水稻卷叶突变体的细胞形成机制以及OUL1基因的克隆和功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻是我国的主要粮食作物。由于人口的增加和可耕地面积的减少,稳定和提高水稻总产量只有依靠单产的提高,而水稻株型改良对提高单产具有重要的作用。在水稻株型改良中特别注重叶片的直立性和叶片的适度卷曲。叶片适度卷曲能保持叶片直立不披垂,改善水稻生长中后期群体基部的受光条件,提高光能利用率,从而有利于水稻产量的提高,其作用已在高产和超高产育种中得到充分的体现。因此,对水稻卷叶突变体的发现、控制相应性状基因的挖掘并将其应用到理想株型的改良越来越受到遗传育种家的重视和关注。但是,利用传统遗传育种方法将卷叶性状转移到没有该性状的主栽品种中去存在着周期长,且有时还不能选育到理想性状的缺点。随着现代分子生物学技术的崛起和进步,克隆和研究控制水稻卷叶性状的基因,希望在分子水平上通过人为操作构建符合遗传育种家理想株型的水稻就成为了很多国内外分子生物学家追求的目标。
     现在揭示水稻基因功能的一个通用策略就是构建其T-DNA插入突变体库。本实验室通过6年的努力,建立了一个大容量的T-DNA插入突变体库,并且克隆了它们大部分的插入位点侧翼序列,为克隆功能基因奠定了良好的基础。为了研究水稻卷叶突变体,我们从增强子捕获水稻突变体库中筛选得到了300多份具有不同卷叶性状的独立转基因株系。次年,我们将种植于廊坊试验田中的所有卷叶突变体成熟叶片进行石蜡切片观察,从中克隆了一个控制水稻叶片反卷的基因并对其功能进行了详细的研究。具体研究结果如下:
     一、卷叶性状的细胞学分类
     根据观察结果我们将卷叶性状从细胞学上分成8种类型:
     1、泡状细胞的变化。具体有3种表型,第I类型是泡状细胞数量和面积增加可以导致叶片的反卷;第II类型是泡状细胞数量和面积减少能够促使叶片发生正卷;第III类型的泡状细胞数量和面积变化无规律,叶片是正卷还是反卷由泡状细胞最终的大小决定。
     2、部分厚壁细胞缺失(第IV类型)。厚壁细胞对维持水稻叶片正常的形态结构具有重要作用,叶片远轴面厚壁细胞缺失会丧失其所提供的支撑力而导致叶片正卷,反之,则可能促使叶片反卷。
     3、位于维管束中的韧皮部变化也能导致叶片的卷曲(第V类型)。韧皮部细胞增加,面积增大,从而使叶脉远轴面皱缩,进而导致叶片反卷。
     4、第VI类型是维管束鞘延伸区和主脉薄壁细胞数量改变促使叶片发生卷曲。
     5、第VII类型是叶片中的多种细胞类型同时发生变化,叶片最终的卷曲方向和程度由这些细胞共同决定。
     6、部分叶肉细胞变成了薄壁样细胞也能改变叶片的形态(第VIII类型)。
     二、OUL1基因的克隆及功能分析
     1、oul1突变体表型及OUL1基因的克隆。我们挑选细胞学典型的卷叶突变体,根据已克隆的插入位点序列信息设计相应的特异性引物进行共分离验证,最后确定了一个泡状细胞增加、叶片反卷成接近筒状的突变体oul1的T-DNA插入与表型共分离。将该侧翼序列在NCBI中BLAST出其全长序列,基因注释为Rice outermost cell-specific gene5(Roc5)基因,属于HD-ZipIV家族成员。
     2、功能互补验证证明了oul1叶片发卷是由于Roc5基因功能缺失所致。将Roc5基因cDNA全长序列转入到oul1突变体所诱导的愈伤中得到的植株叶片表现为平展,由此初步验证了oul1叶片卷曲可能是Roc5由于T-DNA的插入,破坏了其功能所致。并且亚细胞定位表明Roc5编码产物为一个转录因子。
     3、Roc5过量表达使叶片泡状细胞减少,从而发生正卷;而在Roc5的共抑制水稻植株中发现的叶片与oul1突变体的叶片表型相似。由此更进一步证明了Roc5负调控水稻叶片泡状细胞的命运和发育。
     4、基因表达谱以及RNA干涉(RAN interference, RNAi)分析结果表明,Protodermal FactorLike(PFL)基因可能是Roc5下游直接作用的位点,但具体的直接相互作用还需要进一步的研究证明。
Rice is a leading cereal crop and main staple food for over half of the world population. Withaccretion of population and arable land decrease, steady increase in rice production only depends onincreasing per unit area yield. Nevertheless, improvement of plant type in rice plays an important rolein it. Leaf shape has long been considered an important agronomic trait in rice. Moderate leaf rollingin rice leads to erect leaf canopies and higher photosynthetic efficiency, improving stress response byreducing transpirational water loss and radiant heat absorption, thereby increasing grain yield.Therefore, moderate leaf rolling is an ideal trait for rice breeding.It is possible that leaf rollingphenotypes are resulted from changes of any cell types making up leaf blade. During screening ofrice T-DNA insertion lines, more than300stable mutants showing various leaf rolling phenotypeswere obtained. Cytological analysis of those mutants indicated that changes of number, size andpattern of bulliform cells, sclerenchymatous cells, parenchyma cells, mesophyll cells as well asvascular bundle could lead to leaf rolling. Those mutants have been categorized into8groupsaccording to their cytological characteristics: increased bulliform cell number and area, decreasedbulliform cell number and area, disordered bulliform cell number and area, partial sclerenchymatouscell absence, phloem expansion of vascular system, increased parenchyma cell, a few cell typeschange, partial mesophyll cells become parenchyma cell-like.
