土朱矿上保护层开采保护范围及瓦斯运移规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤与瓦斯突出是煤矿最为严重的灾害之一,而保护层开采是防治煤与瓦斯突出的有效措施。本文结合了弹塑性力学、岩体力学、渗流力学等相关理论,以土朱矿上保护层开采为工程背景,分析了上保护层开采后,底板岩层的应力分布、移动变形、被保护层渗透率分布,在此基础上研究了上保护层开采的保护范围及瓦斯运移规律。
     在前人的基础上,运用弹塑性力学,建立采场底板力学模型,分析得出了采场底板应力变化、位移变化规律及被保护层渗透率分布规律。
     (1)在远离采空区的地方不受采动影响为原始应力区;在采空区两端煤柱上,产生了应力的集中为应力集中区;在采空区下方一定范围内,应力是降低的为应力降低区,并随着工作面的推进采空区后方应力逐渐恢复。随着层间距的增加,采动对底板的影响不断减少。
     (2)分析了采场底板岩层位移变化情况,在应力集中区岩层下沉,在应力降低区岩层发生底鼓现象,在采空区底板下方被保护层处最大位移量超过100mm,并且位移量随着层间距的增加而减少。
     (3)对土朱煤矿保护范围进行了分析,并拟合了上保护层开采保护范围曲线,指出土朱矿3煤开采后,沿走向方向卸压角在39.4°~69.8°之间,倾斜方向卸压角为75.43°左右。
     (4)通过应力与渗透率的关系得出了保护层开采后土朱矿5煤层渗透率的分布规律,并分析了瓦斯流动通道。
     分别利用FLAC3D软件、COMSOL软件对土朱矿保护层开采过程中围岩应力、位移的变化规律及被保护层瓦斯运移规律进行了数值模拟。
     (1)模拟了土朱矿上保护层开采过程中底板应力变化及位移变化规律,并根据底板应力的分布划定了保护范围,在走向方向上卸压角为52.36°~61.89°;在倾斜下方为73.2°,倾斜上方为74°。
     (2)模拟土朱矿上保护层开采过程中,被保护层瓦斯运移规律。开采20m后,被保护层最低瓦斯压力降低到了1.125MPa;开采40m时,被保护层最低瓦斯压力降低为0.65MPa;开挖60m后,被保护层最低瓦斯压力降低到了0.5MPa。
     针对土朱煤矿的实际情况,设计了土朱矿上保护层开采的观测方案,分析了保护层—3煤开采过程中,被保护层应力及瓦斯压力的变化规律,并划定了保护范围,沿走向卸压角为53.7°~65°,沿倾斜卸压角为74.9°左右。这与理论分析及数值模拟对比:是吻合的。从而为今后运用理论分析、数值方法预测突出矿井保护层开采效果奠定了基础。
Coal and gas outburst is one of the worst disasters in coal mine, the implementation of protective mining is effective measures to prevent coal and gas outburst in coal mine with condition. Combined with the elastic-plastic mechanics, rock mechanics, fluid dynamics and related theories, taking the TuZhu upper protective layer’s mining as the engineering background, this paper analyzes the stress distribution of the floor strata, movement and deformation and the protected layer’s permeability distribution after the upper protective layer’s mining, on the basis of which the scope of protection and the gas migration law of the upper protective layer’s mining is studied.
     based on the former,the paper used elastic-plastic mechanics to establish the mechanical model of stope floor and obtained the stress variation,displacement change and protectived layer permeability distribution of stope floor.
     (1) the place far from goaf where is primitive stress area does not suffer from Mining influence; both ends coal pillar of goaf where is stress concentrated area the stress produced concentration; in a certain range under goaf where is stress decreasing area, the stress is lower, and with work face advancing, the area behind of goaf stress recover gradually. Along with the increase of the lamellar spacing, the influence of mining to floor is dwindled.
     (2) Analyzed the displacement change of stope floor rock.in the stress concentrated area,the stope floor rock is sinking;in the stress decreasing area, the stope floor rock is heave. The maximal displacement of protected layer under the goaf More than 100mm and Along with the increase of the lamellar spacing the displacement is decreasing.
     (3) Analyzed the scope of protection of Tu-zhu mine and obtained the fitting curve of the scope of upper protective layer, pointed out that after the exploitation of Tu-zhu coal seam 3, released angle along the strike direction ranged from 39.4°~ 69.8°, the sloping direction was 75.43°or so.
     (4) Obtained the distribution of permeability in Tu-zhu coal seam 5 through the relationship between stress and permeability, and analyzed the gas flow channel.
     FLAC3D software and COMSOL software were used to simulate the surrounding rock stress and displacement variation and gas migration during the protection layer mining of Tu-zhu mine.
     (1) Simulate the displacement variation of stress and stress distribution under the floor when mining the upper protective layers. based on the displacement variation of stress and stress distribution under the floor, delineated the released angle, in the direction of trend, the released angle range from 52.36°~61.89°; in the sloping direction, the released angle of lower is 73.2°, the released angle of top is 74°
     (2) Simulate the Tu-zhu mine upper protective layer of during the mining, and gas migration law in protective layer. Exploitation of 20m, the minimum gas pressure in protective layer was reduced to 1.125MPa; exploitation of 40m, the minimum gas pressure in protective layer was reduced to 0.65MPa; excavation of 60m, the minimum gas pressure in protective layer was reduced to 0.5MPa.
