基于水稻SSSLs的主要农艺性状QTL分析及杂种优势研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻是最重要的粮食作物,也是禾本科植物进行分子生物学研究的重要模式生物之一,对水稻功能基因的研究可以为水稻育种提供有力的理论指导。农作物的大多数农艺性状是由多个基因控制的数量性状,对数量性状基因座(quantitative trait loci, QTL)进行鉴定和定位在遗传研究和育种利用中具有十分重要的意义。单片段代换系(single segment substitution lines,SSSLs)可消除遗传背景的干扰,是用于QTL鉴定和精细定位的重要遗传研究材料。本实验利用已经完成基因组测序的籼稻品种93-11为受体,粳稻测序品种日本晴和三系杂交稻骨干恢复系蜀恢527为供体,结合分子标记辅助选择,建立了一套单片段代换系群体,并在此基础上进行了QTL分析和杂种优势研究。主要结果如下:
     1、本实验选用均匀分布于水稻12条染色体上的447对微卫星(SSR)标记在受体亲本93-11和供体亲本日本晴与蜀恢527间进行多态性标记筛选,.结果显示共有247个SSR在亲本间具有多态性,其中有221个SSR标记在93-11与日本晴之间表现出多态性,多态率为50.78%;有55个SSR标记在93-11与蜀恢527间具有多态性,多态率为12.30%。同时,利用序列比对工具,对筛选出的多态性标记在测序品种93-11基因组上进行物理定位,构建了一张含有247个SSR多态性标记的分子图谱,标记间的平均距离为1.85Mb。
     2、在BC3F2、BC4F2和BC5F2三个世代中总共获得80个含有不同片段的单片段代换系株系。这些单片段代换系在水稻12条染色体上呈不均匀分布,其中第1、5、8染色体上分布最多,共有37个;第4、7、10染色体上分布较少,各有2个。代换片段长度分布在0.52Mb-26.13Mb之间,代换片段的平均长度为6.83Mb。全部代换片段对基因组的覆盖长度为194.89Mb,覆盖率为47.56%。
     3、通过T检验,以P≤0.001作为判断QTL存在的标准,对获得的80个SSSLs进行表型QTL鉴定,在55个SSSLs上检测出55个QTL,45个为不同的QTL,其中分别有6个千粒重相关的QTL,10个抽穗期相关的QTL,13个株高相关的QTL,10个着粒密度相关的QTL,3个穗长相关的QTL和3个有效穗相关的QTL。不同性状的QTL的加性效应不同,株高QTL的加性效应值最大,达到26.93;着粒密度的加性效应最小为-19.53。除了株高相关的QTL,检测到的多数QTL为负效应。本研究中检测到的qHd-6-1、qEpn-8-5、qHd-9-5、qSsd-11-2-5、qSsd-12-5所在区段没有报道过的相关QTL,属于首次定位的新QTL
     4、利用重叠群代换作图分析法,将5个含有重叠区域且都表现出株型紧凑的代换系进行QTL定位,将控制分蘖角度的QTL定位于第9染色体长臂末端,标记距离为2.95Mb的RM278与CS0920区段之间。
     5、利用获得的迟熟SSSLs才料V370与受体亲本93-11构建的F2分离群体进行抽穗期基因鉴定,发现早抽穗、中熟抽穗和迟抽穗单株的分离比经卡方检验符合1:2:1,说明该迟抽穗位基因表现为不完全显性。与93-11建立回交分离群体,将控制水稻生育期的QTL定位于水稻第6染色体长臂上,RM20176与RM20196之间长度为181.5Kb的区段,经检索为新基因,暂定名为qHd-6-1。
     6、以蜀恢527为供体构建的SSSLs,经背景分析后筛选出12个背景相似率高的SSSLs作父本,以四川隐性核不育水稻H2S和两系不育系Y58S、广占63S做母本,进行产量及相关主要农艺性状的杂种优势和配合力分析。产量和产量构成性状的杂种优势在染色体片段上存在显著差异,单株产量有极显著杂种优势的SSSLs分别位于Chr.6和Chr.5上的RM528-RM103、RM592-RM39、RM274-RM26的微卫星标记区段,其中组合广占63S/V261和Y58S/V296的HOCH分别为28.0%、24.4%,均达极显著水平;Chr.5上RM592-RM39区段的株系号V266的SSSLs的单株粒重相对HOCH分为-7.10%,表现为显著的杂种劣势。配合力分析发现,Chr.3RM203~RM55~RM8209~RM448~RM227具有很高的单株产量一般配合力,区段Chr.8RM25~RM310~RM342A的单株产量的一般配合力很低。
Rice is one of the most important crops which is also one of the model organisms for plant molecular biology. So it is useful for plant breeding to understand the genes'function in rice. Most traits of crop are quantitative, which are controlled by polygenes. Fine mapping of quantitative trait loci (QTL) is very important for crop genetic and breeding improvement. Single segment substitution lines (SSSLs) containing only one chromosome segment of donor in the recipient genetic background are useful for the analysis of genes or QTLs. In this research, as the indica rice cultivar93-11receptor, Japonica Rice Varieties Nipponbare and three line hybrid rice restorer line Shuhui527backbone for the donor, by using microsatellite market-assisted selection (MAS), a set of single segment substitution lines (SSSLs) population has been established..And on this basis, the research have been carried out abou analysis of important traits and heterosis. The main results are as follows:
     1.447microsatellite markers which uniform distribution on rice12chromosomes were used to indentify polymorphism ammong recipient parent93-11,donor parent Nipponbare and Shuhui527.247molecular markers were showed polymorphism among these parents,221molecular markers,50.78%of totals, showed polymorphism between93-11and Nipponbare,55molecular markers,12.30%of totals, showed polymorphism between93-11and Shuhui527. Finally, a molecular map that based on93-11was developed and247markers more or less distributed in12chromosomes on this map. The average distance between two adjacent markers on this map was1.85Mb.