     To understand the molecular mechanism controlling leaf rolling, we screened a rice T-DNAinsertion population and isolated the outcurved leaf1(oul1) mutant showing abaxial leaf rolling. Thephenotypes were caused by knockout of Roc5, an ortholog of the Arabidopsis homeodomain leucinezipper (HD-Zip) class IV gene GLABRA2. Interestingly, overexpression of Roc5led to adaxiallyrolled leaves, whereas cosuppression of Roc5resulted in abaxial leaf rolling. Bulliform cell numberand size increased in oul1and Roc5cosuppression plants but were reduced in Roc5-overexpressinglines. The data indicate that Roc5negatively regulates bulliform cell fate and development. Geneexpression profiling, quantitative PCR, and RNA interference analyses revealed that ProtodermalFactor Like was probably downregulated in oul1. The mRNA level of PFL was increased inRoc5-overexpressing lines, and PFL-RNAi transgenic plants exhibit reversely rolling leaves byreason of increase of bulliform cell number and size, indicating that Roc5may have a conservedfunction. These are the first functional data for a gene encoding an HD-Zip IV transcriptional factorin rice that modulates leaf rolling.
引文
[1]陈宗样,陈刚,胡俊等. RL(t)卷叶基因在杂交稻中的遗传表达及效应研究.作物学报,2002,28(6):847-851。
    [2]陈宗祥,胡俊,陈刚,潘学彪. Rl(t)卷叶基因对杂交稻经济性状的影响.作物学报,2004,30(5):465—469。
    [3]邵元健.水稻卷叶性状的遗传分析及卷叶基因的精细定位博士学位论文,2005,江苏,扬州大学
    [4]邵元健,陈宗祥,张亚芳等.一个水稻卷叶主效QTL的定位及其物理图谱的构建.遗传学报,2005,32(5):501~506。
    [5]邵元健,潘存红,陈宗祥等.水稻不完全隐性卷叶主基因rl(t)的精细定位.科学通报,2005,50(19):2107-2113。
    [6]顾兴友,顾铭洪.一种水稻卷叶性状的遗传分析.遗传,1995,17(5):20-23。
    [7]李仕贵,马玉清,何平等.一个未知的卷叶基因的识别和定位.四川农业大学学报,1998,16(4):391~393。
    [8]沈福成.水稻卷叶性状遗传初探.贵州农业科学,1983,(3):9-12。
    [9]沈革志,王新其,殷丽青等. T-DNA插入水稻群体中卷叶突变体RL-A2的遗传分析.实验生物学报,2003,36(6):459~464。
    [10]徐明.控制水稻花期OsEF1基因功能的研究.中国农业科学院硕士学位论文,2011。
    [11]Abe, M., Katsumata, H., Komeda, Y. and Takahashi, T. Regulation of shoot epidermal celldifferentiation by a pair of homeodomain proteins in Arabidopsis. Development,2003,130,635-43.
    [12]Abe, M., Takahashi, T. and Komeda, Y. Identification of a cis-regulatory element for L1layer-specific gene expression, which is targeted by an L1-specific homeodomain protein. PlantJ,2001,26,487-94.
    [13]Abe, M., Yoshikawa, T., Nosaka, M., Sakakibara, H., Sato, Y., Nagato, Y. and Itoh, J. WAVYLEAF1, an ortholog of Arabidopsis HEN1, regulates shoot development by maintaining MicroRNAand trans-acting small interfering RNA accumulation in rice. Plant Physiol,2010,154,1335-46.
    [14]Achard, P., Herr, A., Baulcombe, D. C. and Harberd, N. P. Modulation of floral development by agibberellin-regulated microRNA. Development,2004,131,3357-65.
    [15]Adenot, X., Elmayan, T., Lauressergues, D., Boutet, S., Bouche, N., Gasciolli, V. and Vaucheret,H. DRB4-dependent TAS3trans-acting siRNAs control leaf morphology through AGO7. CurrBiol,2006,16,927-32.
    [16]Allen, R. S., Li, J., Stahle, M. I., Dubroue, A., Gubler, F. and Millar, A. A. Genetic analysisreveals functional redundancy and the major target genes of the Arabidopsis miR159family. ProcNatl Acad Sci U S A,2007,104,16371-6.
    [17]Alvarez, J. and Smyth, D. R. CRABS CLAW and SPATULA, two Arabidopsis genes that controlcarpel development in parallel with AGAMOUS. Development,1999,126,2377-86.
