila Pa1976),1995,20(11):1307-1314
    58Boxberger JI, Sen S, Yerramalli CS, et al. Nucleus pulposusglycosaminoglycan content is correlated with axial mechanics in ratlumbar motion segments. J Orthop Res,2006,24(9):1906-1915
    59Costi JJ, Stokes IA, Gardner-Morse MG, et al. Frequency-dependentbehavior of the intervertebral disc in response to each of six degree offreedom dynamic loading: solid phase and fluid phase contributions.Spine (Phila Pa1976),2008,33(16):1731-1738
    60O'Connell GD, Guerin HL, Elliott DM. Theoretical and uniaxialexperimental evaluation of human annulus fibrosus degeneration. JBiomech Eng,2009,131(11):111007
    61Adams MA, McNally DS, Dolan P.'Stress' distributions insideintervertebral discs. The effects of age and degeneration. J Bone Joint SurgBr,1996,78(6):965-972
    62Acaroglu ER, Iatridis JC, Setton LA, et al. Degeneration and aging affectthe tensile behavior of human lumbar anulus fibrosus. Spine (Phila Pa1976),1995,20(24):2690-2701
    63Battie MC, Videman T. Lumbar disc degeneration: epidemiology andgenetics. J Bone Joint Surg Am,2006,88Suppl2:3-9
    64Stokes IA, Iatridis JC. Mechanical conditions that accelerate intervertebraldisc degeneration:overload versus immobilization. Spine (Phila Pa1976),2004,29(23):2724-2732
    65Zhao CQ, Wang LM, Jiang LS, et al. The cell biology of intervertebral discaging and degeneration. Ageing Res Rev,2007,6(3):247-261
    66Maclean JJ, Lee CR, Alini M, et al. Anabolic and catabolic mRNA levelsof the intervertebral disc vary with the magnitude and frequency of in vivodynamic compression. J Orthop Res,2004,22(6):1193-1200
    67Walsh AJ, Lotz JC. Biological response of the intervertebral disc todynamic loading. J Biomech,2004,37(3):329-337
    68Peacock A. Observations on the postnatal structure of the intervertebraldisc in man. J Anat,1952,86(2):162-179
    69Wolfe HJ, Putschar WG, Vickery AL. Role of the Notochord in HumanIntervetebral Disk. I. Fetus and Infant. Clin Orthop Relat Res,1965,39:205-212
    70Trout JJ, Buckwalter JA, Moore KC, et al. Ultrastructure of the humanintervertebral disc. I. Changes in notochordal cells with age. Tissue Cell,1982,14(2):359-369
    71Hunter CJ, Matyas JR, Duncan NA. The three-dimensional architecture ofthe notochordal nucleus pulposus: novel observations on cell structures inthe canine intervertebral disc. J Anat,2003,202(Pt3):279-291
    72Adams DS, Keller R, Koehl MA. The mechanics of notochord elongation,straightening and stiffening in the embryo of Xenopus laevis.Development,1990,110(1):115-130
    73Urban JP, Roberts S. Development and degeneration of the intervertebraldiscs. Mol Med Today,1995,1(7):329-335
    74Hunter CJ, Matyas JR, Duncan NA. Cytomorphology of notochordal andchondrocytic cells from the nucleus pulposus: a species comparison. JAnat,2004,205(5):357-362
    75Kim JH, Deasy BM, Seo HY, et al. Differentiation of intervertebralnotochordal cells through live automated cell imaging system in vitro.Spine (Phila Pa1976),2009,34(23):2486-2493
    76Sive JI, Baird P, Jeziorsk M, et al. Expression of chondrocyte markers bycells of normal and degenerate intervertebral discs. Mol Pathol,2002,55(2):91-97
    77IM, Risbud MV. Transcriptional profiling of the nucleus pulposus: say yesto notochord. Arthritis Res Ther,2010,12(3):117
    78Risbud MV, Schaer TP, Shapiro IM. Toward an understanding of the roleof notochordal cells in the adult intervertebral disc: from discord to accord.Dev Dyn,2010,239(8):2141-2148
