纳米PbTe高压下热电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要研究了纳米PbTe材料高压下的热电性能。利用400t四柱双缸液压机和自组建的测量装置测量了纳米PbTe的电导率和热电动势随压力的变化。结果表明,电导率随压力的增加而增大,而热电动势随压力的增加而减小,电导率的增加弥补了热电动势的减小,计算得到功率因子随压力的增加而增加。同时尝试利用热电的能带理论分析解释这种变化的原因。另外,通过第一性原理对材料的能带进行了计算,结果表明,两者吻合较好。最后,总结了论文的创新之处和对测试系统的改进展望。
     绪论部分回顾了高压物理的发展历史和常用的高压测试方法以及热电材料的基本性质和分类。首先讲述了高压物理的发展进程。其次介绍活塞圆筒和金刚石对顶砧下基本物性测量方法。再次给出了热电材料的三个基本性能以及表征热电材料优劣参数–热电优质ZT。
     第二章主要介绍400t四柱双缸液压机的历史、维修、调试和压力标定和高压下热电材料的研究进展。首先对400t四柱双缸大压机的历史做一介绍,其次详细描述大压机油路系统、电气控制系统的原理,接着给出大压机加压、卸压过程和压力标定等部分恢复和调试的详细步骤。其中重点讲述了一种高压定标所用Bi丝制备的新方法–毛细玻璃管吸附法、关键设备–电极塞头的装配、电气控制系统的改进、自我摸索的一套标准操作流程和高压下热电材料的研究历史。
     第三章介绍纳米PbTe热电材料的制备、高压下热电性能、第一性原理对费米面的计算等。首先讲述了在400t四柱双缸大压机下测量材料热电性能遇到的问题和解决的办法。其次详细介绍了纳米PbTe材料的水浴制备方法。再次给出了高压下的测量结果。结果表面,电导率随压力的增加呈指数级增加,而热电动势随压力的增加线形减小,材料的功率因子随压力的增加而增加。在0.8GPa下,增幅达到3倍;同时利用热电理论,预计材料相变前,功率因子的增幅能够达到30倍之多。最后,利用第一性原理计算了材料简约费米能级随压力的变化并同热电理论的结果作一比较,吻合较好。
     第四章总结了本论文的创新之处并对下一步的工作作出了展望。
This work is mainly about the thermoelectric prosperities of nano-particle PbTeunder high pressure. The electrical conductivity and the Seebeck coefficients underhigh pressure were measured by using a piston cylinder type vessel could be operatedin two directions via 400t hydraulic press with double pistons and four pillars (PVHP)and a self- equipment. The results show: the electrical conductivity increase whilethe Seebeck coefficients decrease with the loading pressure. The increase of electricalconductivity makes up for the decrease of Seebeck coefficients. The calculated PowerFactor increases with loading pressure. The energy-band of thermoelectric theory istried to explain the phenomena. At the same time, the energy-band of PbTe was cal-culated based on the first principle. The measured and calculated results suggest theyhave good consistence. At last, we summarize the innovations and give the prospect
     In the introduction, the development history of high-pressure physics, commonmeasuring method at high pressure as well as the basic properties and the categoriesof thermoelectric are introduced. Firstly, the history of high pressure introduced. Sec-ondly, the measurement under Piston-Cylinder and Diamond Anvil Cell (DAC) areintroduced respectively. At last, the three elementary properties of thermoelectric ma-terials and the Pros and cons parameters: thermoelectric merit ZT are given.
     The second chapter introduces the history of 400t high-pressure machine, main-tenance, debugging, pressure calibration and the progress of thermoelectric propertiesunder high pressure. The history of the 400t high-pressure machine is introduced atfirst; secondly, the principles of hydraulic pressure system and controlling circuit ofhigh-pressure machine are described. Then the detailed stepping up, stepping downand pressure calibration processes are given. Especially, the new method to prepare Bithread, the setup of electrode chock plug, the innovation of the controlling circuit, astandard operations and the progress of thermoelectric properties under high pressure
     The third chapter mainly describes the preparation of nano-particle PbTe, the ther-moelectric proprieties under high pressure, the calculation based on the first principle.First are the problems and the solutions of thermoelectric properties under PVHP. Sec-ond is the preparation of nano-particle PbTe by using low temperature aqueous chem-ical route. Third are the results of sample under high pressure. The results suggest the electrical conductivity increase exponentially while Seebeck coefficients decreaselinearly with pressure. The Power factor increase with loading pressure and it is threetimes under 0.8GPa than at ambient pressure. It is predicted that the power factor reachto 30 times than at ambient pressure before phase transition according to thermoelec-tric theories. At last, the contracted Femi energy calculated based on first principle hasa good Consistency with the result by using thermoelectric theories.
     At the last, the main work and creative points of this thesis is concluded, and thefuture work in prospect is given.