    [18]Benkova, E., Michniewicz, M., Sauer, M., Teichmann, T., Seifertova, D., Jurgens, G. and Friml, J.Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell,2003,115,591-602.
    [19]Berger, Y., Harpaz-Saad, S., Brand, A., Melnik, H., Sirding, N., Alvarez, J. P., Zinder, M.,Samach, A., Eshed, Y. and Ori, N. The NAC-domain transcription factor GOBLET specifies leafletboundaries in compound tomato leaves. Development,2009,136,823-32.
    [20]Blakeslee, J. J., Peer, W. A. and Murphy, A. S. Auxin transport. Curr Opin Plant Biol,2005,8,494-500.
    [21]Bolstad, B. M., Irizarry, R. A., Astrand, M. and Speed, T. P. A comparison of normalizationmethods for high density oligonucleotide array data based on variance and bias. Bioinformatics,2003,19,185-93.
    [22]Bowman, J. L. The YABBY gene family and abaxial cell fate. Curr Opin Plant Biol,2000,3,17-22.
    [23]Bowman, J. L. and Eshed, Y. Formation and maintenance of the shoot apical meristem. TrendsPlant Sci,2000,5,110-5.
    [24]Bowman, J. L. and Smyth, D. R. CRABS CLAW, a gene that regulates carpel and nectarydevelopment in Arabidopsis, encodes a novel protein with zinc finger and helix-loop-helix domains.Development,1999,126,2387-96.
    [25]Byrne, M. E. Networks in leaf development. Curr Opin Plant Biol,2005,8,59-66.
    [26]Chen, R., Zhao, X., Shao, Z., Wei, Z., Wang, Y., Zhu, L., Zhao, J., Sun, M., He, R. and He, G.Rice UDP-glucose pyrophosphorylase1is essential for pollen callose deposition and its cosuppressionresults in a new type of thermosensitive genic male sterility. Plant Cell,2007,19,847-61.
    [27]Chitwood, D. H., Nogueira, F. T., Howell, M. D., Montgomery, T. A., Carrington, J. C. andTimmermans, M. C. Pattern formation via small RNA mobility. Genes Dev,2009,23,549-54.
    [28]Clark, S. E. Cell signalling at the shoot meristem. Nat Rev Mol Cell Biol,2001,2,276-84.
    [29]Cubas, P., Lauter, N., Doebley, J. and Coen, E. The TCP domain: a motif found in proteinsregulating plant growth and development. Plant J,1999,18,215-22.
    [30]Dai, M., Zhao, Y., Ma, Q., Hu, Y., Hedden, P., Zhang, Q. and Zhou, D. X. The rice YABBY1geneis involved in the feedback regulation of gibberellin metabolism. Plant Physiol,2007,144,121-33.
    [31]de Reuille, P. B., Bohn-Courseau, I., Ljung, K., Morin, H., Carraro, N., Godin, C. and Traas, J.Computer simulations reveal properties of the cell-cell signaling network at the shoot apex inArabidopsis. Proc Natl Acad Sci U S A,2006,103,1627-32.
    [32]Di Cristina, M., Sessa, G., Dolan, L., Linstead, P., Baima, S., Ruberti, I. and Morelli, G. TheArabidopsis Athb-10(GLABRA2) is an HD-Zip protein required for regulation of root hairdevelopment. Plant J,1996,10,393-402.
    [33]Fahlgren, N., Montgomery, T. A., Howell, M. D., Allen, E., Dvorak, S. K., Alexander, A. L. andCarrington, J. C. Regulation of AUXIN RESPONSE FACTOR3by TAS3ta-siRNA affectsdevelopmental timing and patterning in Arabidopsis. Curr Biol,2006,16,939-44.
    [34]Floyd, S. K. and Bowman, J. L. Gene regulation: ancient microRNA target sequences in plants.Nature,2004,428,485-6.
    [35]Friml, J. Auxin transport-shaping the plant. Curr Opin Plant Biol,2003,6,7-12.
    [36]Friml, J. and Palme, K. Polar auxin transport--old questions and new concepts? Plant MolBiol,2002,49,273-84.
    [37]Friml, J., Vieten, A., Sauer, M., Weijers, D., Schwarz, H., Hamann, T., Offringa, R. and Jurgens,G. Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature,2003,426,147-53.
    [38]Fujino, K., Matsuda, Y., Ozawa, K., Nishimura, T., Koshiba, T., Fraaije, M. W. and Sekiguchi, H.NARROW LEAF7controls leaf shape mediated by auxin in rice. Mol Genet Genomics,2008,279,499-507.
    [39]Fukuda, H. Programmed cell death of tracheary elements as a paradigm in plants. Plant MolBiol,2000,44,245-53.
    [40]Fukuda, H. Signals that control plant vascular cell differentiation. Nat Rev Mol Cell Biol,2004,5,379-91.
    [41]Furutani, M., Vernoux, T., Traas, J., Kato, T., Tasaka, M. and Aida, M. PIN-FORMED1andPINOID regulate boundary formation and cotyledon development in Arabidopsis embryogenesis.Development,2004,131,5021-30.
