大相岭隧道断层破碎带大变形预测及控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文基于交通部科研项目“大相岭隧道岩爆及大变形控制技术研究”,采用理论研究、监控量测与离散元数值模拟等方法,对大相岭隧道穿越高地应力断层破碎带的大变形发生机理进行了研究,在此基础上提出了高地应力断层破碎带围岩量变形预测的方法,并编制了相关的预测程序。另外本文还分析了大相岭隧道穿越断层破碎带的支护的安全性,并且进一步优化了支护结构。
     本文研究的内容主要从以下几个方面展开:
     (1)结合国内外对于软弱围岩大变形研究的现状和断层破碎带围岩的变形特点,总结出围岩大变形发生的机理及常见的大变形的判据,进而选取出本文所使用的断层破碎带围岩大变形的判据。
     (2)本文应用GA遗传算法来训练BP人工神经网络,充分发挥了GA算法的全局搜索优化的能力及BP神经网络算法的局部搜索优化的能力,综合二者的长处编制了大相岭隧道高地应力断层破碎带围岩变形量的预测程序GA—BP神经网络遗传算法,并且与工程实测值进行对比,论证了其的实用性。
     (3)由于高地应力断层破碎带的地质条件极其复杂,围岩极其破碎,为了有效的模拟断层破碎带围岩的工程力学特性,本文使用了三维离散元软件3DEC来进行数值模拟计算,分析了大相隧道的断层破碎带围岩的变形、受力特征,引入了剪切滑移区的概念来进一步分析围岩发生大变形的机理。
     (4)本文针对大相岭隧道支护设计方面存在的问题,从锚杆的长度、纵向间距、隧道的断面形状以及支护施作的时机等方面展开可支护的优化工作,为今后的高地应力断层破碎带围岩的支护设计提供了有效的参考。
By taking of the Ministry of Transportation western transportation construction technology project " Study on Daxiangling Tunnel Rock Blasting and Large Deformation Control Technology", the site monitoring measurement, theoretical analysis and three-dimensional numerical simulation were carried out to investigate the high ground stress fault fracture zone deformation mechanism in the key controlling project of Yaxi highway—Daxiangling deep and extra-long tunnel.
     In this paper, the method of fault fracture zone deformation prediction has been proposed, and the forecasting process has been programmed. In addition, the security of Daxiangling Tunnel support through the fault fracture zone was analyzed and the supporting structure was further optimized.
     The main research results was following:
     (1) Combination of weak surrounding rock deformation to study the status and fault broken with the surrounding rock deformation characteristics, summed up the mechanism of surrounding rock mass deformation and large deformation criterion, and then select the large deformation criterion of this article.
     (2) In this paper, Training the BP neural network by GA genetic algorithm, and give full play to the ability of local search optimization of the global search optimization of the GA algorithm and BP neural network algorithm, the integrated superiorities of both the preparation of Daxiangling tunnel's high ground stress fault fracture zone rock mass deformation prediction program GA-BP neural network genetic algorithm and contrast to demonstrate its practicality of the project measured.
     (3) Due to the fault fracture zone of high field stress is extremely complex geological conditions, the surrounding rock is extremely broken, in order to effectively simulate faults with the surrounding rock engineering mechanical properties, using the three dimensional discrete element software3DEC numerical simulation, analysising the mass deformation characteristics of Daxiangling tunnel and stress characteristics, For further analysis of surrounding rock major deformation mechanism the paper recommended of the concept of shear slip zone.
     (4) Large relative to the tunnel support design problems in the Bolt length, vertical spacing optimization, the cross sectional shape of the tunnel as well as support facilities for the timing to provides a valid reference point for the future high ground stress fault fracture zone rock mass support designing.
引文
[1]陈伟君.雅泸高速公路泥巴山隧道及断层涌突水预测研究[D].西南交通大学硕士学位论文.2009.
    [2]刘中华.雅泸高速大相岭泥巴山隧道围岩大变形研究[D].西南交通大学硕士学位论文.2006.
    [3]谢俊峰等.火车岭隧道软弱围岩大变形特征及机理分析[J].武汉科技大学学报.2007,,30(6).
    [4]张磊等.特大断面过江隧道围岩变形与控制对策研究[J].西部探矿工程.2009.,8(134).
    [5]吴逸.大巴山隧道岩爆及大变形的综合集成预测研究[D].成都理工大学硕士学位论文.2011.
    [6]刘强.关于隧道塌方防治[J].中国科技纵横.2011,13(1).
    [7]吴丹泽.安远隧道软弱围岩大变形机理分析及其处治技术研究[D].长安大学硕士学位论文.2011.
    [8]张志强等.高地应力条件下隧道大变形的数值模拟分析[J].岩石力学与工程学报.2000.,19(957-960).
    [9]李群善等.大相岭深埋特长隧道场区高应力场三维数值反演[J].铁道标准设计.2009(5).
    [10]姜云等.隧道工程围岩大变形类型与机制研究[J].地质灾害与环境保护.2004(4).
    [11]吕天启等.砂砾软岩的极限承载力分析[J].岩石力学与工程学报.2005(11).