引文
[1]网络版.物理学简史. 2002
    [2] Bridgeman. The physics of high pressure,G.BELL and SONS,LTD,LONDON,. 1931
    [3] Perkins J. On the progressive compression of water, volume 20. 1819
    [4] O.Chwolson. U′ber den ein?uss des druckes auf den electrischen leitungswiderstand vonmetall-dra`hten. Bull. St. Pet. Acad, 1881, 27:187–212
    [5] W.C.Roentgen. U′ber den ein?uss des druckes auf die dielectricita′ts-constante des wassersund des aethylalkohols. Wied.Ann, 1894, 52:593
    [6] Condres T. U′ber den thermoelectrische eigenschaften des quecksilber und der sehurverdu′nnten amalgame. ibid, 1891, 43:673–699
    [7] A.Lafay. Sur la mesure des pressions e′leve′es de′duite des variations de resistivite′des conduc-teurs soumisa` leur action. Wied.Ann, 1909, 149:566–569
    [8]丁泽军.超高压物理实验技术. 2002
    [9]赵亚军,胶体MoS2的高压拉曼光谱和阻抗特性研究:硕士论文.合肥:中国科学技术大学, 2006
    [10] A.Jayaraman. Diamond anvil cell and high-pressure physical investigations. Rev.Mod.Phys,1983, 55
    [11] Sergey V.Ovsyannikov T F Y U, Vladimir V.Shchennikov. Pressure-induced transition in aheavy fermion ybpd 2 si 2. Journal of Physics and Chemistry of Solids, 2008, 69:2301–2306
    [12] Z.H.Dughaish. Lead telluride as a thermoelectric material for thermoelectric power genera-tion. Physica B, 2002, 322:205–223
    [13]邢学玲,闵新民.钴酸盐类氧化物热电材料的研究进展.材料导报, 2006, 20:47–53
    [14]姜洪义,王华文,任卫. Si ge热电材料的发展与展望.材料导报, 2007, 21:119–121
    [15]胡安徽,杨君友. Skutterudite热电材料的最新研究进展.材料导报, 2007, 21:37–38
    [16]周金金,张文丽.热电材料的现状及特点.河北理工大学学报(自然科学版), 2009, 31
    [17] KangYS N Y, NiinoM. Development and evaluation of 3-stage segmented thermoelectricelements. XVII international conference on thermoelectrics, proceedings ict 98, 1998, pages429–432
    [18]苏昉,车荣钲.流体静高压容器泄漏原因分析及预防措施.中国科学技术大学学报,1991, 3
    [19]苏昉,黄丁.四种非晶磁性合金在流体静高压下的磁化特性.高压物理学报, 1993, 7
    [20]苏昉,苏俊.七种非晶铁磁合金的体积磁致伸缩研究.高压物理学报, 1994, 8
    [21]苏昉.石油醚在流体静高压下的超声声速、衰减、密度和绝热压缩系数.高压物理学报,1994, 2
    [22]苏昉.高聚物(peo)n-cubr2薄膜在流体静高压下的介电常数研究.高压物理学报, 1995,44
    [23]苏昉,苏俊.流体静高压原位磁测量的误差研究(一)――漏磁场的影响.高压物理学报, 1998, 12
    [24]苏昉,苏俊.流体静高压原位磁测量的误差研究(二)――退磁场的影响.高压物理学报, 1998, 12
    [25]苏昉,苏俊.流体静高压原位磁测量的误差研究(三)――综合兼顾两种影响.高压物理学报, 1999, 13
    [26]张书霞,胡娟,李丹,丁立业,寇自力.一种压力标定所用铋丝的制备新方法.超硬材料工程, 2006, 18
    [27]车荣钲. 30kbar流体静压力微型压力计及其压力校正.中国科学院物理研究所高压实验室, 1982
    [28] Birch F. Thermoelectric measurement of high temperatures in pressure apparatus. R.S.I, 1939,10:137–140
    [29] P.link P, D.Jaccard. The thermoelectric power of cepd2si2 and cecu2ge2 at very high pressure.Physica B, 1996, 225:207–213
    [30] D.A.Polvani M J, J.F.Meng. Measurement of the thermoelectric power of very small samplesat ambient and high pressures. REVIEW OF SCIENTIFIC INSTRUMENTS, 1999, 70:3586–3589
    [31]宿太超,高性能热电材料的高温高压合成研究:博士论文.吉林:吉林大学, 2009
    [32] T.J.Zhu,Y.Q.Liu,X.B.Zhao. Synthesis of pbte thermoelectric materials by alkaline reducingchemical routes. Materials Research Bulletin, 2008, 43:2850–2854
    [33] WeixinZhang L. Synthesis of nanocrystalline lead chalcogenides pbe(e=s,se or te) from alka-line aqueous solutions. Materials Research Bulletin, 2000, 35:2009–2015
    [34] K.Seeger. Semiconductor physics-an introduction. 2004, 3
    [35] YiWang,XinChen,TianCui,YingliNiu,YanchaoWang,MeiWang,YanmingMa,GuangtianZou.Enhanced thermoelectric performance of pbte within the orthorhombic pnma phase. PHYSI-CAL REVIEW B, 2007, 76:260–266
    [36] Z.Nabi A N, B.Abbar. Pressure dependence of band gaps in pbs, pbse and pbte. Computa-tional Materials Science, 2000, 18:127–131

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700