    [42]Galweiler, L., Guan, C., Muller, A., Wisman, E., Mendgen, K., Yephremov, A. and Palme, K.Regulation of polar auxin transport by AtPIN1in Arabidopsis vascular tissue. Science,1998,282,2226-30.
    [43]Garcia, D., Collier, S. A., Byrne, M. E. and Martienssen, R. A. Specification of leaf polarity inArabidopsis via the trans-acting siRNA pathway. Curr Biol,2006,16,933-8.
    [44]Giulini, A., Wang, J. and Jackson, D. Control of phyllotaxy by the cytokinin-inducible responseregulator homologue ABPHYL1. Nature,2004,430,1031-4.
    [45]Glover, B. J. Differentiation in plant epidermal cells. J Exp Bot,2000,51,497-505.
    [46]HABERLANDT, G. Physiological plant anatomy.,1914,p.599. London: Macmillan&Co.
    [47]Hadfi, K., Speth, V. and Neuhaus, G. Auxin-induced developmental patterns in Brassica junceaembryos. Development,1998,125,879-87.
    [48]Hay, A., Craft, J. and Tsiantis, M. Plant hormones and homeoboxes: bridging the gap?Bioessays,2004,26,395-404.
    [49]Heisler, M. G., Ohno, C., Das, P., Sieber, P., Reddy, G. V., Long, J. A. and Meyerowitz, E. M.Patterns of auxin transport and gene expression during primordium development revealed by liveimaging of the Arabidopsis inflorescence meristem. Curr Biol,2005,15,1899-911.
    [50]Hernandez, M. L., Passas, H. J. and Smith, L. G. Clonal analysis of epidermal patterning duringmaize leaf development. Dev Biol,1999,216,646-58.
    [51]Hibara, K., Obara, M., Hayashida, E., Abe, M., Ishimaru, T., Satoh, H., Itoh, J. and Nagato, Y.The ADAXIALIZED LEAF1gene functions in leaf and embryonic pattern formation in rice. DevBiol,2009,334,345-54.
    [52]Hong, Z., Ueguchi-Tanaka, M., Shimizu-Sato, S., Inukai, Y., Fujioka, S., Shimada, Y., Takatsuto,S., Agetsuma, M., Yoshida, S., Watanabe, Y. et al. Loss-of-function of a rice brassinosteroidbiosynthetic enzyme, C-6oxidase, prevents the organized arrangement and polar elongation of cellsin the leaves and stem. Plant J,2002,32,495-508.
    [53]Horiguchi, G., Kim, G. T. and Tsukaya, H. The transcription factor AtGRF5and the transcriptioncoactivator AN3regulate cell proliferation in leaf primordia of Arabidopsis thaliana. Plant J,2005,43,68-78.
    [54]Hu, J., Zhu, L., Zeng, D., Gao, Z., Guo, L., Fang, Y., Zhang, G., Dong, G., Yan, M., Liu, J. et al.Identification and characterization of NARROW AND ROLLED LEAF1, a novel gene regulatingleaf morphology and plant architecture in rice. Plant Mol Biol,2010,73,283-92.
    [55]Hunter, C., Willmann, M. R., Wu, G., Yoshikawa, M., de la Luz Gutierrez-Nava, M. and Poethig,S. R. Trans-acting siRNA-mediated repression of ETTIN and ARF4regulates heteroblasty inArabidopsis. Development,2006,133,2973-81.
    [56]Ingram, G. C., Magnard, J. L., Vergne, P., Dumas, C. and Rogowsky, P. M. ZmOCL1, an HDGL2family homeobox gene, is expressed in the outer cell layer throughout maize development. Plant MolBiol,1999,40,343-54.
    [57]Irizarry, R. A., Hobbs, B., Collin, F., Beazer-Barclay, Y. D., Antonellis, K. J., Scherf, U. andSpeed, T. P. Exploration, normalization, and summaries of high density oligonucleotide array probelevel data. Biostatistics,2003,4,249-64.
    [58]Ishida, T., Kurata, T., Okada, K. and Wada, T. A genetic regulatory network in the development oftrichomes and root hairs. Annu Rev Plant Biol,2008,59,365-86.
    [59]Jane WN, Chiang SHT. Morphology and development of bulliform cells in Arundo formosanaHack. Taiwania Int J Life Sci,1991,36:85–97
    [60]Jenik, P. D. and Barton, M. K. Surge and destroy: the role of auxin in plant embryogenesis.Development,2005,132,3577-85.
    [61]Jonsson, H., Heisler, M. G., Shapiro, B. E., Meyerowitz, E. M. and Mjolsness, E. An auxin-drivenpolarized transport model for phyllotaxis. Proc Natl Acad Sci U S A,2006,103,1633-8.
    [62]Kim, J. H., Choi, D. and Kende, H. The AtGRF family of putative transcription factors isinvolved in leaf and cotyledon growth in Arabidopsis. Plant J,2003,36,94-104.
