MDF热压过程多传感器数据融合模型建立与仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热压是中密度纤维板(MDF)生产过程中的关键工序之一,对产品质量和产量起着决定性作用。热压过程工艺状况复杂多变,受到各种go艺因素和干扰因素的影响,是一个包含多变量的非线性过程,使对于热压过程的板坯内部参数检测、过程控制的研究增加了很多不确定性。针对上述问题,本文以多层压机的MDF热压过程为研究对象,深入研究了多传感器数据融合分层体系、功能模型与融合方法,以提高数据检测精度和决策的可信度。
     在深入分析MDF热压工艺过程机理,工艺参数特点及其相互关系的基础上,提出将多传感器数据融合理论应用于热压过程的检测与决策,构建了分层融合体系和功能模型,为热压过程的数据融合方法研究提供了框架结构。研究了数据层、特征层和决策层的融合算法,并对算法进行了仿真。热压试验和仿真结果证明了融合模型及算法的可行性和有效性。
     针对观测数据的随机噪声和疏失误差,在数据层融合中,采用基于置信距离的数据.一致性检验方法,确定传感器最优融合数。提出了一种具有在线学习能力的白适应加权最小二乘算法,对板坯内部温度数据进行估计,各传感器的信息权重直接反映了传感器的动态误差情况,克服了由于某个传感器误差偏大对系统估值造成的不良影响,仿真结果表明,总体估值精度明显高于任一传感器的局部估值精度和算术平均算法的精度。
     本文运用单因素对比试验和多因素正交试验,计算各因素对于性能指标的影响因子,得到各因素对于性能影响的定性关系。同时建立了工艺因素与性能参数有限样本集,针对小样本预测建模问题,提出了一种基于粒子群优化参数的支持向量机回归算法,建立了热压成品性能预测模型,相对于网络搜索和交叉验证选参方法,数值拟合精度和模型泛化性能得到了较大幅度的提高。
     针对热压过程中的不确定性问题,为了定量表示相关模糊概念和数据,有针对性地构建了产品等级评定、热压状态评价和控制决策的模糊识别框架,运用海明距离法构造了证据的基本概率赋值,将模糊集理论和证据理论进行综合应用实现了决策,弥补了人工经验进行决策的不确定性,提高了决策的可信度。
     课题将数据融合理论、智能控制理论与MDF热压工艺过程的检测与决策相结合,研究成果为板材成品力学性能指标的预测、工艺参数设定和优化、控制规则决策,提高人造板生产工艺理论的研究水平和实际热压控制系统的智能化程度,实现木材资源可持续利用提供有效的理论支撑和技术保障,具有重要的理论价值和现实意义。
Wood-based panel industry is an important branch of forestry industry which severely influences the effect of alleviating the contradiction between timber supply and demand, and achieving sustainable development strategy of forestry industry in China. Hot-pressing is one of the key procedures in wood-based panel production playing a decisive role in the quality and output of the products. Hot-pressing is a nonlinear, complex and changeable process involving multiple variables, and it is often affected by various technique factors and noises. These features make it difficult and uncertain to realize internal measuring and process monitoring during hot-pressing process of wood based panels. To solve the above problems, based on the medium density fiberboard (MDF) hot-pressing on multi-layer press, the multi-sensor data fusion architecture and methods are studied in this dissertation to improve the measurement precision and credibility of decision, and provide theoretical and technical basis for optimizing the fiberboard hot-pressing process, predicting the properties, and improving process control performance.
     Based on the analysis of MDF hot-pressing mechanism, characteristics of technique parameters and their relationships, the dissertation put forward the views that multi-sensor data fusion theory should be applied lo the measurement and decision making of hot pressing process. A hierarchical fusion architecture and function model is established to provied a framework for the study of data fusion methods, data fusion algorithms of data, feature and decision layers are studied, and algorithms simulating are implemented. Hot pressing experiment and simulation results prove the feasibility and effectiveness of the fusion model and algorithm.
     Because the random noise and gross error may easily exist in the measurement data, in the data layer fusion, the confidence distance is calculated to check the consistency of data from multiple sensors which is embedded in hot-pressing system, and then the optimized number of sensors can be determined. An adaptive weighted least square algorithm with online learning ablility is presented to estimate parameter of internal temperature of the mat. The weight of each sensor is computed based on its deviation to overcome the influence of large error from one sensor and improve the overall estimation precision. The simulation results demonstrate the high accuracy of the overall estimation compared with local one of any sensor in the system and arithmetic average algorithm.