     2.80different SSSLs with the93-11genetic background have been developed in BC3F2^BC4F2and BC5F2generations. Substituted segments of these SSSLs uneven distribute on12chromosomes of rice. The largest proportion of single segments24of80in Chrl,Chr2, Chr4.The smallest proportion of single segments hold9of80in Chr9. The length of the80SSSLs is from0.52Mb to26.13Mb and the average length was6.83Mb.194.89Mb of rice genome is covered by80SSSLs and the coverage is31.03%.
     3. Student t-test (p≤0.001) showed55QTLs have significant difference between55of80SSSLs. There are46different QTLs in55QTLs. Among these6,10,13,10,3QTLs are respectively involved in grain weight (Gw), heading date (Hd), plant height (Ph), spikelet setting density (Ssd) and spike length. The additive effect of different Trait's QTL,the additive effect of,the Ph QTL,was the most, it was26.93; grain density additive effect of minimum-19.53. Except of Ph QTL most of the value of additive effect were negative effect. qHd-6-1, qEpn-8--5, qHd-9--5, qSsd-11-2--5, qSsd-12--5have not been reported they were the new QTL located in This study.
     4.Using overlapping substitution mapping of5SSSLs, we mapped compact plant architecture with extremely erect tillers QTL. The QTL which controlled the tiller angle was mapped to a2.97Mb region of the long arm in Chr9, the upstream and downstream nearest markers are RM278and CS0920.
     5.Using the developed SSSLs, a QTL of the heading date was located on a181.5Kb region of the long arm in Chr6, the upstream and downstream nearest markers are RM20176and RM20196. The F2segregating population from backcrosses to recipient parent93-11. In the segregating population, the segregation ratio of early, middle and late heading plants matched1:2:1, indicating this allele is incomplete dominance genes.It's a new gene about HD.
     6. We screened the SSSLs(Shuhui527as the donor) and got12SSSLs which background are similar.Using the12SSSLs as male,H2S(a nucleic male sterility rice line in Sichuan),Y58s and Guanzhan63s(two elite amphibious sterile lines used widely in China)as female,we studied the yield and its relatived agronomic traits.Also, we analysed the heterosis and combining ability. We got those results:
     Yield and its related agronomic traits' heterosis is significantly variation among the chromosome segments.The SSSLs which contain the heterosis of grain weight per plant(GWPP) are on Chr.5and Chr.6,the segments are RM528-RM103, RM592-RM39and RM274-RM26.The HOCH of the combinations Guangzhan63S/V261and Y58S/V296are28%and24.4%respectily,all get significantly variation. We discovered a hybrid weakness segments on Chr.5defined by marker RM592and RM39.The line is V266and its relative HOCH of GWPP is -7.10%.We alse discovered that the segment RM203-RM55-RM8209-RM448-RM227on Chr.3possesses a high general combining ability(GCA) of GWPP. Oppositely,the GCA of the segment RM25~RM310~RM342A on Chr.8is minimum.
引文
1.Goff,S.A.,Rice,D.,Lan,T.H.,Presting,G.,Wang,R.,Dunn,M.,Glazebrook,J.,Sessions,A.,Oeller,P.Varma, H.,Hadley,d.,Hutchision,D.,ETAL.(2002).Adraft sequence of the rice genome(Oryza sativa L.ssp.japonica).Science 296,92-100.
    2. Lander E S, Botste in D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics,1989,1(21):185-199.
    3. Liz K, Shen LS, Courtois B.Development of near isogenic introgression line sets for QTLs associated with drought tolerance in rice[C]/Workshop on Molecular Approaches for the Genetic Improvement of Cereals for Stable Production in Ware-Limited Environments.CIMMYT headquarters:Mexico,1999:21-25.
    4. Eshed Y,Zamir D.An introgression line population of lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associatedQTL[J].Genetics,1995,1(41): 1147-1162.
    5. Zamir D.Lmproving plant breeding with exotic genetic libraries[J].Nature Review Genetics,2001,(2): 983-989.
    6.曾瑞珍,施军琼,黄朝锋等.籼稻背景的单片段代换系群体构建[J].作物学报,2006,32(1):88-95.
    7. Kurakazu T, SOBRIZAL K, IKEDA P L, et al.Oryza mcridionalis chromosomal segment introgression lines in cultivated rice,0.sativa L[J].Rice Genet Newsl,2001,1(8):81-82.
    8.赵明辉,陈温福,徐正进等.水稻单片段代换系群体的构建及研究进展[J].云南农业大学学报,2007,22(1):8-12.
    9.朱军.遗传学(第三版)[M].北京:中国农业出版社,2002.
    10.徐云碧,朱立煌.分子数量遗传学[M].北京:中国农业出版社,1994.
    11.徐云碧.分子标记在数量基因定位中的应用.遗传,1992,14(2):45-48.
    12. Sax K. The association of size differences with seed-coat pattern and piigmentation in phase-eolus Vulgaris.Genetics,1923,(8):552-560
    13. Khush G.S, Singh R. J, Sur S.C. et al. Primary trisomics of ricorigin,morphology,cyt-ology and use in linkage mapping.Geneitcs,1984,10(7):141-163.
    14. Market C. L, Moller F.Multiple forms of enzymes:tissue, ontogenetic, and species-specific patenrs.Porc.Natl.Acad.Sci.USA,1959,4(5):753-763.
    15. Stuber C. W, Moll R. H, Goodman M.M.Allozyme frequency changes Associaed with selection for increased grain yield in mai2e(Zeam ays L.).Genetics,1980,9(5):225-236.