    79Kim KW, Lim TH, Kim JG, et al. The origin of chondrocytes in thenucleus pulposus and histologic findings associated with the transition of anotochordal nucleus pulposus to a fibrocartilaginous nucleus pulposus inintact rabbit intervertebral discs. Spine (Phila Pa1976),2003,28(10):982-990
    80Weiler C, Nerlich AG, Schaaf R, et al. Immunohistochemical identificationof notochordal markers in cells in the aging human lumbar intervertebraldisc. Eur Spine J,2010,19(10):1761-1770
    81Minogue BM, Richardson SM, Zeef LA, et al. Transcriptional profiling ofbovine intervertebral disc cells: implications for identification of normaland degenerate human intervertebral disc cell phenotypes. Arthritis ResTher,2010,12(1): R22
    82Huang AH, Farrell MJ, Kim M, et al. Long-term dynamic loadingimproves the mechanical properties of chondrogenic mesenchymal stemcell-laden hydrogel. Eur Cell Mater,2010,19:72-85
    83Guehring T, Nerlich A, Kroeber M, et al. Sensitivity of notochordal disccells to mechanical loading: an experimental animal study. Eur Spine J,2010,19(1):113-121
    84Guehring T, Wilde G, Sumner M, et al. Notochordal intervertebral disccells: sensitivity to nutrient deprivation. Arthritis Rheum,2009,60(4):1026-1034
    85Rastogi A, Thakore P, Leung A, et al. Environmental regulation ofnotochordal gene expression in nucleus pulposus cells. J Cell Physiol,2009,220(3):698-705
    86Urban JP, Roberts S. Development and degeneration of the intervertebraldiscs. Mol Med Today,1995,1(7):329-335
    87Nerlich AG, Schaaf R, Walchli B, et al. Temporo-spatial distribution ofblood vessels in human lumbar intervertebral discs. Eur Spine J,2007,16(4):547-555
    88Melrose J, Smith SM, Appleyard RC, et al. Aggrecan, versican and type VIcollagen are components of annular translamellar crossbridges in theintervertebral disc. Eur Spine J,2008,17(2):314-324
    89Cappello R, Bird JL, Pfeiffer D, et al. Notochordal cell produce andassemble extracellular matrix in a distinct manner, which may beresponsible for the maintenance of healthy nucleus pulposus. Spine (PhilaPa1976),2006,31(8):873-882; discussion883
    90Aguiar DJ, Johnson SL, Oegema TR. Notochordal cells interact withnucleus pulposus cells: regulation of proteoglycan synthesis. Exp Cell Res,1999,246(1):129-137
    91Erwin WM, Ashman K, O'Donnel P, et al. Nucleus pulposus notochordcells secrete connective tissue growth factor and up-regulate proteoglycanexpression by intervertebral disc chondrocytes. Arthritis Rheum,2006,54(12):3859-3867
    92Erwin WM, Inman RD. Notochord cells regulate intervertebral discchondrocyte proteoglycan production and cell proliferation. Spine (PhilaPa1976),2006,31(10):1094-1099
    93Korecki CL, Taboas JM, Tuan RS, et al. Notochordal cell conditionedmedium stimulates mesenchymal stem cell differentiation toward a youngnucleus pulposus phenotype. Stem Cell Res Ther,2010,1(2):18
    94Hunter CJ, Matyas JR, Duncan NA. Cytomorphology of notochordal andchondrocytic cells from the nucleus pulposus: a species comparison. JAnat,2004,205(5):357-362
    95Peacock A. Observations on the prenatal development of the intervertebraldisc in man. J Anat,1951,85(3):260-274
    96O'Connell GD, Vresilovic EJ, Elliott DM. Comparison of animals used indisc research to human lumbar disc geometry. Spine (Phila Pa1976),2007,32(3):328-333
    97Beckstein JC, Sen S, Schaer TP, et al. Comparison of animal discs used indisc research to human lumbar disc: axial compression mechanics andglycosaminoglycan content. Spine (Phila Pa1976),2008,33(6): E166-173
    98Elliott DM, Yerramalli CS, Beckstein JC, et al. The effect of relativeneedle diameter in puncture and sham injection animal models ofdegeneration. Spine (Phila Pa1976),2008,33(6):588-596