     Single factor comparison experiments and multi-factor orthogonal experiments are carried out in order to compute the influence factor of each technique factor on the property index and thus the qualitative relationship between technique factor and property index is acquired. The finite sample set with mechanical properties as output variables and technique factors as input are acquired by the experiments. Aiming at the prediction modeling with small sample set, SVM regression algorithm with PSO optimized parameters is presented in this dissertation, and a model for properties prediction of hot pressing product is established. The algorithm has higher precision and better generalization performance of the numerical fitting than traditional methods.
     To solve the uncertainty problem of hot-pressing process and to quantitatively represent fuzzy concepts and data, the fuzzy recognition framework of product rating, hot-pressing condition evaluation and control decision are set. The basic probability assignment is obtained by typical samples and Hamming distance method. The decision making is realized by integrated application of fuzzy sets theory and evidence theory to eliminate the uncertainty of decision made by artificial experience and achieve higher reliability and credibility of the decision.
     The dissertation combined multi-sensor data fusion theory and intelligent control theory with measurement and decision making process of MDF hot-pressing, and provided effective theoretical and technical support for the board mechanical properties prediction, process parameters setting and optimization. and decision making of control rules. The research has the important reality significance and theoritical value to improve the study of hot-pressing process, enhance the control system intellectual degree and realize the sustainable utilization of wood resources.
引文
[1]路健,傅万四,张伟.国外人造板机械发展状况与技术特点.木材加工机械.2003,20(5):1~7
    [2]花军,胡万义.人造板机械.哈尔滨:东北林业大学出版社,2007:1~5
    [3]王天佑,陈坤霖,丁炳寅.我国中密度纤维板机械制造技术的发展.中国人造板.2012,1:5~12
    [4]李绍昆,姜仁龙.中密度纤维板多层热压机的热压过程分析.中国人造板.2008,6:21~23
    [5]胡广斌.人造板热压机的发展历程.林产工业.2005,32(1):50~53.
    [6]姜仁龙.我国中密度纤维板压机发展概况.中国人造板.2011,4:1~7
    [7]姜仁龙,蒋梅凤.中密度纤维板多层热压机的同时闭合机构和位置控制装置.2009,1:21~25
    [8]中国林产工业协会专业委员会.中国中密度纤维板生产线-2010[R].2011.
    [9]周毅强,贺永珍.计算机控制系统与中密度纤维板生产线.中国林业.2002,1(B):27~29
    [10]蔡纪华.谈人造板热压机控制系统的进展.森林工程.2002,18(1):9~10
    [11]Steve Kirincic,Bruce Mallas. A Press Monitoring System for the Panel Industry.26th International Particleboard/Composite Materials Symposium. USA.1992
    [12]周又平.人造板热压过程参数检测系统的研究与开发.南京林业大学学报(自然科学版).2007,31(1):72-74
    [13]张秀梅,刘亚秋.中密度纤维板热压机模糊控制器的设计.哈尔滨商业大学学报(自然科学版).2007,23(1):107~111
    [14]张宏健,陈琦等,机械应力式人造板质量在线无损检测技术的研发和应用,林产工业2007,34(6):33~35
    [15]王东林,俞国胜,杨桦.基于WinCC的中密度纤维板热压工段监控软件的设计.林产工业.2009,36(6):37~39
    [16]王宁,孙丽萍.中密度纤维板热压机压力模糊控制研究.机电产品开发与创新.2010,23(1):129~131
    [17]Kamke,Zylkowski.Effect of wood-based panel characteristics on thermal conductivity. Forest Products Journal.1989.39:19-24
    [18]Siau J F. Influence of moisture on physical properties.Department of Wood Science and Forest Products,Virginia Polytechnic Institute and State University. Springer Verlag, New York, NY.1995
    [19]Hata T.Heat flow in particle mat and properties of particleboard under steam-injection pressing. Wood Res.1993,80:1^7
    [20]von Hass G. Investigation of the hot pressing of wood composite mats under special consideration of the compression behavior, the permeability, the temperature conductivity and sorption speed. Hamburg, Germany.1998,127~146
    [21]Hood J P, Kamke F A, Fuller J.Permeability of oriented strand board mats. For. Prod.2005,55:194~199
    [22]Maku T,Hamada R,Sasaki H.Studies on the particle board:Report 4.Temperature and moisture distribution in particle board during hot pressing. Wood Res.1988,21:34-46
    [23]Garcia J,Avramidis S,Lam F.Flake-alignment effects on temperature and gas pressure development during OSB hot pressing. Proceedings of the 34th International Particleboard Composite Materials Symposium, Washington State University.2000,89~101
    [24]Kamke F A,Casey L J.Gas pressure and temperature in the mat during flakeboard manufacture. Forest Products Journal.1988a,38:41~43.
