邻苯二甲酸酯类化合物对翡翠贻贝、红鳍笛鲷和紫红笛鲷的毒性效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
邻苯二甲酸酯类化合物(PAEs)作为在工业中大量使用的人工合成有机物,其对水生生物的潜在毒性隐患已引起了人们的广泛关注,对其毒性毒理研究也成为目前环境科学研究中的一个热门问题。本研究以工业生产中使用量最大的两种PAEs(邻苯二甲酸二丁酯(DBP)和邻苯二甲酸二乙基己酯(DEHP))为研究对象,以南海区重要的经济养殖水产品(翡翠贻贝、红鳍笛鲷、紫红笛鲷)作为实验生物,利用生物体的抗氧化指标(超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)、谷胱甘肽-S-转移酶(GST)、丙二醛(MDA)),乙酰胆碱酯酶(AChE),代谢酶解毒酶EROD以及功能基因CYP1A作为指标,并利用组织切片观察了DBP胁迫对鱼类组织的损伤情况,探讨了PAEs对海洋生物的毒性效应,为阐明PAEs对不同海洋生物的影响及作用机理提供参考数据。研究结果如下:
     1、DBP、DEHP对翡翠贻贝内脏团和外套膜中的SOD、CAT活性存在明显的胁迫效应。DBP胁迫下翡翠贻贝内脏团中的SOD、CAT活性主要表现被抑制;外套膜中的SOD活性主要表现为先抑制后诱导(P<0.05),CAT活性变化波动较大,规律不明显。DEHP胁迫下翡翠贻贝内脏团SOD活性表现为先诱导升高后被抑制降低(P<0.05),CAT活性则表现为先被抑制降低后诱导升高;DEHP胁迫初期外套膜中的SOD活性在低浓度组受到抑制,高浓度组被诱导,4d后SOD活性逐渐恢复对照组水平。MDA在DBP、DEHP胁迫过程中都有明显的增加,表明PAEs导致海洋贝类脂质过氧化损伤。翡翠贻贝在PAEs胁迫结束移入清洁海水后,其抗氧化酶和MDA含量的变化在DBP胁迫实验中能在较短的时间内恢复,恢复情况较DEHP好,表明DBP长期胁迫引起的毒性损伤较DEHP轻。
     2、急性毒性实验结果表明,DBP对红鳍笛鲷幼鱼的96hLC50为6.66 mg·L~(-1),安全浓度为2.02 mg·L~(-1);DEHP的96hLC50为10.73 mg·L~(-1),安全浓度为3.01 mg·L~(-1);从毒性上判断这两种PAEs化合物对红鳍笛鲷幼鱼都属于高毒物质,且在水体中DBP对生物的毒性高于DEHP,认为与这两种PAEs在水体中的溶解性有关。
     3、DBP对红鳍笛鲷肝脏和鳃组织中的SOD活性表现为先诱导后抑制,具有明显的时间-效应。DEHP胁迫下红鳍笛鲷肝脏中的SOD活性也被明显诱导(P<0.05),鳃中则表现为先诱导后抑制。两种PAEs胁迫下红鳍笛鲷肝脏和鳃组织内的MDA都有显著的升高(P<0.05),表明PAEs能在短时间内对生物体产生氧化胁迫效应,造成脂质过氧化损伤。另外,两种PAEs胁迫下红鳍笛鲷幼鱼脑组织AChE活性表现为一段时间后受到极为明显的诱导,表明PAEs对海水鱼类神经传导具有明显的刺激,AChE是一种对PAEs胁迫具有很强的指示性的指标。
     4、DBP胁迫下紫红笛鲷肝脏组织中的POD活性被显著诱导,鳃中则被抑制。肝脏和鳃组织中的GST活性在DBP胁迫下发现明显的变化,15d后0.5 mg·L~(-1)浓度组被显著诱导。
     5、紫红笛鲷肝脏中的代谢酶EROD活性在7d后相对于对照组活性升高,15d后又受抑制降低;而鳃中的EROD活性在3d、7d都表现为低于对照组,15d后才相对于对照组升高。EROD活性变化“时间-效应”明显。研究也表明肝脏组织中的EROD活性高于鳃,变化也更敏感。本研究从紫红笛鲷肝脏和鳃中克隆得出了CYP1A cDNA序列,序列分析表明了该基因为CYP1A亚家族成员。利用qRT-PCR定量检测DBP胁迫紫红笛鲷肝脏和鳃mRNACYP1A表达水平变化的结果表明,在DBP胁迫肝脏CYP1A mRNA表达先受到显著抑制其后被诱导最后又被抑制,鳃中则先抑制后诱导,这与EROD酶的结果基本一致,但与抗氧化酶间的关系不明显。
     6、DBP长期胁迫下紫红笛鲷肝脏和鳃组织结构发生了明显的改变,肝脏细胞出现肿大,细胞质中出现空泡,少数细胞核有变形的现象,脂肪粒沉积;鳃中鳃小片发生明显的肿胀、融合、卷曲变形、坏死脱落。
     7、DBP对翡翠贻贝造成的损伤较DEHP轻,而其对鱼类的毒性却高于DEHP;翡翠贻贝内脏团对PAEs胁迫指示性较外套膜高;鱼类肝脏组织内的抗氧化防御体系指示性较鳃高,其肝脏组织中的EROD酶和CYP1A基因表达变化较鳃组织敏感,脑组织中的AChE则是PAEs的指示性指标。
The phthalic acid esters (PAEs) is one of the most extensively used synthetic organic chemicals. More and more attention was paid to its toxicity to the aquatic organism. Recently, the study on the toxicity of PAEs is highlighted. The present study aimed to elucidate the toxic effect of dibutyl phthalate (DBP) and di-(2-ethylhexyl) phthalate (DEHP) on Green mussel (Perna viridis), Crimson snapper (Lutjanus erythropterus) and