边坡岩体锚固性能研究及其工程应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岩体锚固是岩土工程领域中非常重要的分支,而岩体锚固性能研究是岩体锚固中的核心问题之一。采用锚固技术进行边坡岩体的加固和防护是最普遍、最经济和最有效的方法之一。针对边坡岩体锚固性能研究及其工程应用中存在的受力特性、长期性能和耐久性等问题开展了比较深入系统的研究工作。
     本文主要研究成果如下:
     (1)基于弹性理论,按照半空间体在边界上受法向集中力作用,对预应力锚索锚固段剪应力沿长度方向的分布规律进行模型研究。通过分析实际工程和现场试验中剪应力分布特征,引入与预应力、锚固段长度、岩体强度、注浆材料强度等相关的综合参数α和与剪应力最大值的位置、锚固段钻孔直径等相关的综合参数β后,可以较好地模拟锚固段的剪应力特性。根据锚固段岩体和注浆体界面的抗压强度σ_c、内摩擦角φ以及综合参数α与预应力大致成线性反比例关系,可以估算极限承载力。同时,按本文所述方法计算实际需要的锚固段长度L_s是设计锚固段长度L_d的2tanφ倍。最后,实例分析表明研究成果是合理的。
     (2)单孔多筋全长粘结式长锚杆可用于解决不良地质条件、岩性较差边坡的浅表层岩体加固问题。针对乌江构皮滩水电站尾水边坡工程的实际,对锚杆进行试验研究。研究表明,锚杆的基本性能良好。根据监测资料分析锚杆轴力特性,结合前人研究成果,提出锚杆尺寸效应的概念。工程实践证明,锚杆设计合理,值得在类似工程中推广使用。
     (3)考虑锚索预应力和边坡岩体蠕变的耦合作用,采用新的非线性粘塑性体(NVPB)组成的改进西原模型,建立了两者的耦合模型,推导了锚索预应力长期变化的计算公式,可以反映各种情形下真实的预应力损失变化规律。针对乌江构皮滩水电站尾水边坡工程中的预应力锚索的现场监测值和理论计算值进行对比分析,验证了计算公式的正确性与合理性。研究成果可以为边坡岩体预应力锚固长期性能提供参考或依据。同时,提出改善预应力锚固长期性能的工程措施。
     (4)将预应力锚索注浆体受到的环向应力,考虑为预应力引起的注浆体环向拉应力和锚索体对注浆体的锈胀力共同作用,推导出锚索体均匀锈蚀导致注浆体开裂时的极限增长量计算公式。在前人研究成果基础上,得出了高陡边坡岩体的预应力锚索开裂时服务年限的估算表达式,为预应力锚固耐久性研究提供参考。最后,结合雅砻江锦屏一级水电站左岸1885m高程以上开挖边坡岩体加固工程中的2000kN预应力锚索和3000kN预应力锚索,探讨了与服务年限相关的4个影响因素及其相对重要性:预应力对服务年限最不敏感,随着预应力的增加,服务年限逐渐减小,曲线呈线性函数关系;预应力值的选择主要取决于确保工程的稳定性;锚索体直径要相对敏感很多,随着锚索体直径的增加,服务年限逐渐增加,曲线的斜率逐渐稍微变陡;然后是握裹层厚度,随着握裹层厚度的增加,服务年限也逐渐增加,曲线的斜率逐渐稍微变陡;最敏感的是注浆体抗压强度,随着抗压强度的增加,服务年限逐渐增加,曲线的斜率也逐渐稍微变陡。同时,提出改善预应力锚固耐久性的工程措施。
     (5)将边坡岩体锚固性能研究的成果和结论应用于清江水布垭水电站马崖高陡边坡F_(158)断层加固工程中,采用测斜仪、多点位移计、锚索测力计、裂缝计开合度等现场监测资料反馈分析和锚固洞轴力、岩体位移等有限元数值模拟计算相结合,分析了边坡岩体断层锚固的性能,提出了边坡岩体断层连接锚固的概念,对于类似工程具有重要的借鉴价值。
Rockmass anchorage is the very important branch of the geotechnical engineering field. Meanwhile, research on anchorage properties of rockmass is one of the rockmass anchorage cores. Anchorage technique is the most prevalent, the most economical and the most effective measure of reinforcement and protection of rock slope mass. Therefore, the relatively profound and systematic studies on anchorage properties of slope rockmass and its engineering applications are carried out concerned with the mechanical properties, long-term performance, durability, and other problems.
     The main contents are as follows:
     (1) Model research on distribution regularity of shear stress on anchorage end of prestressed cable is carried out according to half space with concentrated force in normal direction on boundary based on the elastic theory. By the analysis of the distribution characteristics of shear stress in practical engineering and field experiment, the performance of shear stress on anchorage end can be modeled with the introduction to comprehensive parameter ? which is correlated to prestress, length of anchorage end, rock strength, and grout body strength and comprehensive parameterβwhich is correlated to the peak position of shear stress and the diameter of anchorage end. Ultimate load capacity can be calculated according to the compression strengthσ_c and internal friction angleφof the interface of rockmass and grout body and the approximately linear inverse proportion relation. Meanwhile, the design length of anchorage L_d multiplied by 2tanφmakes the practical length of anchorage end L_s which is calculated by the paper's method. Finally, two cases calculation and analysis show that the research production is reasonable.
     (2) Bolts with single borehole and wholly grouted multiple bars can be used to solve the reinforcement of shallow and superficial rock mass of unfavorable geologic conditions and worse rock characters. The test on bolts is carried out based on the practice of the tailwater slope which is the bank of the Goupitan hydropower station in Wujiang river. The research shows that the basic properties of bolt is good. The time-dependent axial force of bolt is analyzed based on monitoring data, and combining with the research results of predecessors the concept of the bolt size effect is put forward. The practical project shows that bolts are reasonably designed, conveniently constructed and very economical, which is worthy to be popularized in other similar projects.