    [25]Kamke F A,Casey L J.Fundamentals of flakeboard manufacture:Internal-mat conditions. Forest Products Journal.1988b,38:38~44.
    [26]Pichelin F,Pizzi A,Fruhwald A,Triboulot P. Exterior OSB preparation technology at high moisture content:Part 1. Transfer mechanisms and pressing parameters. Holz Roh Werkst.?.001,59:756~265
    [27]Park B D,Jeong H W. Effects of Acid hydrolysis on Microstructure of Cured Urea-formaldehyde Resins Using Atomic Force Microscory[J]. Journal of Applied Polymer Science,2011,122(5):3255-3262.
    [28]MacLean J D. Method of computing the rate of temperature change in wood and plywood panels when the two opposite surfaces are maintained at different temperature.1943
    [29]Bowen M E. Heat transfer in particleboard during hot pressing[D]. Ph. D. dissertation, Colorado State University. Fort Collins,Co.1970
    [30]Kayihan F A,Johnson. Heat and moisture movement in woodcomposite material during the pressing operation.A simplified model, in R. W. Lewis. K. Morgan, and B.A.Schrefler, etc. Numerical methods in heat transfer. Vol. Ⅱ John Wiley Sons. Ltd.1983,Pages 511-531
    [31]Harless T E G,E.G. Wagner, P. H, Short, R.D., Swale. P. H.Mrichell., D. S. Ladd. A model to predict the density profile of particleboard[J]. Wood Fiber Sci,1987,19(1):81-92
    [32]Humphrey P E, Bolton A J. The hot pressing of dry formed based composite. Part Ⅱ.A simulation model of heat and moisture transfer and typical results. Holzforschung,1989, 43(3):199-206
    [33]刘应安,蔡智勇.刨花板热压过程中热传导的几个问题.林业科技开发,1992,(4):34~37
    [34]张帝树,李启岭.刨花板板坯含水率及其梯度对热传递速度的影响.林产工业,1993,20(4):9~11.
    [35]谢力生,赵仁杰,张齐生.常规热压法干法纤维板热压传热的研究I.中南林学院学报,2002,22(2):92~95.
    [36]谢力生,赵仁杰,张齐生.胶粘剂对纤维板热压传热的影响.木材工业,2003,17(2):15~16.
    [37]谢力生,赵仁杰,张齐生.常规热压法干法纤维板热压传热的研究Ⅱ.中南林学院学报,2003,23(2):66~70.
    [38]谢力生,赵仁杰,张齐生.常规热压干法纤维板热压传热的研究Ⅲ.中南林学院学报.2004,24(2):60~62.
    [39]谢力生,牛义.刨花板常规热压传热研究.中南林学院学报,2005,25(5):63~67.
    [40]谢力生,陈志喜.干法低密度纤维板常规热压传热研究.林业科技,2005,30(1):29~31.
    [41]谢力生,刘焕荣.低密度刨花板的常规热压传热.东北林业大学学报,2005,33(4):20-25
    [42]Zombori BG. Modeling the Transient Effects during the Hot-Compression of Wood-Based Composites Thesis, Virginia State University; 2001:34~39
    [43]Zombori B G, Kamke F A, Watson L T. Simulation of the internal conditions during the hot-pressing process.Wood and Fiber Science,2003,35 (1):2-23
    [44]于志明,吴娟,陈天全.人造板热压过程中板坯内部环境的研究进展.北京林业大学学报.2004,26(5):80~84
    [45]Dai, C. Yu. C. Heat and mass transfer in wood composite panels during hot pressing:Part I. A physical-mathematical model. Wood Fiber Sci.2004.36:585-597
    [46]Dai, C., Yu, C., Zhou, X. Heat and mass transfer in wood composite panels during hot pressing:Part Ⅱ. Modeling void formation and mat permeability. Wood Fiber Sci. (2005)37: 242-257.