River snapper (Lutianus argentimaculatus). The super oxide dismutase (SOD), catalase (CAT), peroxidase (POD), glutathione Stransferase (GST), malondialdehyde (MDA) contents and acetylcholinesterase (AChE) in brain, EROD activity and CYP1A gene expressions were examined. In addition, the morphology of liver and gills of river snapper were analysized using routin histological technique and light microscope analysis.
     1、The SOD and CAT activities of green mussel were significantly influenced by the stresses of DBP and DEHP. When exposed to DBP, the activities of SOD and CAT of the visceral mass were significantly restrained. Whereas,the activity of SOD of the mantle was firstly significantly increased and then decreased. There was an obvious fluctuation inCAT activity and no regular changing pattern existed. When exposed to DEHP, the activity of SOD of the visceral mass was generally followed the same pattern as that of DBP. But CAT was adverse. In the beginning, the SOD activity of the mantle was decreased under a low dose of DEHP and increased under a high dose of DEHP. However, four days later, the mussel in all treatment groups recovered. The MDA content increased with increasing DBP, indicated that PAEs resulted to a lipid peroxidation (LPO) damage on shellfish in the ocean. During the period of purification, the time for the activities recovery of SOD, CAT and the content of MDA lowered to the controlled level was shorter than under DBP stress than that of DEHP.
     2、The 96h LC50 of DBP was 6.66 mg·L~(-1), and the safe concentration (SC) in our study was 2.02 mg·L~(-1) on crimson snapper; 96h LC50 of DEHP was10.73 mg·L~(-1), the SC was 3.01 mg·L~(-1). Thus, the two poisonous chemicals were highly toxic materials for crimson snapper. Furthermore, our data indicated that DBP was even worse than DEHP, due to its higher dissolvability in seawater.
     3、The SOD activity of the liver and gills of crimson snapper firstly increased and then inhibited by DBP. Under DEHP stress, SOD activity was increased in liver, but decreased in gills. With the, MDA activity significantly increased with increasing PAEs concentration, indicated oxidation stress to fish in a short time and leading to LPO. Moreover, it was demonstrated that the PAEs induced the activity of AChE as one of effective index, implying that it significantly stimulated the nerve conduction of marine fish.