    16. Tanksley S.D,Medina-Filho H,Rick C.M. Use of naturally-occurring Enzyme variation to detect and map genes controlling quantitaitve traits in an interspecific backcorss of tomato.Heerdity, 1982,4(9):11-25.
    17. Dai J T(戴君惕)Researches present and application prospect in crop molecular quantitative genetics [J]. Crop R esearch(作物研究),1996,10 (1):39-42 (in Chinese)
    18. Kearsey M J.The principles of QTL analysis(aminimal mathematics approach),J Exp Bot,1998, 8,49(327):1619-1623.
    19. Paterson A H,Lander S E,Hewitt J D, et al. Resolution of quantitative traits into Mendeli-an factors by using a complete linkage map of restriction fragment length polymorphisms [J]. Nature, 1988,33(5):721-726.
    20.张帆,万雪琴,袁亮等.作物数量性状(QTL)基因研究进展.生物技术,2004,14(6):67-70.
    21.邢永忠,徐才国.作物数量性状基因研究进展.遗传,2001,23(5):498-502.
    22.朱军.运用混合线性模型定位复杂数量性状基因的方法[J].浙江大学学报(工学版),1999,33(3):327-335.
    23. KE IGHTL EY P D, BL F IELD G. Detection of quantitative trait loci from frequency changes of marker alleles under selection[J]. Genet. R es.1993,62:195-203.
    24. MORENO-GON ZAL EA J.Genetic models to estimate additive and non-additive effects of marker-assocoated QTL using mutiple regression techniques[J].Theor.Appl.Genet.1992,85:435-444
    25.高用明,朱军.植物QTL定位方法的研究进展[J].遗传,2000,22(3):175-179
    26. Zeng Z B. Precision mapping of quantitative trait loci[J]. Grenetics,1994,136:1457-1468
    27.朱军,复杂数量性状基因定位的混合线性模型方法[A].王连铮,戴景瑞(主编):全国作物育种学术讨论会论文集[C]北京:中国农业科技出版社,1998,11-20
    28. MICHELMORE R M, PARAN I, KESSEL IR V. Identification of markers linked to disease-resistance genes by bulked segregant regions by using segregating populations[J]. Proceedi-ngs of the National A cademy of Sciences, USA,1991,88:9828-9832.
    29. ZHANG X M(张小明)L ICH SH(李春寿)YIE SH H(叶胜海)Advance in bulk segregant analysis applied to crop gene localization[J]. Acta Agriculture Shang hai(上海农业学报)2002,18(3):24-27.
    30. Lin HX, Ashikari M, Yamanouch U, et al. Identification and Characteri zation of a Quantitative Trait Locus, Hd9, Controlling Heading Datein Rie[J]. Breeding Science,2002,52:35-41.
    31. Yamamoto T, Kuboki Y, Lin S Y, et al.Fine mapping of quantitative trait loci Hdl,Hd2, and Hd3, controlling heading date of rice,as single Mendelia factors.Theor Appl Genet.1998,97:37-44.
    32.李文涛,曾瑞珍,张泽民,张桂权.栽培稻Fl花粉不育基因座S-b的PCR标记定位.植物学报,2002,(2):463-467.
    33. Frary A,Nesbitttc, Orandill, et al. fw2.2 A quantitative trait locus key to the evolution of tomato fruit size[J]. Scienee,2000,289:85-88.
    34. Fridmane, Plebant, Zamird. A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene-J]. Proc. Natl. Acad. Sci. USA, 2000,97:4718-4723.
    35. Xing Y ZH(邢永忠),XU C G(徐才国), HUA J P(化金平),el al. Mapping and isolation of quantitative triats loci controlling plantheight and heading date in rice[J]. Acta Botanica Sinica(植物学报),2001,43(7):721-726(in Chinese).
    36. Stuber C W. Mapping and maniqulating quantitative traits in maize[J].Trends Genet,1995,11: 477-481,
    37. Schenider K A, Brothers M E, Keli Y J D. Marker assisted selection to improve drought resistance in common bean[J]. CropSci,1997,37:51-60.
    38. Fullon T M, GrandillO S, Bech BunnT, el al. Advanced backcross QTI analysis of Lycopersicon esculentumx and Lycopersicon parviflorum cross[J]. Theor. Appl. Genet,2000,100:1025-1042.
    39. Zhou Y, Li W, Wu W. Genetic dissection of heading time and its components in rice[J]. Theor Appl Genet,2001,102:1236-1242.
    40. Yano M, Kojima S, Takahashi Y, et al. Genetic control of flowering time in rice, short-day plant[J]. Plant Physiology,2001,127:1425-1429.
    41.Tanksley S D. Mapping polygenes[J]. Annu Rev Genet,1993,27:205-233.
    42. Yu SB, Li JX, XuCG, et al. Importance ofepistasis as the genetic basis of heterosis in an elite rice hybrid [J]. Proc Natl Acad Sci USA,1997,94:9226-9231.
    43.YuSB, LiJX, XuCG, et al. Identification of quantitative trait loci and epistatic interactions for plant height and heading date in rice[J]. Theor Appl Genet,2002,104:619-625.
    44.曹立勇,占小登,庄杰云等.水稻产量性状的QTL定位与上位性分析[J].中国农业科学,2003,36(11):12411247.
    45.Zhuang J Y , Fan Y Y, Rao Z M, et al. Analysis on additive effects and additive-by-additive epistatic effects of QTL S for yield traits in a recombinant inbred line population of rice[J]. Theor Appl Genet,2002,105:1137-1145.
    46. LiZK, Pinson S RM, ParkW D, et al. Epistasisfor three grain yield components in rice(Oryza sativa L.)[J]. Genetics,1997,145:453-465.
    47.崔克辉,彭少兵,邢永忠等.水稻产量库相关穗部性状的遗传分析[J].遗传学报,2002,29(2):144-152.