    [47]Dai, C., Yu. C., Zhou, C. Theoretical modeling of bonding characteristics and performance of wood composites. Part 1. Inter-element contact. Wood Fiber Sci.2007,39:48-55
    [48]Yu, C., Dai. C., Wang. B.J. Heat and mass transfer in wood composite panels during hot pressing:Part 3. Predicted variations and interactions of the pressing variables. Holzforschung.2007,61:74~82
    [49]Chunping Dai, Changming Yu, Changyan Xu,Guangbo He. Heat and mass transfer in wood composite panels during hot pressing:Part 4. Experimental investigation and model validation. Holzforschung,2007,61:83~88
    [50]陈天全.大片刨花板热压过程中温度、气压和含水率变化规律研究.北京林业大学博士学位论文,2006:40~45
    [51]Heiko Thoemen, Thomas Walther, Andreas Wiegmann.3D simulation of macroscopic heat and mass transfer properties from the microstructure of wood fibre networks.Composites Science and Technology.2008,68:608~616
    [52]谢力生,李翠翠.纤维板热压中心层温度与力学性能的关系.中南林业科技大学学报.2009,29(5):82~86
    [53]Cheng Zhou,Gregory D Smith,Chunping Dai.Characterizing hydro-thermal compression behavior of aspen wood strands.Holzforschung.2009,63:609~617
    [54]Cheng Zhou, Chunping Dai, Gregory D Smith. Viscoelasticity of aspen wood strands during hot pressing:Experimentation and modeling. Holzforschung.2010,64:713~723
    [55]徐咏兰.中密度纤维板制造.北京:中国林业出版社.1995:124~138
    [56]徐咏兰.中高密度纤维板制造与应用[M].吉林:吉林科学技术出版社,2002,112~120
    [57]杨承,张宏健.人造板热压机控制系统的现状与改进.林业机械与木工设备.1999,26(8):23~25
    [58]李绍昆,姜仁龙.中密度纤维板之11热压机面压与卸压的探讨.中国人造板.2008,7:18~22
    [59]杨瑾瑾,傅万四,于文吉.人造板热压过程中板坯内部温度、气压、含水率研究现状与分析.木材加工机械.2008,3:33~37
    [60]Kelley S.S., Rials, T.G., Glasser, W.G. (1987) Relaxation behaviour of the amorphous components of wood. J. Mater. Sci.22:617-624
    [61]Wolcott M P. Modelling viscoelastic cellular materials for the pressing of wood composites. Ph.D. dissertation, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.1990:45-48
    [62]徐氐妍,华毓坤.喷蒸真空热压刨花板板坯内部的温度场特性.木材工业,2002.29(6)13~15.
    [63]张晓冬,程秀才等.特种绝缘箱用胶合板的热压工艺及低温处理性能.南京林业大学学报.2009,33(4):109~112
    [64]吴娟,于志明,陈天全.大片刨花板热压的传热过程.北京林业大学学报.200527(2):92~94
    [65]Rusch K C. Load-compression behavior of flexible foams.J. Appl. Polym. Sci. 1969,13:2297-2311
    [66]Meinecke, E.A., Clark, R.C. Mechanical Properties of Polymeric Foams. Technomic, Westport,CT,1973:320~326
    [67]Wolcott, M.P. (1990) Modelling viscoelastic cellular materials for the pressing of wood composites. Ph.D. dissertation, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
    [68]Wolcott, M.P., Shutler, E.L. Jr. Temperature and moisture influence on compression-recovery behavior of wood. Wood Fiber Sci.2003,35:540~551.
    [69]Rosa, M.E., Fortes, M.A. () Stress relaxation and creep of cork. J. Mater. Sci. 1988,23:35~42.
    [70]Dai, C. (2001) Viscoelasticity of wood composite mats during consolidation. Wood Fiber Sci.33:353~363.
    [71]Dai ChunPing.Characterizing variability of commercial oriented strandboard:bending properties. Forest Products Society, Madison, USA, Forest Products Journal,2010,60(4), 373-381
    [72]何友,王国宏,陆大金.多传感器信息融合及应用.北京:电子工业出版社,2007.1~50
    [73]彭冬亮,文成林,薛安克.多传感器多源信息融合理论及应用.北京:科学出版社,2010:2~4
    [74]鲁红英,肖思和,宋弘.信息融合技术的方法与应用研究,四川理工学院学报(自然科学版).2007,20(5):35~38
    [75]孙丽萍,刘德胜,曹军.基于小波包的木材含水率在线检测.计算机应用研究.2009,26(3):966-967
    [76]王媛彬.多传感器信息融合概述及其应用.传感器世界.2010,12:6~9
    [77]朱泽君,黄涛,刘曦霞,吕杨.多传感器数据融合技术研究现状及发展方向.般舶电子工程.2009,29(2):13~16
    [78]Hall D L. Mathematical Techniques in Multisensor Data Fusion. Boston:Artech House,1992.