     (3) Based on improved Nishihara model which is composed of a new nonlinear viscoplastic body (NVPB), the calculation formula of long-term prestress variation is deduced after the coupling model is established, which is concerned with the coupling effects of the load of prestressed cable and the creep curve of rock slope masses. The calculation formula can indicate the actual regularity of prestress loss variation under the various conditions. The comparison between the on-site monitoring data of prestressed cable located in the tailwater slope which is the bank of the Goupitan hydropower station in Wujiang river and theoretical calculations result shows that the calculation formula is available and reasonable. The research results can give some suggestions or criteria for the long-term performance of the prestressed anchorage. Meanwhile, the engineering measures of the improving long-term performance of the prestressed anchorage are put forward.
     (4) A calculation formula of limit to growth when grout body cracked is deduced from the hoop stress of prestressed cable grout body, which is concurred between the hoop tension stress is created by pretension and the uniformly corrosion expansion force by cable body. A estimation expression of the service life when grout body of prestressed cable cracked in high and steep slope rockmass is solved based on predecessors' research production, which is the base of the research on the durability of prestressed anchorage. At last, four factors related to service life and their relative importance are discussed, which are combined with the reinforcement engineering's 2000kN and 3000kN prestressed cable located in the excavation slope rockmass upward an altitude of 1885 meter of the left bank at Jinping first stage hydropower station in Yalongjiang river. It is concluded that: the pretension is the most insensitive factor. With the increase of the pretension, the service life decreases, in which the curve is linear. The choice of the prestress value chiefly depends on the guarantee of engineering stability. The influence of the cable body diameter is relatively much stronger than the pretension. With the increase of the cable body diameter, the service life increases, in which the curve's gradient is slightly steepening. The strand should be possibly separately laid out. The influence of bond thickness is a little stronger than the cable body diameter. With the increase of bond thickness, the service life also increases, in which the curve's gradient is slightly steepening. The diameter of the bore hole should be reasonably optimum. Whereas, the compression strength of grout body is the most sensitive factor that affected the service life. With the increase of the compression strength, the service life increases, in which the curve's gradient is also slightly steepening. Meanwhile, the engineering measures of the improving durability of the prestressed anchorage are put forward.
     (5) The results and conclusions of the study on anchorage properties of slope rockmass are utilized in the No.158 fault at Maya high and steep slope located in the Shuibuya hydropower station in Qingjiang river. Combination the feedback analysis of the in-site monitoring data included the tiltmeter, the multi-point extensometer, the anchor dynameter, and crack's opening of the joint meter with the FEM calculation results of the axial force along distance of anchorage hole, and the rockmass displacement, the anchorage properties in rock mass fault of slope are analyzed and the concept of connecting anchorage in rock mass fault of slope is proposed. The research results can be used for reference to the similar engineering.
引文
[1] 岩土工程手册编委会.岩土工程手册[M].北京:中国建筑工业出版社,1994.
    [2] L. Hobst, J. Zajic. Anchoring in Rock and Soil[M]. NewYork: Elsevier Scientific Publishing Company, 1983.
    [3] T.H.Hanna著.胡定等译.锚固技术在岩土工程中应用[M].北京:中国建筑工业出版社.1987.
    [4] 程良奎.我国岩土锚固技术的现状与发展[A].见:中国岩土锚固工程协会.岩土工程中的锚固技术[C].北京:地震出版社,1992.
    [5] 梁炯鋆.锚固与注浆技术手册[M].北京:中国电力出版社,1999.
    [6] 闫莫明,徐祯祥,苏自约.岩土锚固技术手册[M].北京:人民交通出版社,2004.
    [7] Windsor C. R. Rock reinforcement systems[J]. Int. J. Rock Mech. and Min. Sci., 1997, 34 (6): 919~951.
    [8] 李世平,吴振业,李晓.岩石力学简明教程[M].北京:煤炭工业出版社,1996.
    [9] 张发明.岩质边坡预应力锚固效应及应用研究[博士学位论文][D].南京:河海大学,2000.
    [10] 尤春安.锚固系统应力传递机理理论及应用研究[博士学位论文][D].泰安:山东科技大学,2004.
    [11] 朱晗迓.破碎岩质边坡锚固技术研究[博士学位论文][D].杭州:浙江大学,2005.
    [12] 刘宁,高大水,戴润泉,等.岩土预应力锚固技术应用及研究[M].武汉:湖北科学技术出社,2002.
    [13] 徐祯祥,闫英明,苏自约.岩土锚固技术与西部开发[M].北京:人民交通出版社,2002.
    [14] 苏自约,闫莫明,徐祯祥.岩土锚固技术与工程应用[M].北京:人民交通出版社,2004.
    [15] 苏自约,陈谦,徐祯祥,等.锚固技术在岩土工程中的应用[M].北京:人民交通出版社,2006.
    [16] E. Hoek, J. W. Bray. Rock Slope Engineering(2rd ed.)[M]. London: Institute of Mining and Metallurgy, 1974.
    [17] 巫德斌.层状岩体边坡工程力学参数研究[博士学位论文][D].南京:河海大学,2004.
    [18] 黄志全,廖德华,姜彤,等.边坡系统演化的开放度研究[J].工程地质学报,2002,10(2):152~155.
    [19] 田裕甲.岩土锚固新技术及实践[M].北京:中国建材工业出版社,2006.
    [20] 刘志明,徐年丰,周和清,等.水工基础处理及滑坡治理工程的理论与实践[M].武汉:中国地质大学出版社,2003.
    [21] 张晗旭.关于预应力锚索加固效应研究的几点看法[J].河海大学学报,1999,27(4):93~96.
    [22] 张乐文,汪稔.岩土锚固理论研究之现状[J].岩土力学,2002,23(5):627~631.
    [23] 中华人民共和国行业标准编写组.水工预应力锚固设计规范(DL/T5176-2003)[S].北京:中国水利水电出版社,2003.
    [24] 刘听成.岩石力学有关名词解释[M].北京:煤炭工业出版社,1986.
    [25] 徐志英.岩石力学(第三版)[M].北京:水利电力出版社,1993.
    [26] Farmer I. W. Stress distribution along a resin grouted anchor[J]. Int. J. Rock Mech. and Min. Sci., 1975,12 (3): 347~352.