    48.封功能,李东霞,周建民等.水稻籼粳交DH群体产量相关性状的QTL定位和上位性分析[J].扬州大学学报:农业与生命科学版,2004,25(2):5-10.
    49. Wright S. Evolution and Genetics of Population[M]. Chicago:Univ Chicago Press,1968:10-11.
    50.余四斌,李建雄,徐才国.上位性效应是水稻杂种优势的重要遗传基础.中围科学C辑,1998,28(4):333-342.
    51.邢永忠,徐才国,华金平等.水稻穗部性状的QTL与环境互作分析[J].遗传学报,2001,,28(5):439-446.
    52. Xiao J, Li J, Yuan L, et al. Identification of QTLs affecting traits of agronomic importance in a recombinant inbred population derived from a subspecific rice cross [J]. Theor Appl Genet,1996, 92(2):230-244.
    53. Zhuang J Y, Lin H X, Lu J, et al. Analysis of QTL environment interaction for yield components and plant height in rice[J]. Theor Appl Genet,1997,95(5,6):799-808.
    54. Lu C, Shen L, Tan Z, et al. Comparative mapping of QTLs for agronomic traits of rice across environments using a doubled haploid population[J]. Thero Appl Genet,1997,94:145-150.
    55. Hittalmani S, Shashidhar H E, Bagali P G. M olecular mapping of quantitative trait loci for plant growth, yield an d yield related traits across three diverse locations in a boubled haploid rice population[J]. Euphytica,2002,125:207-214.
    56.曹钢强,朱军,何慈信等.水稻穗长上位性效应和QE互作效应的QTL遗传研究[JJ.浙江大学学报:农业与生命科学版,2001,27(1):55-61.
    57.叶少平,张启军,李杰勤,等.用(培矮64S/Nipponbare)F2群体对水稻产量构成性状的QTL定位分析[J].作物学报,2005,31(2):1620-1627.
    58.刘桂富,卢永根,王国昌,等.水稻产量、株高及其相关性状的QTLs定位[J]华南农业大学学报,1998,19(3):5-9.
    59.李平.水稻分子图谱的构建与基因分析[D].西南农业学报,2008(06):1485-1489
    60.徐建龙,薛庆中,罗利军等.水稻单株有效穗和每穗粒数的QTL剖析[JJ,遗传学报,2001,28(8):752-759.
    61.谭震波,沈利爽,袁祚廉等.水稻再生能力和头季稻产量性状的QTL定位及其遗传效应分析[J].作物学报,1997,23(3):289-295.
    62.樊叶杨,庄杰云,李强等.水稻株高QTL分析及其与产量QTL的关系.作物学报,2001,27(6):915-922.
    63.郑景生,李义珍,林文雄.应用SSR标记定位水稻再生力和再生产量及其构成的QTL[J].分子植物育种,2004,2(3):342-347.
    64.祝莉莉,谭光轩,任翔等.5种重要农艺性状基因在水稻重组自交系群体中的定位[JJ.武汉大学学报,2003,49(6):787-792.
    65.穆平,张洪亮,姜德峰等.利用水、旱稻DH系定位产量性状的QTL及其环境互作分析.中国农业科学,2005,38(9):1725-1733.
    66.马大鹏,罗利军,汪朝阳等.利用重组自交系群体对水稻产量相关性状的QTL分析.分子植物育种,2004,2(4):507-512.
    67..http://www.gramene.org/db/qtl/qtl_display?query=dthd&vocabulary=qtl&search_box_name=query &search_box_id=qtl_search_for&search_field=chromosome&species=Oryza+sativa&x=10&y=7
    68. Takahashi Y, Shomura A, Sasaki T, et al. Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the subunit of protein kinase CK2. Proc Natl Acad Sci,2001,98:7922-7927.
    69. Lin H X, Yamamoto T, Sasaki T, et al. Characterization and detection of epistaic interactions of three QTLs, Hdl, Hd2, and Hd3, controlling heading date in rice using nearly isogenic lines. Theor Appl Genet,2000,101:1021-1028.
    70.张永生,江玲.控制水稻品种Koshihikari抽穗期的数量性状位点作物学报2008,34(11):1869-1876
    71.林鸿宣,闰绍楷,熊振民等.应用RFLP图谱定位分析籼稻粒形数量性状基因座位[J].中国农业科学,1995,28(4):1-7.
    72. Kubo T, Takano-Kai N, Yoshimura A. RFLP mapping of genes for long kernel and awn on chromosome 3 in rice[J]. Rice Genet Newsl,2001,18:26-27.
    73. Sobrizal, Yoshimura A. Mapping of genes for slender kernel using Oryza glumaepatula introgression lines in rice[J]. Rice Genet Newsl,2002.19:40-42.
    74. Wanx Y, Wanjm, Jiangl. et al. QTL analysis for rice grain length and fine mapping of an identified QTL with stable and major effects[J]. Theor Appl Genet,2006,112:1258-1270
    75.朱文银 利用染色体片段置换系定位水稻粒型QTL,江苏农业学报(Jiangsu of Agr. Sci),2008, 24(3):226-231
    76.曾瑞珍,AKSHAY T,刘芳等.利用单片段代换系定位水稻粒型QTL[J]中国农业科学,2006,39(4):647-654.
    77. Xu J2L(徐建龙),Xue Q2Z(薛庆中), Luo L2J(罗利军),Li Z2K(黎志康)1 Genetic dissection of grain weight and its related traits in rice (Oryza sativa L1) 1 Chin J Rice Sci (中国水稻科学),2002,16 (1):6210 (in Chinese with English abstract)
    78. Lin L H(林荔辉),Wu WR(吴为人). Mapping of QTLs underlying grain shape and grain weight in ricel Mol Plant Breed (分子植物育种),2003,1(3):3372342(in Chinese with English abstract)
    79.吴秀菊,万向江,江玲等.多环境下稻米粒重的QTL定位,作物学报,2007,33(11):1771-1776
    80. KinoshitaT(1995). Report of the committee on gene symbolization. Rice Genet Newsl 12,9-153.
    81. Ji HS, Chu SH, Jiang WZ, Cho YI, Hahn JH, Eun MY, McCouch S R, KohHJ (2006). Characterization and mapping of a shattering mutant in rice that corresponds to a block of domestication genes. Genetics 173,995-1005.