     4、Under DBP stress, POD activity was increased in liver, but decreased in gills of river snapper; GST significantly fluctuated in these two tissues and dose was induced after 15d exposed 0.5 mg·L~(-1).
     5、For crimson snapper, the EROD in the liver under DBP stress was higher than the controlled level after 7d and then decreased on the 15d. While, in the gills the EROD were lower than the control group on either 3d or 7d, but higher on the 15d. The results suggested that the activity of EROD in the liver was higher than in the gills and more sensitive. The CYP1A cDNA cloned from the tissues was one of the subfamily members. The quantitative examination by qRT-PCR showed that the change of the expression level of CYP1A mRNA was generally similar to the EROD activity.
     6、The results from the morphology of the two tissues of river snapper revealed that cells enlarged, vacuoles occurred in the cytoplasm, and the karyomorphism was changed in liver. Also, branch leaf was significantly swelled, blended, fused, necrotic and scaled in gill.
     7、For the green mussel, the toxic effects of DBP was less than that of DEHP. However, the toxic effects of DBP were higher than that of DEHP. Under the exposure of PAEs, the activity of enmity in the visceral mass was more sensitive than mantle forgreen mussel, and liver was better than gills. The antioxidase, EROD and CYP1A expressions in fish liver were more sensitive than in gills. AChE in brain was an early-warning index to PAEs exposure.
引文
[1]黄昕,历曙光.酞酸酯毒性作用及其机制的研究进展[J].环境与职业医学,2004,6(3):198–203.
    [2]张传贵.增塑剂污染及其对人体的影响[J].生物学通报,1999,34(2):20.
    [3] Ying Liu,Yuntao Guan,Zhihui Yang,et al. Toxicity of seven phthalate esters to embryonic development of the abalone Haliotis diversicolor supertexta[J]. Ecotoxicology, 2009,18:293–296.
    [4] http://www.chinacses.org/c/cn/news/2009-08/07/news_2814.html.
    [5] B.R.T. Simoneit, P.M. Medeiros, B.M. Didyk. Combustion products of plastics as indicators for refuse burning in the atmosphere [J].Environ. Sci. Technol, 2005, 39: 6961–6970.
    [6] Mariko Matsumoto, Mutsuko Hirata-Koizumi, Makoto Ema. Potential adverse effects of phthalic acid esters on human health: A review of recent studies on reproduction[J]. Regulatory Toxicology and Pharmacology,2008,5(1):37–49.
    [7] Latini G,De Felice C,Presta G.In utero exposure to di-(2-ethylhexyl) phthalate and duration of human pregnancy. Environ Health Perspect,2003,111:1783–1785.
    [8] Joel A Tickner, Ted Schettler, Tee Guidotti, et al.Health risks posed by use of di-2-ethylhexyl phthalate (DEHP) in PVC medical devices: a critical review[J]. American Journal of Industrial Medicine,2001,39 (1):100–111.
    [9]王黎明,丁书茂,吴扬等.邻苯二甲酸二乙基己酯对小鼠不同脏器DNA的损伤作用[J].华中师范大学学报(自然科学版),2007,41(3):440–444.
    [10] Hansen DK, Grafton TF. Evaluation of di-(2-ethylhexyl) Phathalate induced emb-ryotoxicity inrodent whole embryo culture [J]. Toxiol Environ Health,1994, 43:361–367.
    [11]张建江,舒为群.邻苯二甲酸酯雌性生殖毒性研究进展[J].卫生研究,2005,34(4):496–499.
    [12] Giuseppe Latini. Monitoring phthalate exposure in humans[J]. Clinica Chimica Acta,361(2005):20–29.
    [13]胡雄星,韩中豪,刘必寅等.邻苯二甲酸酯的毒性及其在环境中的分布[J].环境科学与管理,2007,32(1):37–41.
    [14]沙玉娟,夏星辉,肖翔群.黄河中下游水体中邻苯二甲酸酯的分布特征[J].中国环境科学,2006,26(1):120–124.