    [27] 朱浮声,郑雨天.全长粘结式锚杆的加固作用分析[J].岩石力学与工程学报,1996,15(4):333~337.
    [28] 尤春安.全长粘结式锚杆的受力分析[J].岩石力学与工程学报,2000,19(3):339~341.
    [29] 张季如,唐保付.锚杆荷载传递机理分析的双曲函数模型[J].岩土工程学报,2002,24(2):188~192.
    [30] 肖世国,周德培.非全长粘结型锚索锚固段长度的一种确定方法[J].岩石力学与工程学报,2004,23(9):1530~1534.
    [31] 张端良,董燕军,唐乐人,等.预应力锚索锚固段周边剪应力分布特性的弹性理论分析[J].岩石力学与工程学报,2004,23(增2):4735~4738.
    [32] 朱玉,卫军,廖朝华.确定预应力锚索锚固长度的复合幂函数法[J].武汉理工大学学报,2005,27(8):60~63.
    [33] Wei J., Zhou X. W, Zhu Y. A Combined Power Model for the Distribution of Axial Force in Shaft Anchor along Its Length[J]. Journal of China University of Geosciences, 2006, 17(1): 89~94.
    [34] 李铀,白世伟,方昭茹,等.预应力锚索锚固体破坏与锚固力传递模式研究[J].岩土力学,2003,24(5):686~690.
    [35] 刘小丽,张占民,周德培.预应力锚索抗滑桩的改进计算方法[J].岩石力学与工程学报,2004,23(15):2568~2572.
    [36] 孙学毅.边坡加固机理探讨[J].岩石力学与工程学报,2004,23(16):2818~2823.
    [37] 何思明.预应力锚索作用机理研究[博士学位论文][D].成都:西南交通大学,2004.
    [38] 葛修润,刘建武.加锚节理面抗剪性能研究[J].岩土工程学报,1988,10(1): 8~19.
    [39] 杨松林,徐卫亚,朱焕春.锚杆在节理中的加固作用[J].岩土力学,2002,23(5):604~607.
    [40] 孔恒.岩体锚固系统的机理及其新技术研究[硕士学位论文][D].北京:中国矿业大学(北京校区),2000.
    [41] 刘波.锚杆横向效应及综合抗力研究[博士学位论文][D].北京:中国矿业大学(北京校区),1998.
    [42] Chang S. H, Lee C. I, Jeon S. Measurement of rock fracture toughness under modes Ⅰ and Ⅱ and mixed-mode conditions by using disc-type specimens[J]. Engineering Geology, 2002,66 (1/2): 79~97.
    [43] D. Krajcinovic. Damage mechanics: accomplishments, trends and needs[J]. International Journal of Solids and Structures, 2000, 37 (1/2): 267~277.
    [44] 周维垣.高等岩石力学[M].北京:水利电力出版社,1990.
    [45] 王成.层状岩体边坡锚固的断裂力学原理[J].岩石力学与工程学报,2005,24(11):1900~1904.
    [46] 何思明,王成华,吴文华.基于损伤理论的预应力锚索荷载-变形特性分析[J].岩石力学与工程学报,2004,23(5):786~792.
    [47] Gerrard C. Rock bolting in theory-a keynote lecture[C]. In: Stockholm, A. A. Balkema. Proc. of the Int. Symp. on Rock Bolting. Stockholm, 1983.
    [48] 杨延毅.岩质边坡卸荷裂隙加固锚杆的增韧止裂机制与效果分析[J].水利学报,1994(6):1~10.
    [49] Li. C, Stillborg. B. Analytical models for rock bolts[J]. Int. J. Rock Mech. and Min. Sci.,1999,36 (8): 1013~1029.
    [50] Yue Cai, Tetsuro Esakia, Yujing Jiang. A rock bolt and rock mass interaction model[J]. Int. J. Rock Mech.and Min. Sci.,2004,41 (7): 1055~1067.
    [51] 朱维申,李术才,陈卫忠.节理岩体破坏机理和锚固效应及工程应用[M].北京:科学出版社,2002.
    [52] 李宁,张平,李国玉.岩质边坡预应力锚固的设计原则与方法探讨[J].岩石力学与工程学报,2004,23(17):2972~2976.
    [53] 伍佑伦,王元汉,许梦国.拉剪条件下节理岩体中锚杆的力学作用分析[J].岩石力学与工程学报,2003,22(2):769~772.
    [54] 李永和,葛修润.锚喷材料经时蠕变损伤本构方程[J].岩土力学,1997,18(4):8~12.
    [55] 张玉军,孙钧.锚固岩体的流变模型及计算方法[J].岩土工程学报,1994,16(3):33~45.
    [56] 丁多文,白世伟,罗国煜.预应力锚索加固岩体的应力损失分析[J].工程地质 学报,2004,23(13):65~69.
    [57] 谢兴保,谭志林.大型岩锚预应力损失特性的研究[A].见:刘志明,徐年丰,周和清,等.水工基础处理及滑坡治理工程的理论与实践[C].武汉:中国地质大学出版社,2003.
    [58] 余开彪,程凯兵,杨明亮.预应力锚索预应力损失研究[J].岩土力学,2005,26(Supp):159~162.
    [59] 朱晗迓,尚岳全,陆锡铭,等.锚索预应力长期损失与坡体蠕变耦合分析[J].岩土工程学报,2005,27(4):464~467.
    [60] 刘西拉.重大土木与水利工程安全性及耐久性的基础研究[J].土木工程学报,2001,34(6):1~7.
    [61] 刘西拉,苗澍柯.混凝土结构中的钢筋腐蚀及其耐久性计算[J].土木工程学报,1990,23(4):69~78.
    [62] 李永和.地下钢筋混凝土与喷锚结构碳化断裂损伤及其耐久性研究[博士学位论文][D].武汉:中国科学院武汉岩土力学研究所,1999.
    [63] 李永和,葛修润.锚喷结构中钢锚杆锈蚀量的估计分析[J].煤炭学报,1998,23(1):48~52.