    82.李平,陆朝福,周开达等.利用RFLP标记定位水稻重要农艺性状的主效基因与微效基因.中国科学(1996)(C辑)26,257-263.
    83. Konishi S, Izawa T, Lin SY, Ebana K, Fukuta Y, Sasaki T,Y a n o M (2006). An SNP caused loss of seed shattering during rice domestication. Science 312,1392-1396.
    84. Sobrizal K, Ikeda P, Sanchez L, Yoshimura A (1999). RFLP mapping of a seed shattering gene on chromosome 4 in rice. Rice Genet Newsl 16,74-75.
    85. Li CB, Zhou AL, Sang T (2006). Rice domestication by reducing shattering. Science 311, 1936-1939.
    86. Lin ZW, Griffith ME, Li XR, Zhu ZF, Tan LB, Fu YC, Zhang WX, Wang X K, Xie D X, Sun C Q (2007). Origin of seed shattering in rice (Oryza sativa L.). Planta 226,11-20.
    87. Fukuta Y, Harushima Y, Yano M (1996). Using quantitative trait locus analysis for studying genetic regulation of shattering. In:Khush GS ed. Rice Genetics Ⅲ. Proceeding of the 3rd International Rice Genetic symposium. Manila, Philippines:IRRI. pp.657-662
    88. Xiong LZ, Liu KD, Dai XK, Xu CG, Zhang QF (1999). Identification of genetic factors controlling domestication-related traits of rice using an F2 population of a cross between Oryza sativa and O. rufipogon. Theor Appl Genet 98,243-251.
    89. CaiHW, Morishima H (2000). Genomic regions affecting seed shattering and seed dormancy in rice. Theor Appl Genet 100,840-846.
    90.沈圣泉,庄杰云,王淑珍,包劲松,郑康乐,苏庆尧,夏英武(2004,).籼稻落粒性QTL定位与环境互作效应检测.分子植物育种2,627-632.
    91.徐云碧,申宗坦,陈英等.利用最大似然法进行水稻产量性状基因的分子作图Ⅲ.遗传学报,1995,22(1):46-52.
    92. Xiao JH, Li JM, YuanLP, et al. Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers[J]. Genetics,1995.140:745-754.
    93.Lin HX, Qian HR, Zhuang JY, et al. RFLPmapping of QTLs for yield and related characters in rice(Oryza sativa L.)[5]. Theor Appl Genet,1996,92:920-927.
    94. Yagi T, Nagata K, Fukuta Y, et al. QTL mapping of spikelet number in rice(Oryza stativa L.)[J]. Breeding Science,2001,51(1):55-56.
    95.郑景生,江良荣,曾建敏等.应用盼恢86和佳辐占的F群体定位水稻部分重要农业性状和产量构成的QTL[J].分子植物育种,2003,1(6):633-639.
    96.徐建龙,薛庆中,罗利军等.水稻粒重及其相关性状的遗传解析[J].中国水稻科学,2002,16(1):6-10.
    97.李泽福,夏加发,苏泽胜等.水稻产量及其相关性状的数量性状基因座分析[J]-南京农业大学学报,2002,25(2):1-6.
    98.李建雄,余四斌,徐才国等.“汕优63"的产量及其构成因子的数量性状基因位点分析[J1.作物学报,2000,26(6):892-898.
    99.廖春燕,吴平,易可可等.不同遗传背景及环境中水稻(Oryza sativa L.)穗长的QTLs和上位性分析.遗传学报(2000)27.599-607
    100.宋佑胜.水稻株高和穗长的QTL定位与杂种优势预测.硕士论文(2001).杭州:浙江大学.29-34.
    101.郭龙彪,罗利军,邢永忠等.水稻汕优63重组自交系重要农艺性状的QTLs互作分析.农业生物技术学报2002,10,327-333
    102.任德勇,何光华,凌英华等基于单片段代换系的水稻穗长QTL加性及其上位性效应,植物学报2010,45(6):662-669.
    103. Takahashi M. Linkage groups and gene schemes of some striking morphO logical characters in Japaneserice//IRRI. Rice Genetics and Cytogenetics. Amsterdam:Hsevier,1964:215-236.
    104.李培金,曾大力,刘新仿等.水稻散生突变体的遗传和基因定位研究.科学通报,2003,48:2715-2717.
    105.张红宇,杨芳,李云等.水稻向重力性突变体的鉴定与遗传和定位分析.中国农学通报,2006,33:142-146.
    106. Takahashi M, Kinoshita T, Takeda K. Character expression and caudal genes of some mutants in rice. Fac Agric Hokkai-do Univ,1968,54:496-512.
    107. Kinoshita T, Takahashi M, Mori K. Character expression and inheritance node of three kinds of dwarf rice. Res Bull FarmH okkaido Univ,1974,19:6475.
    108. Maiyata M, Komori T, Yamamoto T, et al. Fine scale and physical mapping of Spk(t)controlling spreading stub in rice. Breeding Sci,2005,55:237-239.
    109. I i Z, Paterson A H, Pinson S R M, et al. RFI P facilitated analysis of tiller and leaf angles in rice(Oryza sativa L.). Ephytica,1999,109(6):79-84.
    110.钱前,何平,滕胜等.水稻分蘖角度的QTLs分析.遗传学报,2001,28:29-32.