    [15]胡晓宇,张克荣,孙俊红,等.中国环境中邻苯二甲酸酯类化合物污染的研究[J].中国卫生检验杂志,2003,13(1):9–14.
    [16] S.Y.Yuan,C.Liu,C.S.Liao,et al. Occurrence and microbial degradation of phthalate esters in Taiwan river sediment [J]. Chemosphere,2002,49:1295–1299.
    [17] Po-Chin Huang, Chien-Jung Tien, Yih-Min Sun, et al. Occurrence of phthalates in sediment and biota: Relationship to aquatic factors and the biota-sediment accumulation factor. Chemosphere, 2008, 73(4): 539–544.
    [18]吴志辉.酞酸酯对四种海洋藻类的生态毒理研究[D].广州:暨南大学,2006.
    [19]邱海源,王宪.邻苯二甲酸酯对海洋藻类的致毒效应[J].厦门大学学报(自然科学版),2005,44(2):294–297.
    [20]李潇.邻苯二甲酸酯类在养殖鱼类体内含量分析及其胚胎毒性研究[D].广州;暨南大学,2007.
    [21]陈莉,李学彬,杨光涛等.邻苯二甲酸二乙基己酯(DEHP)对金鲫鱼脑细胞DNA的损伤[J].生态毒理学报,2008.2(2):144–148.
    [22] A.V.Barse,T.Chakrabarti,T.K.Ghosh,et al.Endocrine disruption and metabolic changes follwing exposure of Cyprinus carpio to diethyl phthalate[J].Pesticide Biochemistry and Physiology,88 (2007):36–42.
    [23]王金霞,席贻龙,刘晓波等.邻苯二甲酸二丁酯对多刺裸腹溞的毒性[J].生态学杂志,2009,28(7):1335–1339.
    [24]黄国兰,孙红文,高娟等.邻苯二甲酸二丁酯对大型蚤(Daphnia magna)的毒性作用研究[J].环境化学,1998,17(5):428–433.
    [25] P. Patyna, K. R. Cooper. Multigeneration reproductive effects of three phthalate esters in Japanese medaka (Oryzias latipes)[J]. Marine Environmental Research, 2000, 50(1-5):194.
    [26] Anders Thuren,Per Woin. Effects of Phthalate Esters on the Locomotor Activity of the Freshwater Amphipod Gammarus pulex[J]. Bull. Environ.Contam.Toxicol,1991, 46:159–166.
    [27] R.B.Laughlin, J R.and J.M.Neff, et al.The Effect of Three phthalate esters on the larval development of the grass shrimp Palaemonetes Pugio (Holthuis)[J]. Water, Air, and Soil Pollution, 1978,9:323–336.
    [28] B. Fernández, J.A. Campillo, C. Martínez-Gómez. Antioxidant responses in gills of mussel (Mytilus galloprovincialis) as biomarkers of environmental stress along the Spanish Mediterranean coast[J]. Aquatic Toxicology,2010,99(2):186–197.
    [29] Sureda A, Box A, Ensenat M, et al. Enzymatic antioxidant response of a labtid fish (Coris julis) liver to environmental caulerpenyne[J]. Com.Biochem.physiol.C 144:191–196.
    [30]杨小玲,杨瑞强,江桂斌.用贻贝、牡蛎作为生物指示物监测渤海近岸水体中的丁基锡污染物[J].环境化学,2006,25(1):88–91.
    [31] J.E.Solbakken. Uptake and elimination of lindane and a phthalate ester in tropical corals and mussels[J].Marine Environmental Research,16(1985):103–113.
    [32]王淑红,王新红,洪华生.不同生长期翡翠贻贝(Perna viridis)体内多环芳烃富集的组织特异性研究[J].海洋环境科学,2005,24(3):29–32.
    [33]李晓东,陈荣,刘辉.三丁基锡对翡翠贻贝谷胱甘肽硫转移酶活性的影响[J].厦门大学学报(自然科学版),2009,48(3):423–428.