    99Yoon SH, Miyazaki M, Hong SW, et al. A porcine model of intervertebraldisc degeneration induced by annular injury characterized with magneticresonance imaging and histopathological findings. Laboratoryinvestigation. J Neurosurg Spine,2008,8(5):450-457
    100Wang T, Zhang L, Huang C, et al. Relationship between osteopenia andlumbar intervertebral disc degeneration in ovariectomized rats. CalcifTissue Int,2004,75(3):205-213
    101Kroeber MW, Unglaub F, Wang H, et al. New in vivo animal model tocreate intervertebral disc degeneration and to investigate the effects oftherapeutic strategies to stimulate disc regeneration. Spine (Phila Pa1976),2002,27(23):2684-2690
    102Iatridis JC, Mente PL, Stokes IA, et al. Compression-induced changes inintervertebral disc properties in a rat tail model. Spine (Phila Pa1976),1999,24(10):996-1002
    103Hoogendoorn RJ, Wuisman PI, Smit TH, et al. Experimental intervertebraldisc degeneration induced by chondroitinase ABC in the goat. Spine (PhilaPa1976),2007,32(17):1816-1825
    104Hansen HJ. A pathologic-anatomical interpretation of disc degeneration indogs. Acta Orthop Scand,1951,20(4):280-293
    105Gruber HE, Johnson T, Norton HJ, et al. The sand rat model for discdegeneration: radiologic characterization of age-related changes:cross-sectional and prospective analyses. Spine (Phila Pa1976),2002,27(3):230-234
    106Masuda K. Biological repair of the degenerated intervertebral disc by theinjection of growth factors. Eur Spine J,2008,17Suppl4:441-451
    107Sobajima S, Kim JS, Gilbertson LG, et al. Gene therapy for degenerativedisc disease. Gene Ther,2004,11(4):390-401
    108Leung VY, Chan D, Cheung KM. Regeneration of intervertebral disc bymesenchymal stem cells: potentials, limitations, and future direction. EurSpine J,2006,15Suppl3: S406-413
    109Wallach CJ, Gilbertson LG, Kang JD. Gene therapy applications forintervertebral disc degeneration. Spine (Phila Pa1976),2003,28(15Suppl): S93-98
    110Sakai D. Future perspectives of cell-based therapy for intervertebral discdisease. Eur Spine J,2008,17Suppl4:452-458
    111Kandel R, Roberts S, Urban JP. Tissue engineering and the intervertebraldisc: the challenges.Eur Spine J,2008,17Suppl4:480-491
    112O'Halloran DM, Pandit AS. Tissue-engineering approach to regeneratingthe intervertebral disc. Tissue Eng,2007,13(8):1927-1954
    113Nerurkar NL, Elliott DM, Mauck RL. Mechanics of oriented electrospunnanofibrous scaffolds for annulus fibrosus tissue engineering. J OrthopRes,2007,25(8):1018-1028
    114Alini M, Eisenstein SM, Ito K, et al. Are animal models useful forstudying human disc disorders/degeneration? Eur Spine J,2008,17(1):2-19
    115Risbud MV, Di Martino A, Guttapalli A, et al. Toward an optimum systemfor intervertebral disc organ culture: TGF-beta3enhances nucleuspulposus and anulus fibrosus survival and function through modulation ofTGF-beta-R expression and ERK signaling. Spine (Phila Pa1976),2006,31(8):884-890
    116Gruber HE, Norton HJ, Ingram JA, et al. The SOX9transcription factor inthe human disc: decreased immunolocalization with age and discdegeneration. Spine (Phila Pa1976),2005,30(6):625-630
    117Paul R, Haydon RC, Cheng H, et al. Potential use of Sox9gene therapy forintervertebral degenerative disc disease. Spine (Phila Pa1976),2003,28(8):755-763
    118Yang X, Li X. Nucleus pulposus tissue engineering: a brief review. EurSpine J,2009,18(11):1564-1572

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700