    111.沈圣泉,庄杰云,包劲松等.水稻分蘖最大角度的QTL分析.农业生物技术学报,2005,13(1):16-20.
    112.余传元,刘裕强,江玲等.水稻分蘖角度的QTL定位和主效基因的遗传分析.遗传学报,2005,32:948-954.
    113.Yu B S, Lin z W, LiHX, et al. TAC1, a major quantitative trait locus controlling tiller angle in rice. Plant J,2007,52(5):891-898.
    114.方立魁,桑贤春等.一个水稻分蘖角度突变体TAC2的遗传分析和基因定位.中国水稻科学,2009,23(3):315-318.
    115. Wu W R, Li W M, Tang D Z, et al. Time-Related Mapping of Quantitative Trait Loci U nderlying Tiller Number in Rice [J]. Genetics,1999,151:297-303.
    116. YanJ Q, Zhu J, He C X, et al. Quantitative Trait Loci Analysis for t he Develop mental Behavior of Tiller Number in Rice (O ryz a sati v a L.) [J]. T heor Appl Genet,1998,97:267-274.
    117.赵芳明,刘桂富,朱海涛等.用单片段代换系对不同时期水稻分蘖数QTL的非条件和条件定位,中国农业科学,2008,41(2):322-330.
    118.朱金燕,嵇朝球,周勇等.利用染色体单片段代换系定位水稻株高QTL。植物学报2011,Vol.46(6):632-641
    119.林鸿宣,庄杰云,钱惠荣等.水稻株高及其构成因素数量性状基因座位的分子标记定位[J].作物学报,1996,22:257-263.
    120.樊叶杨,庄杰云,李强.水稻株高QTL分析及其与产量QTL的关系[J].作物学报,2001,27(6):915-922.
    121.曹刚强,朱军,何慈信,高用明,吴平.水稻株高的上位性效应和QTLx环境互作效 应的QTL分析[J].遗传学报,2001,28(2):135-143.
    122.邢永忠,徐才国,华金平等.水稻株高和抽穗期基因的定位和分离[J].植物学报,2001,43(7):721-726.
    123.李仕贵,马玉清,何平等.不同环境条件下水稻生育期和株高的QTL分析[J].作物学报, 2002,28(4):546-550.
    124.毛蓓蓓,蔡文娟,章志宏,胡中立,李平,朱立煌,朱英国.水稻釉粳交DH群体收获指数及源库性状的QTL分析[J].遗传学报,2003,30(12);1118-1126.
    125.何风华,席章营,曾瑞珍等.利用单片段代换系鉴定水稻株高及其构成因素的QTL[J].中国水稻科学,2005,19(5):357-392.
    126.赵芳明,张桂权,曾瑞珍,杨正林,朱海涛,钟秉强,凌英华,何光华.用单片段代换系(SSSLs)研究水稻株高及其构成因素QTL加性及上位性效应效应.作物学报,2009,35(1):48-56.
    127.顾兴友,顾铭洪.一种水稻卷叶性状的遗传分析.遗传,1995,17(5):20-23.
    128. Stuber C. W, Moll R. H, Goodman M.. Allozyme frequency changes Associaed with selection for increased grain yield in maize(Zeam ays L.).Genetics,1980,95-.225-236
    129.沈革志,王新其T-DNA插入水稻群体中卷叶突变体RI-A2的遗传分析.实验生物学报,36(6):459-464.
    130.李仕贵,马玉清.一种未知的卷叶基因的识别和定位.四川农业大学学报,1998,16(4):391-393.
    131.郭媛 程保山 洪德林.粳稻SSR连锁图谱的构建及恢复系卷叶性状QTL分析。中国水稻科学(Chin J Rice Sci),2009,23(3):245-251
    132.田翠,张涛等,水稻QTL定位研究进展,基因组学与应用生物学,2009年,第28卷,第3期,第557-562.
    134. Deng Q Y, Yuan L P, Liang F S. et al.2004, Studies on yield-enhancing genes from wild rice and their marker-assisted selection in hybrid rice, Zajiao Shuidao(Hybrid Rice),19(1):6-10
    134.朱军.遗传学[M].3版.北京:中国农业出版社,2002.
    135. Eshed Y, Zamir D. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL[J]. Genetics.1995, 141:1147-1162.
    136.吴为人,唐定中,李维明.数量性状的遗传剖析和分子剖析[J].作物学报,2000,26(4):501-507.
    137.毛传澡,程式华.水稻农艺性状QTL定位精确性及其影响因素的分析[J].农业生物技术学报,1999,7(4):386-394.
    138. Ramsay L.D,Jennings D.E.Bohuon E J. R.et al. The construction of a substitution library of recombinant backcross lines in Brassica leracea for the precision mapping of quantitative trait loci.Genome,1996,39:558-567.
    139. Hospital F,Chevalet C,Mulsant P.Using markers in gene introgression breeding progr-ms. Genetics, 1992,132:1199-1210
    140.杨武云,胡晓蓉,毛沛.采用桥梁单倍体培育小麦品种间染色体代换系的新方法.华北农业报,1997,12(4):23-27
    141.刘冠明,李文涛,曾瑞珍等.水稻亚种间单片段替换系的建立.中国水稻科学,2003,17(3):201-204.
    142.赵芳明,朱海涛,丁效华等.基于SSSL的水稻重要性状QTL的鉴定及稳定性分析.中国农业科 学.2007,40(3):447-456.
    143. Talukdar A. Development of single segment substitution lines (SSSLs) and mapping of QTLs in rice. Ph.D. south china agricultural university,2003.
    144.何风华,席章营,曾瑞珍,等.利用高代回交和分子标记辅助选择建立水稻单片段代换系.遗传学报,2005,32(8):825-831.