    [12]刘泮兴.高地应力软岩隧道大变形机理及位移控制基准[D].石家庄铁道大学硕士学位论文.2006.
    [13]喻渝.挤压性围岩支护大变形的机理及判定方法[J].世界隧道,1998(1):46-51.
    [14]张洋.隧道工程软弱围岩大变形控制体系研究[D].西南交通大学硕士学位论文.2006.
    [15]刘志春等.挤压性围岩隧道大变形机理及分级标准研究[J].岩土工程学报.2008(5):690-697.
    [16]贺建民等.隧道围岩稳定性及安全性分析的位移判别方法[J].矿业安全与环保.2001(5).
    [17]王希宝.都汶公路龙溪隧道围岩大变形机制及防治研究[D].成都理工大学硕士学位论文.2008.
    [18]Muirwood.A.M.Tunnels for roads and motorways.Quarterly Journal of Engineering Geology.1972.5:119-120.
    [19]KimuraF ·okabayashiN&kavamoto T.Tunneling Through Squeezing Rock in Two Large Fault Zone of Enasan Tunnel 11.Rock Mechanics and Rock Engineeer 20.1987:151-166.
    [20]R.Yoshinaka, M. Osada, T. V. Tran. Deformation Behavior of Soft Rocks during Consolidated-Undrained Cyclic Triaxial Testing[J]. Int.J.Rock Mech.Min.Sci. & Geomech. Abstr.,1996, vol.33(6):557-572.
    [21]R.Yoshinaka,M. Osada.T. V. Tran. Non-linear Stress and Strain - Dependent Behavior of Soft Rock under Cyclic Triaxial Conditions[J].Int.J.Rock Mech. Min. Sci.1998. vol. 35(7)941-955.
    [22]Pietro Lunardi. Design and Construction of Tunnels.[M]Springer, April 2008.
    [23]Pietro Lunardi. The cellular arch method:technical solution for the construction of the Milan railway's venezia station[J]. Tunneling and Underground Space Technology, Volume 5, Issue 4,1990, Page:351-356.
    [24]Yano, T. Yamada, N. Suzuki, I. Construction of The Enasan Tunnel &the design of the second stage[C]. Pergamon Press, New York, NY. May 29,1978 - June 2,1978.
    [25]周明.大变形破碎岩体中锚杆的支护作用及应用技术研究[D].西南交通大学硕士学位论文.2010.
    [26]杨进军等.对大变形隧洞复合衬砌结构的研究[J].西部探矿工程.2008,11:187-190.
    [27]何满潮等.大变形数值方法在软岩工程中的应用探讨[J].煤矿支护.2002.,4:1-6.
    [28]卞国忠.浅谈隧道围岩大变形的判据及处理措施[J].科学技术通讯.1998.2:15-17.
    [29]中华人民共和国交通部.JTG D70-2004公路隧道设计规范[S].北京:人民交通出版社,2004.
    [30]关宝树.隧道工程施工要点集[M].北京:人民交通出版社.2003.
    [31]刘泮兴等.锚杆支护在整治高地应力软岩隧道大变形的效应分析[J].石家庄铁道学院学报.2006(1).
    [32]齐明山等.隧道围岩压力的弹塑性新解[J].土工基础.2006(2).
    [33]徐林等.公路隧道围岩变形破裂类型与等级的判定[J].重庆交通学院学报.2002(02).
    [34]田振刚.青兰高速鼓山隧道现场围岩分级研究[J].交通世界.2010(3).
    [35]宋建波等.剪切破坏模式下均质岩基极限承载力的Bell解[J].岩石力学与工程学报.2002(3).
    [36]张俊峰.大相岭隧道岩爆灾害分阶段预测与控制技术研究[D].西南交通大学硕士学位论文.2010.
    [37]郝中华.BP神经网络的非线性思想[J].洛阳师范学院学报.2008(4).
    [38]郭红霞.基于BP神经网络的物流需求量预测框架设计[J].铁道运输与经济.2007(11).
    [39]张黎明.基于CMY与染料浓度关系假设的数值分析织物染色配色研究[D].青岛大学硕士学位论文.2010.
    [40]Lapedes A and Farber R, Genetic Data Base Analysis With NeuralNetworks, In:IEEE Conference on Neural Information Processing Systems — Nature and Synthetic.1987.