    [34] Ganesh K. Prasanth, L.M. Divya, C. Sadasivan. Effects of mono and di(n-butyl) phthalate on superoxide dismutase [J].Toxicology,2009, 262(1): 38–42.
    [35]蔡立哲,马丽,高阳等.蒽、菲、芘、屈混合液对菲律宾蛤仔抗氧化酶活性的影响[J].海洋科学,2005,29(8):47–52.
    [36] Peters L D,Porte C,Albaiges J, et al.7-Ethoxyresorufin O-deethylase (EROD) and antioxidant enzyme activities in larvae of Sardine (Sardina pilchardus) from the North coast of Spain[J]. Marine Pollution Bulletion,1994, 28(5):299–304.
    [37]谷巍,施国新,巢建国等.汞、镉、铜污染对鱼草细胞膜系统的毒害作用[J].应用生态学报,2008,19(5):1138–1143.
    [38]纪靓靓,李法云,罗义等.2,4,6-三氯苯酚诱导鲫鱼肝脏自由基的产生及其氧化应激[J].应用生态学报,200718(1):129–132.
    [39]陈海刚,马胜伟,林钦等.氯化三丁基锡对黑鲷鳃和肝组织SOD、MDA和GPx的影响[J].南方水产,2009,5(2):23–27.
    [40]余群,郑微云,翁妍等.石油污染对真鲷幼体中超氧化物歧化酶和过氧化氢酶的毒理效应[J].厦门大学学报(自然科学版),1999,38(3):429–434.
    [41]李佳华,慕君玲,郭红岩等.邻苯二甲酸二丁酯污染对苦草生理生化指标的影响[J].环境化学,2005,24(1):31–35.
    [42] A.R.D.Stebbing. Tolerance and hormesis—increased resistance to copper in hydroids linked to hormesis. Marine Environmental Research, 54(3-5): 805–809.
    [43] L.Q. Pan, Jiayun Ren, Jing Liu. Responses of antioxidant systems and LPO level to benzo(a)pyrene and benzo(k) fluoranthene in the haemolymph of the scallop Chlamys Ferrari[J]. Environmental Pollution, 2006, 141(3): 443–451.
    [44]王隽媛,边红枫,金香琴等.萘对斑马鱼(Danio rerio)内脏团抗氧化防御系统的胁迫与生物响应[J].环境科学,2009,30(2):516–521.
    [45] Tetyana V. Bagnyukova, Oxana I. Chahrak, et al. Coordinated response of goldfish antioxidant defenses to environmental stress. Aquatic Toxicology, 2006, 78(4): 325–331
    [46]王云,王顺昌,陆剑锋.苯并(a)芘对褐菖鲉肝脏DNA损伤与抗氧活性的影响[J].癌变畸变突变,2009,21(4):276–279.
    [47]陈荣,郑微云,余群等.石油污染对僧帽牡蛎(Ostream cucullata)抗氧化酶的影响[J].环境科学学报,2002,22(3):385–389.
    [48]李文英,熊丽,刘荣等.邻苯二甲酸酯二丁酯(DBP)对斑马鱼(Brachydanio rerio)生理生化特性的影响[J].生态毒理学报,2007,2(1):117–122.
    [49] Moreira S.M., Guilhermino L. The use of Mytilus galloprovincialis acetylcholinesterase and glutathione-S-transferases activities as biomarkers of environmental contamination along the Northwest Portuguese Coast[J]. Environ. Monit. Assess,2005,105:09–325.
    [50]黄长江,胡晓蓉,董巧香.苯并[a]芘对罗非鱼赶着抗氧化防御系统的影响[J],汕头大学学报,2006,21(4):51–57.
    [51]高永刚,李正炎.任基酚对栉孔扇贝组织抗氧化酶活性的影响[J].中国海洋大学学报.2006,36(增刊):136–138.
    [52]施蔡雷,张杭军,贾秀英.黑斑蛙精巢MDA和抗氧化酶对铅、镉暴露的生态毒性响应[J].生态学报,2010,30(13):3569–3574.