    [64] 淡丹辉,何广汉.钢筋混凝土构件均匀锈蚀与应力的耦合效应分析[J].西南交通大学学报,2001,36(2):181~184.
    [65] 金伟良,赵羽习.混凝土结构耐久性[M].北京:科学出版社,2002.
    [66] 牛荻涛.混凝土结构耐久性与寿命预测[M].北京:科学出版社,2003.
    [67] 夏宁.锈蚀锚固体的力学性能研究及耐久性评估初探[博士学位论文][D].南京:河海大学,2005.
    [68] 杜进生,刘西拉.无粘结后张预应力混凝土结构的锈蚀-谬论、错误观点及事实[J].国外桥梁,1999(3):71~74.
    [69] 熊学玉,黄鼎业.预应力工程设计施工手册[M].北京:中国建筑工业出版社,2003.
    [70] 蔡启龙,朱忠荣.无粘结预应力锚索的腐蚀与防护[J].人民长江,2004,35(10):49~51.
    [71] 曾宪明,陈肇元,王靖涛,等.锚固类结构安全性与耐久性问题探讨[J].岩石力学与工程学报,2004,23(13):2235~2242.
    [72] 林宗元.岩土工程试验监测手册[M].沈阳:辽宁科学技术出版社,1994.
    [73] 二滩水电开发有限责任公司.岩土工程安全监测手册[M].北京:中国水利水电出版社,1999.
    [74] Sakurai S. Interpretation of the results of displacement measurements in cut slopes[A]. In:proceedings of the 2nd international symposium on field measurement in geomechanics[C]. Rotterdam:A.A.Balkema, 1988, 1155~1166.
    [75] Littlejohn G. S. Ground anchorages and anchored structures[M]. London:Thmos Telford Publishing, 1997.
    [76] Gaitzsch H. Notable technical aspects of the supervision and supportive measurement of the rock anchor project at the Eder dam[A]. In:proceedings of the international symposium on anchors in theory and practice[C]. Rotterdam: A. A. Balkema, 1995, 411~420.
    [77] Brahim Benmokrane, Gerand Ballivy. Five-year monitoring of load losses on prestressed cement-grouted anchors[J]. Canadian Geotechnique Journal, 1991, 28 (5): 668~677.
    [78] 高大水,曾勇.三峡永久船闸高边坡锚索预应力状态监测分析[J].岩石力学与工程学报,2001,20(5):653~656.
    [79] 袁培进,吴铭江,陆遐龄,等.长江三峡永久船闸高边坡预应力锚索监测[J].岩土力学,2003,24(增):198~201.
    [80] 李端友,汤平,李亦明.三峡永久船闸一期工程岩锚预应力监测[J].长江科学院院报,2000,17(1):39~42.
    [81] 张电吉,汤平,白世伟.节理裂隙岩质边坡预应力锚索锚固监测与机理研究[J].岩石力学与工程学报,2003,22(8):1276~1280.
    [82] 张发明,赵维炳,刘宁,等.预应力锚索锚固荷载的变化规律及预测模型[J].岩石力学与工程学报,2004,23(1):39~43.
    [83] 李洪斌,徐年丰.三峡永久船闸中隔墩岩体利用与加固[J].岩石力学与工程学报,2002,21(2):268~272.
    [84] Zhu H.C, Wu H.B. Interpretation of the monitored rock bolt stress and rock mass displacement at the Three Gorges Project in China[J]. Int. J. Rock Mech.and Min. Sci., 2004 (41):521.
    [85] 张宏博,黄茂松,宋修广,等.预应力锚索在滑坡体加固中的影响因素分析[J].岩土力学,2004,25(2):324~326.
    [86] 朱晗迓,孙红月,汪会帮,等.边坡加固锚索预应力变化规律分析[J].岩石力学与工程学报,2004,23(16):2756~2760.
    [87] 卢世深,潘善德,王锺琦.岩土工程数值方法[M].北京:中国建筑工业出版社,1981.
    [88] 雷晓燕.岩土工程数值计算[M].北京:中国铁道出版社,1999.
    [89] Aydan O., Koya T., Ichikawa, etc. Anchorage performance and reinforcement effect of fully grouted rockbolts on rock excavations[A]. In:Proc. 6th. Int. Cong. ISRM, Montreal, 1978,757~760.
    [90] Aydan O., Koya T., Ichikawa, etc. Three-dimensional simulation of an advancing tunnel supported with forepoles, shotcrete, steel ribs and rockbolts[J]. In: Numerical Methods in Geomechanics, Swoboda, Innsbruck, Balkema, 1988, 1481~1486.
    [91] 叶金汉.裂隙岩体的锚固特性及其机理[J].水利学报,1995(9):68~74.
    [92] 张玉军,朱维申.三峡工程船闸高边坡锚固方案的平面有限元计算[J].岩土力学,1997,18(1):1~6.
    [93] 张燎军,傅作新,朱岳明,等.三峡永久船闸闸墩-锚杆-岩基的非线性耦合分析[J].岩石力学与工程学报,1998,17(3):230~238.
    [94] Ferrero A.M. The shear strength of reinforced rock joints[J]. Int. J. Rock Mech. and Min. Sci. and Geomech. Abstr,1995.32 (6):595~605.
    [95] 张晗旭.应用有限单元法探讨预应力岩锚的作用[J].河海大学学报,1999,27(3):26~29.
    [96] Grasselli G. 3D Behaviour of bolted rock joints: experimental and numerical study[J]. Int. J. Rock Mech. and Min. Sci.,2005,42 (1):13~24.
    [97] 黄福德,赵彦辉,李宁.预应力锚固机理数值仿真分析研究[J].西北水电,1996(1):8~17.
    [98] 李宁,赵彦辉,韩烜.单锚的力学模型与数值仿真试验分析[J].西安理工大学学报,1997,13(1):6~11.
    [99] 李宁,韩烜,陈飞熊.群锚加固机理与效果数值仿真试验研究[J].西安理工大学学报,1997,13(2):104~109.
    [100] 李宁,赵彦辉,韩烜,等.群锚对断层的加固机理分析及工程应用[J].西安理工大学学报,1997,13(3):210~215.