    [63]Kim, J. H. and Kende, H. A transcriptional coactivator, AtGIF1, is involved in regulating leafgrowth and morphology in Arabidopsis. Proc Natl Acad Sci U S A,2004,101,13374-9.
    [64]Langdale, J. A., Lane, B., Freeling, M. and Nelson, T. Cell lineage analysis of maize bundlesheath and mesophyll cells. Dev Biol,1989,133,128-39.
    [65]Leyser, O. Auxin distribution and plant pattern formation: how many angels can dance on thepoint of PIN? Cell,2005,121,819-22.
    [66]Li, C., Potuschak, T., Colon-Carmona, A., Gutierrez, R. A. and Doerner, P. Arabidopsis TCP20links regulation of growth and cell division control pathways. Proc Natl Acad Sci U S A,2005,102,12978-83.
    [67]Li, L., Shi, Z. Y., Shen, G. Z., Wang, X. Q., An, L. S. and Zhang, J. L. Overexpression of ACL1(abaxially curled leaf1) increased Bulliform cells and induced Abaxial curling of leaf blades in rice.Mol Plant,2010,3,807-17.
    [68]Liu, P. P., Montgomery, T. A., Fahlgren, N., Kasschau, K. D., Nonogaki, H. and Carrington, J. C.Repression of AUXIN RESPONSE FACTOR10by microRNA160is critical for seed germination andpost-germination stages. Plant J,2007,52,133-46.
    [69]Livak, K. J. and Schmittgen, T. D. Analysis of relative gene expression data using real-timequantitative PCR and the2(-Delta Delta C(T)) Method. Methods,2001,25,402-8.
    [70]Lloyd, A. M., Walbot, V. and Davis, R. W. Arabidopsis and Nicotiana anthocyanin productionactivated by maize regulators R and C1. Science,1992,258,1773-5.
    [71]Lu, P., Porat, R., Nadeau, J. A. and O'Neill, S. D. Identification of a meristem L1layer-specificgene in Arabidopsis that is expressed during embryonic pattern formation and defines a new class ofhomeobox genes. Plant Cell,1996,8,2155-68.
    [72]Mallory, A. C., Bartel, D. P. and Bartel, B. MicroRNA-directed regulation of Arabidopsis AUXINRESPONSE FACTOR17is essential for proper development and modulates expression of early auxinresponse genes. Plant Cell,2005,17,1360-75.
    [73]Mallory, A. C., Dugas, D. V., Bartel, D. P. and Bartel, B. MicroRNA regulation of NAC-domaintargets is required for proper formation and separation of adjacent embryonic, vegetative, and floralorgans. Curr Biol,2004,14,1035-46.
    [74]Martin, C. and Glover, B. J. Functional aspects of cell patterning in aerial epidermis. Curr OpinPlant Biol,2007,10,70-82.
    [75]Masucci, J. D., Rerie, W. G., Foreman, D. R., Zhang, M., Galway, M. E., Marks, M. D. andSchiefelbein, J. W. The homeobox gene GLABRA2is required for position-dependent celldifferentiation in the root epidermis of Arabidopsis thaliana. Development,1996,122,1253-60.
    [76]McConnell, J. R., Emery, J., Eshed, Y., Bao, N., Bowman, J. and Barton, M. K. Role ofPHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature,2001,411,709-13.
    [77]Millar, A. A. and Gubler, F. The Arabidopsis GAMYB-like genes, MYB33and MYB65, aremicroRNA-regulated genes that redundantly facilitate anther development. Plant Cell,2005,17,705-21.
    [78]Miyawaki, K., Matsumoto-Kitano, M. and Kakimoto, T. Expression of cytokinin biosyntheticisopentenyltransferase genes in Arabidopsis: tissue specificity and regulation by auxin, cytokinin, andnitrate. Plant J,2004,37,128-38.
    [79]Multani, D. S., Briggs, S. P., Chamberlin, M. A., Blakeslee, J. J., Murphy, A. S. and Johal, G. S.Loss of an MDR transporter in compact stalks of maize br2and sorghum dw3mutants.Science,2003,302,81-4.
    [80]Nagasawa, N., Miyoshi, M., Sano, Y., Satoh, H., Hirano, H., Sakai, H. and Nagato, Y.SUPERWOMAN1and DROOPING LEAF genes control floral organ identity in rice.Development,2003,130,705-18.
    [81]Napoli, C., Lemieux, C. and Jorgensen, R. Introduction of a Chimeric Chalcone Synthase Geneinto Petunia Results in Reversible Co-Suppression of Homologous Genes in trans. Plant Cell,1990,2,279-289.
    [82]Nath, U., Crawford, B. C., Carpenter, R. and Coen, E. Genetic control of surface curvature.Science,2003,299,1404-7.
    [83]Nelson, T. and Dengler, N. Leaf Vascular Pattern Formation. Plant Cell,1997,9,1121-1135.
    [84]Nogueira, F. T., Chitwood, D. H., Madi, S., Ohtsu, K., Schnable, P. S., Scanlon, M. J. andTimmermans, M. C. Regulation of small RNA accumulation in the maize shoot apex. PLoSGenet,2009,5, e1000320.