    145.曾瑞珍,Akshay,刘芳明等.利用单片段代换系定位水稻粒形QTL.中国农业科学,2006,39(4):647-654.
    146. Toshiyuki Takai, Yasunori Nonoue, Shin-ichi Yamamoto, et al. Development of chromosome segment substitution lines derived from backcross between indica donor rice cultivar Nona Bokra and japonica recipient cultivar koshihikari. Breeding Science.2007,57:257-261
    147. Zhang-Ying Xi, Feng-Hua He, Rui-Zhen Zeng, et al. Development of a wild population of chromosome sing-segment substitution lines in the genetic background of an elite cultivar of rice (Oryza sativa L.). Genome,2006,49(5):476-484.
    148.余四斌,et al,以珍汕97B和9311为背景的导入系构建及其塞选鉴定.2005,维普资讯.629-636
    149.赵明辉,陈温福,徐正进等.水稻单片段代换系群体的构建及研究进展.云南农业大学学报.2007,21(1):8-12.
    150.席章营.2004.基于水稻单片段代换系的QTL鉴定与定位.华南农业大学博士学位论文.
    151.徐华山,孙永健,周红菊等.构建水稻优良恢复系背景的重叠片段代换系及其效应分析.作物学报.2007,33(6):979-986.
    152.万建林,翟虎渠,万建民等.利用粳稻染色体片段置换系群体检侧水稻杭亚铁毒胁迫有关性状QTL,遗传学报,2003,30(10):893-898.
    153.赵芳明.2005.基于SSSL的水稻重要农艺性状的QTL分析及基因聚合.华南农业大学博士论文.
    154. Michael J. Thomson,Jeremy D. Edwards, et al. Endang M.Substitution Mapping of dthl.1, a Flowering-Time Quantitative Trait Locus (QTL) Associated With Transgressive Variation in Rice, Reveals Multiple Sub-QTL. Genetics,2006,172:2501-2514.
    155. X. Y. Wan,J. M. Wan, L, Jiang J. K et al.QTL analysis for rice grain length and fine mapping of an identified QTL with stable and major effects. Theor Appl Genet,2006,112:1258-1270
    156. Yamamoto T, Taguchi-Shiobara F, Ukui Y. Mapping quantitative trait loci for days to-heading,and culm,panicle internode lengths in a BCIF3 population using an elite rice variety Koshihikarias there current parent..Breeding Science,2006,51:63-71
    157.何风华,席章营,曾瑞珍等.利用单片段代换系定位水稻抽穗期QTL.中国农业科学,2005,38(8):1505-1513
    158.席章营,吴建宇.作物次级群体的研究进展.农业生物技术学报,2006,14(1):128-134.
    159.赵芳明,张桂权,曾瑞珍等.用单片段代换系(SSSLs)研究水稻株高及其构成因素QTL加性及上位性效应.作物学报,2009,35(1):46-56.
    160. Ling Jiang, Meimei Xun, Jiankang Wang. QTL analysis of cold tolerance at seedling stage in rice (Oryza sativa L.) using recombination inbred lines. Journal of Cereal Science,2007,6:1-7
    161.万向元,刘世家,王春明等.利用CSSLS群体研究稻米粒QTL的表达稳定性,遗传学报,2004,31(11):1275-1283
    162. Guifu Liu,Zemin Zhang,Haitao Zhu,et al.Detection of QTLs with additive effects and additive-by-environment interaction effects on panicle number in ric(Oryza sativa L.) with single-segment substitution lines. Theor Appl Genet,2008,116:923-931
    163.方宣钧,吴为人,唐纪良.作物DNA标记辅助育种[M].北京:科学出版社.,2001.
    164.王韵,程立锐,孙勇等.利用双向导入系解析水稻抽穗期和株高QTL及其与环境互作表达的遗传背景效应.作物学报,2009,35(8):1386-1394
    165.欧阳恋.2006.基于SSSL的水稻品质基因的鉴定、定位和聚合.华南农业大学硕士学位论文.
    166.黄益峰.2006.水稻粒形和粒重QTL的鉴定、聚合和上位性分析.华南农业大学硕士学位论文.
    167.杨梯丰,曾瑞珍,朱海涛等.水稻粒长基因在聚合育种中的效应,分子植物育种[J],2010,8(1):59-66
    168.余传元,万建民,翟虎渠等.利用CSSL群体研究水稻籼粳亚种间产量性状的杂种优势.科学通报,2005,50(1):32-37.
    169. McCouch S R QTL mapping in rice[J].Trends. Genet,1995,11:482-487.
    170.何风华,席章营,曾瑞珍等.利用高代回交和分子标记辅助选择建立水稻单片段代换系,遗传学报Acta Genetica Sinica August 2005 32(8):825-831)
    171. Zhang G Q, Zeng R Z, Zhang Z M, et al.The construction of a library of single segment substitution lines of rice(oryza sativa L.). rice genetics Newsletter,2004,21:85-87.
    172. Shen YJ, Jiang H, Jin JP, et al, Development of Genome-Wide DNA Polymorphism Database forMap-Based Cloning of Rice Genes. Plant Physiology,2004,135,1198-1205.
    173. Zhang G Q,Zeng R Z,Zhang Z M,et al.The construction of a library of single segment substitution lines of rice(oryza sativa L.). rice genetics Newsletter,2004,21:85-87.
    174.张华.2008.水稻籼粳测序品种间染色体片段代换系的构建及重要QTLs的初步定位.扬州大学硕士学位论文.
    175. Susan R. McCouch & CGSNL (Committee on Gene Symbolization,Nomenclature and Linkage, Rice Genetics Cooperative),2008, Gene Nomenclature System for Rice, Rice, 1(1):72-84.
    176.邓晓建.2000.水稻完全显性早熟性的发现、遗传分析和基因定位.四川农业大学博士学位论文.