    [79]Steinberg, A.N.,Bowman, C.L., and White, Jr., F.E.,Revisions to the JDL Data Fusion Model, Proc.3rd Nato/IRIS Conf.,Quebec City, Canada,1998:253~267
    [80]Dasarathy,B.,Decision Fusion. IEEE Computer Society Press,1994:147~156
    [81]Dasarathy, B.V., Scnsor fusion potential exploitation-innovative architectures and illustrative applications. Proceedings of the IEEE,1997.85(1):24-38
    [82]Bedworth, M. and J. O' Brien, The Omnibus model:a new model of data fusion, Aerospace and Electronic Systems Magazine. IEEE,2000.15(4):30-36
    [83]Harris C J, Bailey A, Dodd T J.Multisensor data fusion in defense and aerospace. The Aeronautical Journal,1998,102(1015):229~244.
    [84]C4ISR Architecture Framework, Version 1.0, C4ISR ITF Integrated Architecture Panel, CISA-000-104-96, June 7,1996:102~105.
    [85]Blackman S S,Popoli R. Design and Analysis of Modern Tracking Systems. London:Artech House,1999:78~83
    [86]咸金宝,许芬.多传感器数据融合技术与专家系统研究.自动化与仪器仪表.2007,6:12~14
    [87]李翠翠;谢力生;人造板在不同热压条件下传热的研究现状.林业机械与木工设备.2007,35(10):8-11.
    [88]Song Kaichen, Nie Xili. Adaptive fusion algorithms based on weighted least square method[J]. Chinese Journal of Mechanical Engineering,2006,19(3):451~454.
    [89]仲崇权,张立勇,杨素英等.基于最小二乘原理的多传感器加权融合算法.仪器仪表学报.2003,24(4):427~430
    [90]姜睿,罗贵明.基于加权最小二乘法的最优适应控制器.自动化学报,2006,32(1)140~147
    [91]段战胜,韩崇昭,陶唐飞.基于最小二乘准则的多传感器参数估计数据融合.计算机 工程.2004,15:1-3
    [92]都强,杭柏林.最小二乘法在多传感器测量标定中的应用.传感技术学报.2005,18(2):244~246
    [93]姜睿,罗贵明.基于加权最小二乘法的最优适应控制器[J].自动化学报,2006,32(1):140-147.
    [94]林健,彭敏晶.基于支持向量数据描述的预警技术及其应用.计算机工程.2006,32(20):7~9
    [95]杨敏,张焕国,傅建明.基于支持向量数据描述的异常检测方法.计算机工程.2005,31(3):39~42
    [96]潘明清,周晓军,雷良育.基于支持向量数据描述的驱动桥异响检测.汽车工程.2006,28(2):203~206
    [97]Kennedy J, Eberhart R C, Particle Swarm Optimization. Proceedings of the IEEE International Conference on Neural Networks,1995,2:17~33
    [98]汪镭,吴启迪.蚁群算法在系统辩识中的应用.自动化学报.2003,29(1):102~109
    [99]魏平,熊伟清.用于一般函数优化的蚁群算法.宁波大学学报.2001,14(4):52~55
    [1 00]段海滨.蚁群算法原理及其应用.北京:科学出版社.2006:3~7
    [101]A.P.Dempster, A Generalization of Bayesian Inference, J. Royal Statistical Soc., Series B,1968,30:205~247
    [102]G.Shafer. A Mathematical Theory of Evidence. Princeton University Press, Princeton,1976.
    [103]徐凌宇,尹国成,宫义山等.基于不同置信度的证据组合规则及应用.东北大学学报:自然科学版,2002,23(2):123-125
    [104]。王红亮,张美仙,丁海飞.D-S证据理论在目标识别中的应用.自动化与仪表,2011(7):15-17.
    [105]Lefevre E. Belief function combination and conflict management. Information Fusion,2002,3(2):149-162
    [106]TANG Ya-bo, XU Shou-shi. A united target data association algorithm based on d-s theory and multiple remote sensing images. Journal of University of Science and Technology of China,2006,36(5):466-471.
    [107]林志贵,徐立中,黄凤辰.基于D-S理论的多源水质检测数据融合处理.计算机工程与应用,2004,10:3~5
    [108]缪燕子,马小平.信息融合技术在矿井瓦斯监测中的应用.自动化理论、技术与应用.2009,3:285~290
    [109]吴根秀.模糊证据理论[J].计算机与现代化,1998,54(2):1~4.
    [110]刘大有,李岳峰.二级不确定性的内涵处理方法.软件学报,1997,8(7):535~540.
    [111]栾翠菊,王晓峰等.证据理论在有序命题类问题中的基本概率分配.计算机工程与 应用.2012,48(22):2 1 7~221
    [112]杨承,张宏健,员永生.新型实验热压机的控制系统.林业机械与木工设备.2003,3 1(4):20~22

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700