    [85]Nordstrom, A., Tarkowski, P., Tarkowska, D., Norbaek, R., Astot, C., Dolezal, K. and Sandberg,G. Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: a factor of potential importancefor auxin-cytokinin-regulated development. Proc Natl Acad Sci U S A,2004,101,8039-44.
    [86]Ohashi, Y., Oka, A., Rodrigues-Pousada, R., Possenti, M., Ruberti, I., Morelli, G. and Aoyama, T.Modulation of phospholipid signaling by GLABRA2in root-hair pattern formation. Science,2003,300,1427-30.
    [87]Okada, K., Ueda, J., Komaki, M. K., Bell, C. J. and Shimura, Y. Requirement of the Auxin PolarTransport System in Early Stages of Arabidopsis Floral Bud Formation. Plant Cell,1991,3,677-684.
    [88]Ori, N., Cohen, A. R., Etzioni, A., Brand, A., Yanai, O., Shleizer, S., Menda, N., Amsellem, Z.,Efroni, I., Pekker, I. et al. Regulation of LANCEOLATE by miR319is required for compound-leafdevelopment in tomato. Nat Genet,2007,39,787-91.
    [89]Palatnik, J. F., Allen, E., Wu, X., Schommer, C., Schwab, R., Carrington, J. C. and Weigel, D.Control of leaf morphogenesis by microRNAs. Nature,2003,425,257-63.
    [90]Palatnik, J. F., Wollmann, H., Schommer, C., Schwab, R., Boisbouvier, J., Rodriguez, R.,Warthmann, N., Allen, E., Dezulian, T., Huson, D. et al. Sequence and expression differences underliefunctional specialization of Arabidopsis microRNAs miR159and miR319. Dev Cell,2007,13,115-25.
    [91]Palme, K. and Galweiler, L. PIN-pointing the molecular basis of auxin transport. Curr Opin PlantBiol,1999,2,375-81.
    [92]Paponov, I. A., Teale, W. D., Trebar, M., Blilou, I. and Palme, K. The PIN auxin efflux facilitators:evolutionary and functional perspectives. Trends Plant Sci,2005,10,170-7.
    [93]Park, J. J., Jin, P., Yoon, J., Yang, J. I., Jeong, H. J., Ranathunge, K., Schreiber, L., Franke, R.,Lee, I. J. and An, G. Mutation in Wilted Dwarf and Lethal1(WDL1) causes abnormal cuticleformation and rapid water loss in rice. Plant Mol Biol,2010,74,91-103.
    [94]Pekker, I., Alvarez, J. P. and Eshed, Y. Auxin response factors mediate Arabidopsis organasymmetry via modulation of KANADI activity. Plant Cell,2005,17,2899-910.
    [95]Petrasek, J., Mravec, J., Bouchard, R., Blakeslee, J. J., Abas, M., Seifertova, D., Wisniewska, J.,Tadele, Z., Kubes, M., Covanova, M. et al. PIN proteins perform a rate-limiting function in cellularauxin efflux. Science,2006,312,914-8.
    [96]Prigge, M. J., Otsuga, D., Alonso, J. M., Ecker, J. R., Drews, G. N. and Clark, S. E. Class IIIhomeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct rolesin Arabidopsis development. Plant Cell,2005,17,61-76.
    [97]Qi, J., Qian, Q., Bu, Q., Li, S., Chen, Q., Sun, J., Liang, W., Zhou, Y., Chu, C., Li, X. et al.Mutation of the rice Narrow leaf1gene, which encodes a novel protein, affects vein patterning andpolar auxin transport. Plant Physiol,2008,147,1947-59.
    [98]Reinhardt, D., Mandel, T. and Kuhlemeier, C. Auxin regulates the initiation and radial position ofplant lateral organs. Plant Cell,2000,12,507-18.
    [99]Reinhardt, D., Pesce, E. R., Stieger, P., Mandel, T., Baltensperger, K., Bennett, M., Traas, J.,Friml, J. and Kuhlemeier, C. Regulation of phyllotaxis by polar auxin transport. Nature,2003,426,255-60.
    [100]Rerie, W. G., Feldmann, K. A. and Marks, M. D. The GLABRA2gene encodes a homeo domainprotein required for normal trichome development in Arabidopsis. Genes Dev,1994,8,1388-99.
    [101]Rubio-Somoza, I., Cuperus, J. T., Weigel, D. and Carrington, J. C. Regulation and functionalspecialization of small RNA-target nodes during plant development. Curr Opin Plant Biol,2009,12,622-7.
    [102]Sachs, T. Integrating cellular and organismic aspects of vascular differentiation. Plant CellPhysiol,2000,41,649-56.
    [103]Sakaguchi, J. and Fukuda, H. Cell differentiation in the longitudinal veins and formation ofcommissural veins in rice (Oryza sativa) and maize (Zea mays). J Plant Res,2008,121,593-602.
    [104]Sakaguchi, J., Itoh, J. I., Ito, Y., Nakamura, A., Fukuda, H. and Sawa, S. COE1, an LRR-RLKresponsible for commissural vein pattern formation in rice. Plant J,2010.