    [101] 李宁,陈飞熊,赵彦辉,等.预应力群锚加固机理数值试验研究[J].岩土工程学报,1997,19(5):60~66.
    [102] 谢和平.岩石混凝土损伤力学[M].北京:中国矿业大学出版社,1990.
    [103] 雷晓燕,李宁.接触摩擦单元新模型的理论与应用[J].华东交通大学学报,1993,10(2):1~8.
    [104] 刘钧.边界元法和有限法耦合分析在岩土力学中的应用[A].见:中国力学学会委员会.第一届全国计算岩土力学研讨会论文集[C].成都:西南交通大学出版社,1987.
    [105] 李瓒,夏颂佑,邓德生.洞、桩或其联合结构的工作性态分析[J].水力发电,1992(1):21~26.
    [106] 李同春,张丹,周桂云,等.洪家渡2号塌滑体加固抗滑桩及锚固洞有限元内力分析[J].河海大学,2004,32(2):168~171.
    [107] 印定安.4500kN大吨位OVM锚锚下应力分析[J].重庆交通学院学报,1994,13(1):14~23.
    [108] 庄茁,朱万旭,彭文轩,等.预应力结构锚固-接触力学与工程应用[M].北京:科学出版社,2006.
    [109] Cundall P.A. Formulation of a three-dimensional discrete element model, part Ⅰ: a scheme to detect and represent contact in a system composed of many polyhedral blocks[J]. Int. J. Rock Mech.and Min. Sci., 1988,25 (3): 107~116.
    [110] Itasca Consulting Group Inc. FLAC3D (Version 2.0) users manual[R]. USA: Itasca Consulting Group Inc., 1997.
    [111] 张二海,陈庆寿,冉恒谦.显式拉格朗日差分法在链子崖危岩体锚固工程中的应用[J].探矿工程,1998(6):36~39.
    [112] 胡焕校,刘静,佘重九,等.高速公路路堑边坡稳定模拟分析及治理措施[J].中南大学学报,2004,35(5):856~859.
    [113] 祁生文.边坡动力响应研究及应用[博士学位论文][D].北京:中国科学院地质与地球物理研究所,2002.
    [114] 丁秀丽,盛谦,韩军,等.预应力锚索锚固机理的数值模拟试验研究[J].岩石力学与工程学报,2004,21(7):980~988.
    [115] 张思峰,周健,宋修广,等.预应力锚索锚固效应的三维数值模拟及其工程应用研究[J].地质力学学报,2006,12(2):166~173.
    [116] 焦玉勇,葛修润,谷先荣.三维离散元法中的数据结构[J].岩土力学,1998,19(2):74~79.
    [117] 焦玉勇,葛修润,谷先荣.三维离散元法中地下水及锚杆的模拟[J].岩石力学与工程学报,1999,18(1):6~11.
    [118] 李世海,高波,燕琳.三峡永久船闸高边坡开挖三维离散元数值模拟[J].岩土力学,2002,23(3):272~277.
    [119] 刘爱华.节理裂隙岩体的离散元计算方法[J].中南大学学报,1995,26(4):452~456.
    [120] 朱维申,任伟中,张玉军,等.开挖条件下节理围岩锚固效应的模型试验研究[J].岩土力学,1997,18(1):1~7.
    [121] 谭云亮,姜福兴,范炜林,等.锚杆对节理围岩稳定性影响的离散元研究[J].工程地质学报,1999,7(4):361~365.
    [122] Chryssanthakis P., Barton N., Lorig L., etc. Numerical simulation of fiber reinforced shotcrete in a tunnel using the discrete element method[J]. Int. J. Rock Mech.and Min. Sci.,1997,34 (3/4):054~067.
    [123] Lin Chongde. Numerical analysis of truss bolt support in gateway(in Chinese)[J]. Journal of China coal society, 1995,20 (3):235~240.
    [124] Raffa F., Strona P. Boundary element method application to bolted joints analysis[J]. Engineering Analysis, 1984,1 (2):78~82.
    [125] Chahrour A.H, Ohtsu M. Analysis of anchor bolt pull-out tests by a two-domain boundary element method[J]. Material & Structures, 1995, 28 (178): 201~209.
    [126] Hocine K.,J. M. Roelandt,Laurent C. Dual boundary element method modelling of aircraft structural joints with multiple site damage[J]. Engineering Fracture Mechanics,2006, 73 (4): 418~434.
    [127] 郭兰波.锚杆支护问题的边界元分析法[J].淮南矿业学院学报,1984(1):1~20.
    [128] 李永和.开孔卸压与锚杆加固联合支护的边界元分析[J].岩石力学与工程学报,1988,7(3):237~247.
    [129] 朱浮声,李锡润,王泳嘉.锚杆支护的数值模拟方法[J].东北工学院学报,1989(1):1~7.
    [130] 谭学术,SydS.Peng.煤矿巷道底鼓及其预防方法的边界元模拟研究[J].重庆大学学报,1992(1):21~26.
    [131] 王燕昌.锚杆与围岩相互作用的一种边界元实用计算方法[J].宁夏大学学报,1996,17(2):16~19.
    [132] Shi G. H. Discontinuous deformation analysis: a new numerical model for the statics and dynamics of block system [Ph.D Thesis]. Berkeley: University of California, 1988.
    [133] Kim Y.I, Amadei B., Pan E. Modeling the effect of water, excavation sequence and reinforcement on tunnel stability[J]. Int. J. Rock Mech.and Min. Sci., 1998, 35 (4/5):681~682.
    [134] ChihsenT.L.,Bernard A.,Joseph J.,etc. Extensions of discontinuous deformation analysis for joint rock masses[J]. Int. J. Rock Mech.and Min. Sci., 1996, 33 (7):671~694.
    [135] Larbi Siad. Stability analysis of jointed rock slopes[J]. Computers and Geotechnics, 2001 (28):325~347.
    [136] 姜清辉,丰定祥.三维非连续变形分析方法中的锚杆模拟[J].岩土力学,2001,22(2):176~178.
    [137] Stillborg B. Experimental investigation of steel cables for rock reinforcement in hard rock[PhD thesis][D]. Sweden: Lulea Universityof Technology, 1984.