    177. Jinyan Zhu, Chaoqiu Ji, Yong Zhou, et al.Identification of Plant Height Quantitative Trait Loci with Single Segment Substituted Lines in RiceChinese Bulletin of Botany 2011,46 (6):632-641.
    178. Huang N, Angeles E R, Domingo J, Magpantay G, Sinsh S. Zhang G. Kumaravadivel N, Bennett J, Khush G S. Pyramiding of bacterial blight resistance gene in riee:marker-assisted selection using RFLP and PCR. Theor Appl Genet,1997,95:313-320.
    179.程式华,廖西元,闵绍楷.中国超级稻研究:背景、目标和有关问题的思考[J].中国稻米,1998,(1):3-5.
    180. Takahashi, Y., Teshima, K.M., et al. (2009) Variations in Hdl proteins, Hd3a promoters, and Ehdl expression levels contribute to diversity of flowering time in cultivated rice. Proc Natl Acad Sci US A 106:4555-4560.
    181. Yano M, Katayose Y, Ashikari M, et al. Hdl, a major photoperiod sensitivity quantitative trait locus in rice., is closely related to the Arabidopsis flowering time gene CONSTANS. The Plant Cell,2000,2:2473-2483.
    182. Takahashi Y, Shomura A, Sasaki T, et al. Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the subunit of protein kinase CK2. Proc Natl Acad Sci,2001,98: 7922-7927.
    183. Kojima S, Takahashi Y, Kobayashi Y, et al. Hd3a,a rice ortholog of the FT gene, promotes transition to flowering downstream of Hdl under short-day conditions. Plant Cell Physiol,2002, 43:1096-1105.
    184. CY Fu, YQ, WL Chen, XH O. Yang, JT Hu, SG Li. OsEF3, a homologous gene of Arabidopsis ELF3 has pleiotropic effects in rice, Plant Biology,2009,11:751-757
    185. Xue, W., Xing, Y., Weng, X., et al. (2008) Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet 40:761-767.
    186. Xiao J H, Li J M, Yuan L P, et al. Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using mo-lecular markers. Genetics,1995,140:745-754.
    187. Yu S B, Li J X, Xu C G, et al. Importance of epistasis as the ge-netic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA,1997,94:9226-9231
    188. Hua J P, Xing Y Z, Wu W R, et al. Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis in an elite rice hybrid. Proc Natl Acad Sci USA,2003,100(5):2574-2579.
    189. Li Z K, Luo L J, Mei H W, et al. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I Biomass and grain yield. Genetics,2001,158: 1737-1753.
    190. Luo L J, Li Z K, Mei H W, et al. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice.Grain yield components. Genetics,2001,158: 1755-1771
    191.应存山,主编.中国稻种资源.中国农业科技出版社,1993.530-531
    192. Mo H-D(莫惠栋)Analysis on the combining ability for P xQ cross model. J Jiangsu Agric Coil江苏农学院学报,1975,3(3):51-57
    193.余传元,江玲,万建民等.籼型染色体置换片段代换片段在杂交粳稻中的配合力分析.作物学报,2008,34(8):1308-1316
    194. Stuber C W, Lincoln S E, WolfD W, et al. Identification of genetic factors contributing to heterosis ina hybrid from two elite maize inbred lines using molecularmarkers. Genetics,1992, 132:823-839
    195. Yu S B,Li J X,Xu C G,et al. Sagha M aroof M A. Importance of epistasis as the geneticbasis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA,1997,94:9226-9231.
    196. Hua J P, Xing Y Z, WuWR, XuCG, Sun XL, YuSB, Zhang Q F. Single-locus heterotic effects and dominance bydominance interactions can adequately explain the geneticbasis in an elite rice hybrid. Proc Natl Acad Sci USA,2003,100:2574-2579
    197. Syed N H, Chen Z J. Molecular marker genotypes, heterozygosity and genetic interactions explain heterosis in Arabidopsis thaliana. Heredi-,2005,94:295-304
    198. Xiao J H, Li J M, Yuan L P, Tanksley S D. Dominance is the major genetic basis of heterosis in rice as revealed by QTLanalysis using molecular markers. Genetics,1995,140:745-754.
    199. Li Z K,Luo L J,Mei H W,et al.Overdominant epistatic loci are the primary genetic basis of inbreed-ing depression and heterosis in rice:I.Biomass and grain yield.Genetics.2001,158:1737-1753
    200.Xiao J H, Grandillo S, Ahn S N, McCouch S R, Tanksley S D, Li J M, Yuan L P. Genes from wild rice improve yield. Nature 1996,384:223-224
    201. Stuber C W.Mapping and manipulating quantitative traits inmaize.Trends Genet,1995,11:477-481.
    202. Ho J C, Smith M E. Improvement of hybrid yield by advanced backcross QTL analysis in elite maize. Theor Appl Genet,2002,105:440-448.
    203. Moncada P, Martinez C P, Borrero J, ct al. Quantitative trait loci for yieht and yield components in an Oryza Satire ×Oryza rufipogon BC2F2 population evaluated in all upland environment[J]. Theor Appl Ge net,2001,102:41-52.
    204. Xiao Jinhua, Li Jiming, Silvana Grandillo, et al. Identification of trait-improving quantit-ativetrait loci alleles from a wild rice relative, Oryza rufipogon[J]. Genetics,1998,150:899-909
    205,李德军,孙传清,付永彩,等.利用AB-QTL法定位江西东乡野生稻中的高产基因[J].科学通报,2002,47(11):854-858.
    206. Wang Yueguang, Deng Qiyun, Liang Fengshan, et al. Molecularmarker assisted selection for yield-inhancing genes in the progeny of Minghui 63×O. rufipogon[J]. Agricultural Sciences in China,2004,3(2):89-93.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700