    [105]Sauer, M., Balla, J., Luschnig, C., Wisniewska, J., Reinohl, V., Friml, J. and Benkova, E.Canalization of auxin flow by Aux/IAA-ARF-dependent feedback regulation of PIN polarity. GenesDev,2006,20,2902-11.
    [106]Sawchuk, M. G., Head, P., Donner, T. J. and Scarpella, E. Time-lapse imaging of Arabidopsisleaf development shows dynamic patterns of procambium formation. New Phytol,2007,176,560-71.
    [107]Scanlon, M. J., Henderson, D. C. and Bernstein, B. SEMAPHORE1functions during theregulation of ancestrally duplicated knox genes and polar auxin transport in maize. Development,2002,129,2663-73.
    [108]Scarpella, E., Boot, K. J., Rueb, S. and Meijer, A. H. The procambium specification geneOshox1promotes polar auxin transport capacity and reduces its sensitivity toward inhibition. PlantPhysiol,2002,130,1349-60.
    [109]Scarpella, E., Marcos, D., Friml, J. and Berleth, T. Control of leaf vascular patterning by polarauxin transport. Genes Dev,2006,20,1015-27.
    [110]Scarpella, E., Rueb, S., Boot, K. J., Hoge, J. H. and Meijer, A. H. A role for the rice homeoboxgene Oshox1in provascular cell fate commitment. Development,2000,127,3655-69.
    [111]Scarpella, E., Rueb, S. and Meijer, A. H. The RADICLELESS1gene is required for vascularpattern formation in rice. Development,2003,130,645-58.
    [112]Scarpella, E., Simons, E. J. and Meijer, A. H. Multiple regulatory elements contribute to thevascular-specific expression of the rice HD-Zip gene Oshox1in Arabidopsis. Plant CellPhysiol,2005,46,1400-10.
    [113]Schommer, C., Palatnik, J. F., Aggarwal, P., Chetelat, A., Cubas, P., Farmer, E. E., Nath, U. andWeigel, D. Control of jasmonate biosynthesis and senescence by miR319targets. PLoS Bio,2008,l6,e230.
    [114]Schwab, R., Maizel, A., Ruiz-Ferrer, V., Garcia, D., Bayer, M., Crespi, M., Voinnet, O. andMartienssen, R. A. Endogenous TasiRNAs mediate non-cell autonomous effects on gene regulation inArabidopsis thaliana. PLoS One,2009,4, e5980.
    [115]Schwarz, S., Grande, A. V., Bujdoso, N., Saedler, H. and Huijser, P. The microRNA regulatedSBP-box genes SPL9and SPL15control shoot maturation in Arabidopsis. Plant Mol Biol,2008,67,183-95.
    [116]Serna, L. A network of interacting factors triggering different cell fates. Plant Cell,2004,16,2258-63.
    [117]Shi, Y., Chen, J., Liu, W., Huang, Q., Shen, B., Leung, H. and Wu, J. Genetic analysis and genemapping of a new rolled-leaf mutant in rice (Oryza sativa L.). Sci China C Life Sci,2009,52,885-90.
    [118]Siegfried, K. R., Eshed, Y., Baum, S. F., Otsuga, D., Drews, G. N. and Bowman, J. L. Membersof the YABBY gene family specify abaxial cell fate in Arabidopsis. Development,1999,126,4117-28.
    [118]Smith, R. S., Guyomarc'h, S., Mandel, T., Reinhardt, D., Kuhlemeier, C. and Prusinkiewicz, P. Aplausible model of phyllotaxis. Proc Natl Acad Sci U S A,2006,103,1301-6.
    [118]Smyth, G. K. Linear models and empirical bayes methods for assessing differential expression inmicroarray experiments. Stat Appl Genet Mol Biol,2004,3, Article3.
    [119]Szymanski, D. B., Jilk, R. A., Pollock, S. M. and Marks, M. D. Control of GL2expression inArabidopsis leaves and trichomes. Development,1998,125,1161-71.
    [120]Tanaka, M., Takei, K., Kojima, M., Sakakibara, H. and Mori, H. Auxin controls local cytokininbiosynthesis in the nodal stem in apical dominance. Plant J,2006,45,1028-36.
    [121]Teale, W. D., Paponov, I. A. and Palme, K. Auxin in action: signalling, transport and the controlof plant growth and development. Nat Rev Mol Cell Biol,2006,7,847-59.
    [122]Tominaga-Wada, R., Iwata, M., Sugiyama, J., Kotake, T., Ishida, T., Yokoyama, R., Nishitani, K.,Okada, K. and Wada, T. The GLABRA2homeodomain protein directly regulates CESA5and XTH17gene expression in Arabidopsis roots. Plant J,2009,60,564-74.
    [123]Toriba, T., Harada, K., Takamura, A., Nakamura, H., Ichikawa, H., Suzaki, T. and Hirano, H. Y.Molecular characterization the YABBY gene family in Oryza sativa and expression analysis ofOsYABBY1. Mol Genet Genomics,2007,277,457-68.