    [53]陈荣,魏凤琴,王重刚.0号柴油水溶性成分对僧帽牡蛎脂质过氧化的影响[J].水产学报,2005,29(2):150–154.
    [54] Slavica S.Borkovic, Sladjan Z.Pavlovic, Tijana B.Kovacevic,et al. Antioxidant defence enzyme activities in hepatopancreas,gills and muscle of Spiny cheek crayfish(Orconectes limosus)from the River Danube[J].Comparative Biochemistry and Physiology, 2008, 147(part C):122–128.
    [55] A. P. van Wezel, P. van Vlaardingen, R. Posthumus, G. H., et al. Crommentuijn Environmental Risk Limits for Two Phthalates, with Special Emphasis on Endocrine Disruptive Properties[J]. Ecotoxicology and Environmental Safety, 2000,46(3): 305–321.
    [56]孔志明.环境毒理学[M].南京大学出版社,2008,4:239–242.
    [57] Foster L Mayer Jr, Herman O Sanders. Toxicology of Phthalic Acid Esters in Aquatic Organisms[J]. Environmental Health Perspectives,1973,(6):153–157.
    [58]林玲,王玉柱,丁训诚,等.邻苯二甲酸二丁酯对斑马鱼胚胎发育毒性的研究[J].卫生研究,2008,37(3):278–282.
    [59]谭树华,何典翼,严芳,等.亚硝酸钠对鲫鱼肝脏丙二醛含量和总抗氧化能力的影响[J].农业环境科学学报,2005,24(增刊):21–24.
    [60]罗义,施华宏,王晓蓉,等. 2,4-二氯苯酚诱导鲫鱼肝脏自由基的产生和脂质过氧化[J].环境科学,2005,26(3):29–32.
    [61]吴众望,潘鲁青,张红霞.重金属离子对凡纳滨对虾肝胰脏、鳃丝和血液SOD活力的影响[J].应用生态学报,2005,16(10):1962–1966.
    [62]杨丽华,方展强,郑文彪等.镉对鲫鱼鳃和肝脏超氧化物歧化酶活性的影响[J].安全与环境学报,2003,3(3):13–17.
    [63] F R de la Torre, L Ferreari, A Salibian. Freshwater pollution biomarker: response of brain acetylcholinesterase activity in two fish species[J].Comparative Biochemistry and Physiology Part C, 2002,131:271–280.
    [64] Kaufer D, Friedm an A, Se idm an S, et al. Anticholineste rase induce multigenic transcriptional feedback response suppressing cholinergic neurotransmission [J]. Chemical Biological Interaction, 1999, 1192 (120): 349–360.
    [65]李少南,谢显传,谭亚军等.三唑磷对麦穗鱼脑组织中乙酰胆碱酯酶的诱导[J].农药学学报,2005.7(1):59–62.
    [66]逯晓波,刘秋芳,靳翠红等.短期重复暴露邻苯二甲酸二(2-乙基)酯对雄性大鼠睾丸脂质过氧化水平的影响[J].环境与健康杂志,2009,26(2):121–124.
    [67]李学彬.邻苯二甲酸二乙基己酯对金鲫鱼的氧化损伤作用的研究[D].武汉:华中师范大学,2009.
    [68]曹建萍.硝基苯对鲫鱼肝脏的氧化损伤研究[D].长春:东北师范大学,2007.
    [69] Tetyana V. Bagnyukova, Oxana I. Chahrak,et al. Coordinated response of goldfish antioxidant defenses to environmental stress [J]. Aquatic Toxicology,2006,78(4): 325–331.
    [70] A.T.B.Guimar?es,H.C.Silva de Assis,W.Boeger. The effect of trichlorfon on acetyl- cholinesterase activity and histopathology of cultivated fish Oreochromis niloticus[J]. Ecotoxicology and Environmental Safety,2007,68(1): 57–62.