    [138] 车忠祥.风化辉长岩锚杆试验研究[A].见:中国岩土锚固工程协会.岩土工程中的锚固技术[C].北京:地震出版社,1992.
    [139] 程良奎,张作瑂,杨志银.岩土加固实用技术[M].北京:地震出版社,1994.
    [140] 朱焕春,吴海滨,赵海斌.反复张拉荷载作用下锚杆工作机理试验研究[J].岩土工程学报.1999,21(6):662~665.
    [141] 朱焕春,荣冠,肖明,等.张拉荷载下全长粘结锚杆工作机理试验研究[J].岩石力学与工程学报,2002,21(3):379~384.
    [142] 余坪,余渊.滑坡防治预应力锚索的试验研究[J].中国地质灾害与防治学报,1996,7(1):59~63,58.
    [143] 顾金才,明治清,沈俊,等.预应力锚索内锚固段受力特点现场试验研究[J].岩石力学与工程学报,1998,17(增):788~792.
    [144] 蒋忠信.拉力型锚索锚固段剪应力分布的高斯曲线模式[J].岩土工程学报,2001 23(6):696~699.
    [145] 盛宏光.压力分散型锚索锚固性能与设计方法研究[硕士学位论文][D].成都:成都理工大学,2003.
    [146] 黄福德.李家峡水电站层状岩质高边坡现场大型预应力群锚加固机理试验研究[J].西北水电,1995(4):46~55,60.
    [147] 黄福德.层状岩质高边坡预应力群锚加固机理研究[J].水力发电,1996(8):30~33.
    [148] 黄福德.高边坡群锚加固中锚索体的动态受力特征[J].西北水电,1997(4):33~37.
    [149] 黄福德,吕祖珩.预应力群锚高边坡增稳机理研究[J].西北水电,2000(4):49~52.
    [150] Benmokrane B., Chekired M., Xu H.X. Monitoring behavior of grouted anchors using vibrating-wire gauges [J].J. of Geotech. Eng., 1995,121 (6):466~475.
    [151] Brincker R. Analytical model for hook pullout[A]. In: Widmanned. Anchors in Theory and Practice[C]. Rotterdam: Balkema, 1995,3~18.
    [152] 程良奎.岩土锚固研究与新进展[J].岩石力学与工程学报,2005,24(21):3803~3811.
    [153] 曾宪明,雷志梁,张文巾,等.关于锚杆“定时炸弹”问题的讨论—答郭映忠教授[J].岩石力学与工程学报,2002,21(1):143~147.
    [154] 王天金.边坡破坏的三维模型试验及加固方案的选择[A].见:中国岩土锚固工程协会.岩土工程中的锚固技术[C].北京:地震出版社,1992.
    [155] 朱维申,张玉军,任伟中.系统锚杆对三峡船闸高边坡岩体加固作用的块体相似模型试验研究[J].岩土力学,1996,17(2):1~6.
    [156] 张玉军,刘谊平.锚固正交各向异性岩体的本构关系和破坏准则[J].力学学报,2002,34(5):812~819.
    [157] Kilic A.,Yasar E.,Celik A.G. Effect of grout properties on the pull-out load capacity of fully grouted rock bolt[J]. Tunnelling and Underground Space Technology, 2002 (17): 355~362.
    [158] Kilic A.,Yasar E.,Atis C.D. Effect of bar shape on the pull-out capacity of fully-grouted rockbolts[J]. Tunnelling and Underground Space Technology, 2003 (18):1~6.
    [159] 荣冠,朱焕春,周创兵.螺纹钢与圆钢锚杆工作机理对比试验研究[J].岩石力学与工程学报,2004,23(3):469~475.
    [160] 郭映龙,夏万仁.原状岩体锚固抗剪效应试验研究[A].见:中国岩土锚固工程协会.岩土工程中的锚固技术[C].北京:地震出版社,1992.
    [161] 顾金才,郑全平,沈俊,等.预应力锚索对均质岩体的加固效应模拟试验研究[J].华北水利水电学院学报,1994(3):69~76.
    [162] Benmokrane B., Chekired M., Xu H.X. Long-term service behaviour of cement grouted anchors in the laboratory and field[A]. In: Widmanned. Anchors in Theory and Practice[C]. Rotterdam: Balkema, 1995,395~403.
    [163] 张治强,张围,赵赤云,等.边坡预应力锚固结构的实验研究[J].东北大学学报,1999,20(5):536~539.
    [164] Wijk G. A theoretical remark on the field round prestressed rock bolts[J]. Int. J. Rock Mech.and Min. Sci.,1978,15 (6):289~294.
    [165] 顾金才,沈俊,陈安敏,等.锚索预应力在岩体内引起的应变状态模型试验研究[J].岩石力学与工程学报,2000,19(增):917~921.
    [166] 陈安敏,顾金才,沈俊,等.预应力锚索的长度与预应力值对其加固效果的影响[J].岩石力学与工程学报,2002,21(6):848~852.
    [167] 唐树名,曾祥勇,邓安福.预应力锚索群锚锚固边坡均质岩体的室内模型试验研究[J].中国公路学报,2004,17(3):20~24.
    [168] 陈安敏,沈俊,顾欣,等.自由式锚索和全长粘结式锚索加固效果比较模型试验研究[J].岩石力学与工程学报,2005,24(15):2689~2696.
    [169] 陈胜宏,强晟,陈尚法.加锚岩体的三维复合单元模型研究粘塑性有限元分析[J].岩石力学与工程学报,2003,22(1):1~8.
    [170] 陈胜宏,Egger P,熊文林.加锚节理岩体流变模型及三维弹粘塑性有限元分析[J].水利学报,1998(9):41~47.
    [171] G. Swoboda, M. Marence. FEM modeling of rockbolts[A]. In:Proc. Comp. Meth. and Adv. in Geomech. [C]. Rotterdam:A.A.Balkema, 1991,1515~1520.
    [172] G. Swoboda, M. Marence.Numerical modeling of rockbolts in intersection with fault system[A]. In:Proc. Numerical models in Geomechics[C]. Swansca: 1992, 729~738.