    [124]Treml, B. S., Winderl, S., Radykewicz, R., Herz, M., Schweizer, G., Hutzler, P., Glawischnig, E.and Ruiz, R. A. The gene ENHANCER OF PINOID controls cotyledon development in theArabidopsis embryo. Development,2005,132,4063-74.
    [125]Tsiantis, M., Brown, M. I., Skibinski, G. and Langdale, J. A. Disruption of auxin transport isassociated with aberrant leaf development in maize. Plant Physiol,1999,121,1163-8.
    [126]Tsukaya, H. Mechanism of leaf-shape determination. Annu Rev Plant Biol,2006,57,477-96.
    [127]van der Krol, A. R., Mur, L. A., Beld, M., Mol, J. N. and Stuitje, A. R. Flavonoid genes inpetunia: addition of a limited number of gene copies may lead to a suppression of gene expression.Plant Cell,1990,2,291-9.
    [128]Veit, B. Hormone mediated regulation of the shoot apical meristem. Plant Mol Biol,2009,69,397-408.
    [129]Vernoud, V., Laigle, G., Rozier, F., Meeley, R. B., Perez, P. and Rogowsky, P. M. The HD-ZIP IVtranscription factor OCL4is necessary for trichome patterning and anther development in maize.Plant J,2009,59,883-94.
    [130]Vernoux, T., Kronenberger, J., Grandjean, O., Laufs, P. and Traas, J. PIN-FORMED1regulatescell fate at the periphery of the shoot apical meristem. Development,2000,127,5157-65.
    [131]Wan, S., Wu, J., Zhang, Z., Sun, X., Lv, Y., Gao, C., Ning, Y., Ma, J., Guo, Y., Zhang, Q. et al.Activation tagging, an efficient tool for functional analysis of the rice genome. Plant Mol Biol,2009,69,69-80.
    [132]Wang, J. W., Schwab, R., Czech, B., Mica, E. and Weigel, D. Dual effects of miR156-targetedSPL genes and CYP78A5/KLUH on plastochron length and organ size in Arabidopsis thaliana. PlantCell,2008,20,1231-43.
    [133]Wang, J. W., Wang, L. J., Mao, Y. B., Cai, W. J., Xue, H. W. and Chen, X. Y. Control of root capformation by MicroRNA-targeted auxin response factors in Arabidopsis. Plant Cell,2005,17,2204-16.
    [134]Woo, Y. M., Park, H. J., Su'udi, M., Yang, J. I., Park, J. J., Back, K., Park, Y. M. and An, G.Constitutively wilted1, a member of the rice YUCCA gene family, is required for maintaining waterhomeostasis and an appropriate root to shoot ratio. Plant Mol Biol,2007,65,125-36.
    [135]Wu, C., Fu, Y., Hu, G., Si, H., Cheng, S. and Liu, W. Isolation and characterization of a ricemutant with narrow and rolled leaves. Planta,2010,232,313-24.
    [136]Wu, R., Li, S., He, S., Wassmann, F., Yu, C., Qin, G., Schreiber, L., Qu, L. J. and Gu, H. CFL1, aWW domain protein, regulates cuticle development by modulating the function of HDG1, a class IVhomeodomain transcription factor, in rice and Arabidopsis. Plant Cell,2011,23,3392-411.
    [137]Xu, M., Zhu, L., Shou, H. and Wu, P. A PIN1family gene, OsPIN1, involved inauxin-dependent adventitious root emergence and tillering in rice. Plant Cell Physiol,2005,46,1674-81.
    [138]Yamaguchi, T., Nagasawa, N., Kawasaki, S., Matsuoka, M., Nagato, Y. and Hirano, H. Y. TheYABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryzasativa. Plant Cell,2004,16,500-9.
    [139]Yan, S., Yan, C. J., Zeng, X. H., Yang, Y. C., Fang, Y. W., Tian, C. Y., Sun, Y. W., Cheng, Z. K.and Gu, M. H. ROLLED LEAF9, encoding a GARP protein, regulates the leaf abaxial cell fate inrice. Plant Mol Biol,2008,68,239-50.
    [140]Ye, Z. H. Vascular tissue differentiation and pattern formation in plants. Annu Rev PlantBiol,2002,53,183-202.
    [141]Zhang, G. H., Xu, Q., Zhu, X. D., Qian, Q. and Xue, H. W. SHALLOT-LIKE1is a KANADItranscription factor that modulates rice leaf rolling by regulating leaf abaxial cell development. PlantCell,2009,21,719-35.
    [142]Zou, X., Zou, L., Foldager, C., Bendtsen, M., Feng, W. and Bunger, C. E. Different mechanismsof spinal fusion using equine bone protein extract, rhBMP-2and autograft during the process ofanterior lumbar interbody fusion. Biomaterials,2009,30,991-1004.
    [143] Zou LP, Sun XH, Zhang ZG, Liu P, Wu JX, Tian CJ, Qiu JL, Lu TG. Leaf rolling controlled bythe homeodomain leucine zipper class IV gene Roc5in rice. Plant Physiol,2011;156(3):1589-602.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700