    [71] P. Kavitha, J. Venkateswara Rao.Toxic effects of chlorpyrifos on antioxidantenzymes and target enzyme acetylcholinesterase interaction in mosquito fish, Gambusia affinis [J]. Environmental Toxicology and Pharmacology,2008,26(2): 192–198.
    [72] Steven.L .Induction of CYP1A mRNA and catalytic activity in gizzard shad (dorosoma cepedianum)after waterbone exposure to benza(a)pyrene comp [M] .Biochem. Physiol, 1997, 118C,(3):397–404.
    [73]王重刚,陈奕欣,郑微云等.苯并(a)芘、芘及其混合物暴露对梭鱼肝脏谷胱甘肽硫转移酶活性的影响.海洋科学, 2004,28(3): 40–43.
    [74] Grosvik B E, Bjornstad A, Camus L, et al. Membrane destabilization of haemocytes measured by uptake of fluorescent probes[J]. Marine Environmental Research, 2000, 50(1-5): 432–433.
    [75]徐盈,吴文忠,张甬元.利用EROD生物测试法快速筛选二噁英类化合物.中国环境科学, 1996, 16(4): 279–284.
    [76]顾海峰.海水养殖污染区鱼肝EROD酶活力分析.台湾海峡, 2002, 21(3): 292–295.
    [77] Fanta E,Rios F S,Romas S,et al. Histopalology of the fish Corydoras paleatus contaminated with sublethal levels of organophosphorus in water and food[J]. Ecotoxicol Environ Saf, 2003,54(2):119–130.
    [78] Cengiz E I,Unlu E. Sublethal effects of commercial deltamethrin on the structure of the gill,liver and gut tissue of mosquitofish, Gambusia affinis:A microscopic study[J]. Environ Toxicol Pharmacol,2006,21(3):246–253.
    [79] Jiraung koorskul W,Uphatham E S,K ruatrachue M,et al. Biochemical and histopathological effects of glyphosate herbicide on Nile Tilapia (Oreochramis niloticus)[J]. environmental Technology,18(4):260–268.
    [80]陈荣,刘辉,李东晓等.水生动物谷光甘肽硫转移酶研究进展[J].厦门大学学报(自然科学版),2006,45(2):176–184.
    [81] Di Giulio RT, Habig C, Gallagher E P. Effects of black rock harbour sediments on indices of biotrans-formation, oxidative stress, and DNA integrity in channel catfish. Aquat. Toxicol., 1993, 26:1–22.
    [82] Ribera D, Narbonne J F, Arnaud C,et al. Biochemical responses of the earthworm Eisenia fetida Andrei exposed to contaminated artificial soil, effects of carbaryl. Soil Biology and Biochemistry, 2001, 33:1123–1130.
    [83]Vander Oost,R.,Ber,J.,et at, Fish bioaccumulation and biomarkers in environmental fish assessment, a review [J]. Environ Toxic and Pharmac,2003.13:57–149.
    [84] Kennedy S W, Jones S P. Simultaneous Measurement of Cytochrome P4501A Catalytic Activity and Total Protein Concentration with a Fluorescence Plate Reader. Analytical Biochemistry, 1994, 222(1): 217–223.
    [85]陈君慧.苯并[a]芘对养殖黑鲷CYP1A1基因表达及酶活性的诱导研究[D].厦门:厦门大学,2006.
    [86]陈家平,徐立红,吴振斌等.苯并[a]芘致毒的鱼的分子生态毒理学指标研究[J].中国环境科学,1999,19(5):417–420.
    [87] Steven L.Levine,James T.Oris,CYP1A expression in liver and gill of rainbow trout following waterborne exposure:implications for biomarker determination[J]Aquatic Toxicology, 1999,46:279–287.
    [88] Alazenu B M,Lewis J W,Andrews E B.Gill damage in the freshwater fish Gnathonemus Petersii (family: Monnyndae) exposed to selected Pollutants :an ultrastructural study[J].Environ Technol,1996,17(3):225–238.
    [89]吴玲玲,陈玲,张亚雷等.菲对斑马鱼鳃和肝组织结果的影响[J].生态学杂志,2007,26(5):688–692.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700