    [41]Weigend And reas S. Huberman B A, Rumelhart D E. Predicting the Future:A Connectionist Approach.Int.Journal of Neuralsystems.1990(1):193 - 209
    [42]Grassberger P,Procaccia I. Dimension and Entropy of Strange Attractors from a Fluctuating Dynamic Approach.Physica,1984,13D:34-54
    [43]Fuminori Kimura, Nobuyuki Okabayashi and Toshikazu Kawamoto.Tunnelling through squeezing rock in two large fault zones of the Enasan Tunnel II [M]. Japan Highway Public Corp, Jpn, Japan Highway Public Corp. Jpn. Jul-Sep 1987
    [44]Triclot J.; Rettighieri M.; Barla G. Large deformations in squeezing ground in the Saint-Martin La Porte gallery along the Lyon-Turin Base Tunnel[J], Proceedings and Monographs in Engineering, Water and Earth Sciences.2007:1093-1097
    [45]Borca, Thierry. Investigatory tunnel under way for Lyon-Turin high speed link[J]. World Tunnelling.2002,15(8):391-392
    [46]Poti, PaoloBrino, Lorenzo Need and design of the cooling system both in the excavation phase and in the basic tunnel operation phase of the new Turin-Lyon railway line[J]. Ingegneria Ferroviaria.2011,66(6):551-564
    [47]Paolo Poti, InggLorenzo, Brino. The new Turin-Lyon railway line The electric plants[J]. Ingegneria Ferroviaria.2009,64(5):439-453
    [48]Zbinden, Peter Gotthard base tunnel:Testing system for concrete mixtures[J]. Beton-und Stahlbetonbau.2007,102(1):11-18
    [49]徐鹏.遗传算法在TSP问题中的应用[J].科技广场.2011(3).
    [50]赵文红等.一种新颖的函数优化进化算法[J].控制理论与应用.2009(3).
    [51]陈志高等.遗传算法和BP神经网络在GDP预测中的应用[J].计算机与数字工程.2009(9).
    [52]丁祥等.堡镇隧道围岩变形的神经网络预测[J].石家庄铁道学院学报.2007(1).
    [53]彭祥国等.BP网络最佳维数建模法在变形时序预测中的应用[J].大地测量与地球动力学.2009(6).
    [54]徐林生.通渝隧道围岩变形的神经网络预测[J].岩土工程技术.2004(3).
    [55]孙帆等.基于MATLAB的BP神经网络设计[J].计算机与数字工程.2007(8).
    [56]王震宇等.基于BP神经网络的石油企业核心竞争力评价[J].西南石油大学学报社会科学版.2010.,3(6).
    [57]白雪飞.大相岭隧道超前地质预报研究[D].西南交通大学硕士学位论文.2009.
    [58]马万权等.神经网络技术在阳宗隧道围岩变形预测中的应用[J].公路交通技术.2003(2).
    [59]郑清.山岭隧道震害分析及洞口段地震动力响应研究[D].西南交通大学硕士学位论文.2010.
    [60]吴鑫等.深部高应力巷道钻孔卸压的3DEC模拟分析[J].煤矿安全.2008(10).
    [61]史昌盛.隧道开挖数值模拟过程中荷载释放率的确定[J].铁道建筑技术.2008.
    [62]Muller Salzburg Land Fecker E.1978.Philosophy and basic principlec of the New Austrian Tunneling Method in Grundlagen and Anwendung der Fels.Mechanik Kolloquim Karlsruha.Frabs Tech:Publications Clausthal 1978.P.247-262.
    [63]朱汉华等.隧道新奥法原理与发展[J].隧道建设.2008(1).
    [64]李凝等.软岩巷道支护技术调研[J].煤炭工程.2003(8).
    [65]孙钧.地下工程设计理论与实践[M].上海:上海科学技术出版社,1996.
    [66]何满.深部软岩工程大变形力学分析设计系统[J].岩石力学与工程学报.2007,.26(5).
    [67]赵晓勇.软岩隧道钻爆法施工扰动范围的研究[D].北京交通大学硕士学位论文.2008.
    [68]房倩.高速铁路隧道支护与围岩作用关系研究[D].北京交通大学硕士学位论文.2010.
    [69]张伟.钢筋网壳锚喷结构在软岩巷道的支护机理与应用[D].西南交通大学硕士学位论文.2007.
    [70]郭富利等.地下水和围压对软岩力学性质影响的试验研究[J].岩石力学与工程学报.2007(11).
    [71]徐长春.高地热、高地应力条件下的隧道的力学行为及工程措施研究[D].重庆交通大学硕士学位论文.2009.
    [72]Bratschi, Oliver.The railway equipment of the Gotthard base tunnel[J].ZEV Rail Glasers Annalen.2008,132(10):447-450.
    [73]Gehriger.Willy Switzerland's project for modern railway crossings of the Alps and details of the Gotthard base tunnel[R].Proceedings-Rapid Excavation and Tunneling Conference.1993:1211-1233.
    [74]Rehbock-Sander.Gotthard Base Tunnel:Work progress at the five construction sections[R]."Proceedings of the33rd ITA-AITES World Tunnel Congress - Underground Space - The 4th Dimension of Metropolises".2007.2:1223-1228.
    [75]R. Yoshinaka.M. Osada.T. V. Tran. Deformation Behavior of Soft Rocks during Consolidated-Undrained Cyclic Triaxial Testing[J]. Int.J.Rock Mech.Min.Sci. & Geomech. Abstr,1996,vol.33(6):557-572.
    [76]R.Yoshinaka.M.Osada,T. V. Tran. Non-linear Stress-and Strain - Dependent Behavior of Soft Rock under Cyclic Triaxial Conditions[J]. Int. J. Rock Mech.Min.Sci..1998.vol.35 (7):941-955.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700