    [173] Ze-gan He, Sheng Qiang, Sheng-hong Chen, etc. Composite element method for jointed rock masses reinforced by hollow friction bolts[J]. Int. J. Rock Mech. and Min. Sci., 2004 (41):464.
    [174] F.S.Jeng, T.H. Huang. The holding mechanism of under-reamed rockbolts in soft rock[J]. Int. J. Rock Mech. and Min. Sci., 1999 (36):761~775.
    [175] 顾金才,沈俊,陈安敏,等.预应力锚索加固机理与设计计算方法研究[A].见:中国岩石力学与工程学会.第八次全国岩石力学与工程学术大会论文集-西部大开发中的岩石力学与工程问题[C].北京:科学出版社,2004.
    [176] 李铀,白世伟,朱维申.预应力锚索锚固效应的仿真试验与数值模拟研究[J]. 岩土力学,2004,25(增2):260~264.
    [177] Brahim Benmokrane, Haixue Xu, Eric Bellavance. Bond strength of cement grouted glass fibre reinforced plastic (GFRP) anchor bolts[J]. Int. J. Rock Mech.and Min. Sci., 1996, 33 (5):455~465.
    [178] Zelanko J.C,Karfakis M.G. Development of a polyester-based pumpable grout[J]. Int. J. Rock Mech.and Min. Sci., 1997, 34 (3/4):595.
    [179] Miller S.M. Evaluation of pullout resistance and direct-shear strength of grouted fiberglasss cable bolts[J]. Int. J. Rock Mech. and Min. Sci., 1998, 36 (4/5): 400~410.
    [180] Mahdi. Moosavi, Ahmad. Jafari, Arash. Khosravi.Bond of cement grouted reinforcing bars under constant radial pressure[J]. Cement & Concrete Composites, 2005 (27): 103~109.
    [181] 汪明武,王鹤龄.锚固质量的无损检测技术[J].岩石力学与工程学报,2002,21(1):126~129.
    [182] 许明,张永兴,李燕.锚杆动测问题的解析解[J].重庆建筑大学学报,2003,25(2):48~53.
    [183] 李义,刘海峰,王富春.锚杆锚固状态参数无损检测及其应用[J].岩石力学与工程学报.2004,23(10):1741~1744.
    [184] M.D. Beard, M.J.S. Lowe. Non-destructive testing of rock bolts using guided ultrasonic waves[J].Int. J. Rock Mech.and Min. Sci., 2003 (40):527~536.
    [185] Fumio Itoa, Fumiharu Nakaharab, Ryuichi Kawanoc, etc. Visualization of failure in a pull-out test of cable bolts using X-ray CT[J]. Construction and Building Materials, 2001 (15):263~270.
    [186] Erwin Gamboa, Andrej Atrens. Environmental influence on the stress corrosion cracking of rock bolts[J]. Engineering Failure Analysis, 2003 (10):521~558.
    [187] V. Deodeshmukh, A. Venugopal, D. Chandra, etc. X-ray photoelectron spectroscopic analyses of corrosion products formed on rock bolt carbon steel in chloride media with bicarbonate and silicate ions [J]. Corrosion Science, 2004 (46):2629~2649.
    [188] 葛修润,葛以敏,周玉瑛.岩土工程密实型索体预应力锚索[P].中国专利:CN1206420C,2005-06-15.
    [189] 中华人民共和国行业标准编写组.锚杆喷射混凝土支护技术规范(GB50086-2001)[S].北京:中国计划出版社,2001.
    [190] 中华人民共和国行业标准编写组.水工预应力锚固施工规范(SL 46-94)[S].北京:水利电力出版社,1994.
    [191] 崔政权,李宁.边坡工程-理论与实践最新发展[M].北京:中国水利水电出版社,1999.
    [192] 中华人民共和国行业标准编写组.水电水利工程预应力锚索施工规范(DL/T5083-2004)[S].北京:水利电力出版社,2004.
    [193] 赵长海.预应力锚固技术[M].北京:中国水利水电出版社,2001.
    [194] 程良奎.土层锚杆的几个力学问题[A].见:中国岩土锚固工程协会主编.岩土锚固工程技术[M].北京:人民交通出版社,1996.1~6.
    [195] 何思明,张小刚,王成华.预应力锚索的非线性分析[J].岩石力学与工程学报,2004,23(9):1535~1541.
    [196] 徐芝纶.弹性力学(第二版)[M].北京:人民教育出版社,1982.
    [197] 陈智纯,王泉祥,王晋平.材料力学[M].徐州:中国矿业大学出版社,1994.
    [198] 范宇洁,郑七振,魏林.预应力锚索锚固体的破坏机理和极限承载能力研究[J].岩石力学与工程学报,2005,24(15):2765~2769.
    [199] 徐祯祥,刘月芬.全长粘结型短锚杆的研究与应用[A].见:中国岩土锚固工程协会.岩土工程中的锚固技术[C].北京:地震出版社,1992.
    [200] 何君弼,黄福德.李家峡水电站高边坡加固实施中的若干问题[J].水力发电,1995(5):24~27,38.
    [201] 刘志明,王犹扬,陈文理,等.乌江构皮滩水电站尾水边坡稳定研究及优化设计专题报告[R].武汉:长江勘测规划设计研究院,2004.
    [202] 过镇海,时旭东.钢筋混凝土原理和分析[M].北京:清华大学出版社,2003.
    [203] 杨双锁,张百胜.锚杆对岩土体作用的力学本质[J].岩土力学,2003,24(增):279~282.
    [204] 朱焕春.某边坡锚杆应力状态测试与分析[J].岩土工程学报,2000,22(4):471~474.
    [205] 刘祖强,廖勇龙,朱全平.三峡永久船闸一期高边坡监测锚杆应力分析[J].长江科学院院报,2004,21(1):40~42,46.
    [206] 陈安敏,顾金才,沈俊,等.软岩加固中锚索张拉吨位随时间变化规律的模型试验研究[J].岩石力学与工程学报,2002,21(2):251~256.
    [207] 徐卫亚,杨圣奇,谢守益,等.绿片岩三轴流变力学特性的研究(Ⅱ):模型分析[J].岩土力学,2005,26(5):693~698.
    [208] 杨圣奇.岩石流变力学特性的研究及其工程应用[博士学位论][D].南京:河海大学,2006.
    [209] 陶波,伍法权,郭改梅,等.西原模型对岩石流变特性的适应性及其参数确定[J].岩石力学与工程学报,2005,24(17):3165~3171.
    [210] 徐卫亚,杨圣奇,褚卫江.岩石非线性黏弹塑性流变模型(河海模型)及其应用[J].岩石力学与工程学报,2006,25(3):433~447.
    [211] 徐卫亚,王环玲,杨圣奇,等.构皮滩水电站右岸拱肩槽下游山体边坡稳定性分析研究报告[R].南京:河海大学岩土工程研究所,2005.
    [212] 张发明,刘宁,陈祖煜,等.影响大吨位预应力长锚索锚固力损失的因素分析[J].岩土力学,2003,24(2):194~197.
    [213] 刘玉堂,翟金明,张勇.锚索的锈蚀、防护及永久锚索的合理结构[J].预应力技术,2005(1):18~27.
    [214] 孙金茂.桥梁用预应力钢丝钢绞线的防腐[J].金属制品,2000,26(3):5~9.
    [215] 陈肇元,钱家茹,谷书娥.工程科技论坛:土建结构工程的安全性与耐久性[C].北京:清华大学出版社,2001.
    [216] Augusto S. Sason. Evaluation of degree of rusting on prestressed concrete strand[J]. Journal of the Precast/Prestressed Concrete Institute, 1992,37 (3): 16~22.
    [217] Dimitri V. Val, Mark G. Stewart, Robert E. Melchers. Effect of reinforcement corrosion on reliability of highway bridges[J]. Engineering Structures,1998, 20(11):1010~1019.
    [218] 高大水,吴海斌,王莉.三峡船闸高边坡预应力锚索耐久性研究[J].岩土力学,2005,26(增2):126~130,135.
    [219] 吴海斌.国内预应力锚杆(索)防护要求与存在的问题[J].中国三峡建设,2002(8):13~15.
    [220] 李德水.预应力锚索在水利水电工程中的应用分析[J].人民珠江,2005(5):56~58.
    [221] Walton J. M. Developments in steel cables[J]. Journal of Steel Research, 1996, 39 (1):3~29.
    [222] Faber M.H, Engelund S, Rackwitz R.Aspects of parallel wire cable reliability[J]. Structural Safety, 2003,25 (3): 201~225.
    [223] 杨小平,刘荣桂,吕志涛.裂缝对预应力混凝土结构耐久性影响的试验研究[J].江苏大学学报,2002,23(6):90~94.
    [224] 王正,杜习伟.45MnSiV预应力筋的应力腐蚀[J].中国腐蚀与防护学报,1991,11(1):35~45.
    [225] 房贞政.预应力结构理论与应用[M].北京:中国建筑工业出版社,2005.
    [226] 黄润秋,严明,陈剑平,等.锦屏一级水电站枢纽区工程边坡稳定性及支护对策研究[R].成都:成都理工大学地质灾害防治与地质环境保护国家专业实验室,2005.
    [227] 周创兵,卢文波,姜清辉,等.锦屏一级水电站枢纽区左岸边坡稳定性分析及支护措施专题研究[R].武汉:武汉大学水资源与水电工程科学国家重点实验室,2005.
    [228] 杨俊志,冯杨文,余江洪,等.雅砻江锦屏一级水电站预应力锚索试验报告[R]. 成都:中国水电顾问集团成都勘测设计研究院四川准达岩土工程公司,2005.
    [229] 杨俊志,冯杨文.自由式单孔多锚头防腐型预应力锚索的研究与应用[J].预应力技术,2006(5):17~22.
    [230] 侯哲生,李晓,王思敬,等.金川二矿某巷道围岩力学参数对变形的敏感性分析[J].岩石力学与工程学报,2005,24(3):406~410.
    [231] 徐年丰.岩体锚索预应力筋材料强度利用系数探讨[J].人民珠江,2001,32(9):27~29.
    [232] 吕进.预应力塑料波纹管的应用前景[J].广东塑料,2005(10):57~59.
    [233] 长江水利委员会.湖北清江水布垭水电站马崖高陡边坡稳定性及处理措施研究[R].武汉:长江水利委员会,2005.
    [234] 程少荣,洪海春,季凡.马崖高陡边坡F_(158)断层整体性还原加固研究[J],人民长江(核心期刊,投稿).
    [235] 姚宝魁,盛祝平.地面岩体工程处理加固及稳定性评价新进展研究新进展[A].见:姚宝魁,孙广忠.地面岩体处理及加固研究新进展[M].北京:中国科学技术出版社,1993.1~13.
    [236] 王刘玲,王亚辉.龙滩水电站右岸坝肩锚固洞施工难点及对策[J].水力发电,2006,32(4):35~36.
    [237] 邓长贵,庹世华.瓦房城水库滑坡稳定性评价及治理设计[J].甘肃水利水电技术,2001,37(2):125~127.
    [238] Kalman K. History ofthe sprayed concrete lining method—part Ⅰ: milestones up to the 1960s[J]. Tunnelling and Underground Space Technology, 2003(18): 57~69.
    [239] Kalman K. History ofthe sprayed concrete lining method—part Ⅱ: milestones up to the 1960s[J]. Tunnelling and Underground Space Technology, 2003 (18): 71~83.
    [240] 储海宁,张德康.差阻式仪器的发展和应用[J].大坝与安全,2005(5):44~48.
    [241] 储海宁.大坝和岩土工程中埋设仪器选型问题的探讨[J].水电自动化与大坝监测,2006,30(1):39~44.
    [242] 汪小刚,杨健,贾志欣.雅砻江锦屏一级水电站拱坝、缆机平台及左岸导流洞进出口开挖边坡稳定性及支护设计研究[R].北京:中国水利水电科学研究院,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700