     According to the actual situation of TuZhu coal mine, the paper designs the observation program of the TuZhu upper protective layer’s mining, analyzes the protective layer, the protected layer’s stress and change law of the gas pressure in the process of 3 coal mining, and designates the protection range that along the alignment the relief angle is 53.7°~ 65°and along the slope the relief angle is 74.9°around. With the comparison of the theoretical analysis and the numerical simulation, it is shown that the results are consistent. this laid a foundation for using methods of theoretical and numerical to predict protective effect of coal and gas outburst mines in the future.
引文
[1]程伟.煤与瓦斯突出危险性预测及防治技术[M].徐州:中国矿业大学出版社,2003.
    [2]马丕梁.煤矿瓦斯灾害防治技术手册[M].北京:化学工业出版社,2007.4
    [3]胡千庭.煤矿瓦斯抽采与瓦斯灾害防治技术[M].徐州:中国矿业大学出版社,2007.11
    [4]中国煤炭教育协会职业教育教材编审委员会.矿井通风与安全[M].北京:煤炭工业出版社.
    [5]毕业武.保护层开采对煤层渗透性规律影响研究[D].辽林工程技术大学,2005.
    [6]周红星,程远平,谢战良计算机模拟确定瓦斯抽放有效半径的方法研究[J].能源技术与管理,2005,(4),81-82.
    [7]李化敏,张卫东,李东印,魏建平.提高河南煤矿防灾抗灾能力探讨[J].河南理工大学学报,2006,25(6),438-442.
    [8]王晓亮.煤层瓦斯流动理论模拟研究[D].山西,太原理工大学,2003.
    [9]乔晓娇.瓦斯发电工程CDM补贴经济可行性分析[J].山西焦煤科技,2010,(8)11-13.
    [10]程远平,俞启香,袁亮.上覆远程卸压岩体移动特性与瓦斯抽采技术[J].辽林工程技术大学学报,2003,22(4),483-486.
    [11]李树刚,钱高鸣,许佳林,谬协兴.对我国煤层与瓦斯共采的几点思考[J].煤, 1999,8(2),4-6.
    [12]胡千庭.矿井瓦斯防治技术优选—煤与瓦斯突出和爆炸防治[M].徐州:中国矿业大学出版社,2008.
    [13]姚军朋,贾澄冰,张子敏.近距离保护层开采瓦斯治理效[J].煤炭科学技术,2008,36(1)53-56.
    [14]贾天让,江林华,姚军朋,等.近距离保护层开采技术在平煤五矿的实践[J].煤炭科学技术, 2006 (12),23-25.
    [15]俞启香,程远平,蒋承林,周世宁.高瓦斯特厚煤层煤与卸压瓦斯共采原理及实践[J].中国矿业大学学报,2004,33(2),127-131
    [16]易丽军,俞启香.低透气性煤层瓦斯抽采增流技术[J].矿业安全与环保,2005,32(2):46-48.
    [17]程远平,周德永,俞启香,周红星,王海锋.保护层卸压瓦斯抽采及涌出规律研究[J].采矿与安全工程学报,2006,23(1):12-17.
    [18]李白英.预防底板突出的理论与实践[C].矿山岩层与地表移动学术讨论会论文集(第四分册),1986.
    [19]李百英,沈光寒等.预防底板突水的理论与实践[C].第22届国际采矿安全会议论文集.北京:煤炭工业出版社,1987.
    [20]王作宇,刘鸿泉.承压水上采煤[M].北京:煤炭工业出版社,1993.
    [21]杨善安.采场底板突水及其防治方法.煤炭学报[J].1994,(6):620-625.
    [22]施龙青,韩进.底板突水机理及预测预报[M].北京:中国矿业大学出版社,2004.
    [23] [马雷舍夫,艾鲁尼,胡金,博利申斯基.煤与瓦斯突出预测方法和防治措施[M].煤炭工业出版社,2003.
    [24]刘林.开采保护层保护效果及范围的数值模拟研究[J].矿业安全与环保,2005,32(6):6-9.
    [25]吴骏锟,赵旭生,李秋林.大湾煤矿保护层开采数值模拟研究[J].矿业安全与保,2007,34(1),6-10.
    [26]涂德汉.保护层的保护范围和效果的研究[J].煤炭技术,2008,27(7):63-64.
    [27]胡国忠,王宏图,范晓刚,李晓红,邓寅,沈永红.俯伪斜上保护层保护范围的瓦斯压力研究[J].中国矿业大学学报,2008,37(3):328-332.
    [28]胡国忠,王宏图,范晓刚.急倾斜俯伪斜上保护层保护范围的三维数值模拟[J].岩石力学与工程学报,2009,28:2845-2852.
    [29]黄旭超,林青,程丽.关于远距离上保护层开采卸压保护角的确定[J].煤炭工程,2010,(4):45-47.
    [30]李宏艳.采动应力场与瓦斯渗流场耦合理论研究现状及趋势[J].煤矿开采,2008,13(3):4-7.
    [31]杨清岭,杨鹏煤层瓦斯流动理论研究[J].煤炭技术,2007,26(2):67-69.
    [32]谢晓佳,张瑜,易俊.煤层气渗流模型发展现状及其趋势[J].中国矿业,2008,17(10):79-81.
    [33]田智威.煤层气渗流理论及其研究进展[J].地质科技情报,2010,29(1):61-65.
    [34]孙培德,鲜学福.煤层瓦斯渗流力学的研究进展[J].焦作工学院学报,2001,20(3),161-166.
    [35]李化敏,苏承东,宋常胜.采空区顶板垮落与瓦斯涌出关系的模拟实验研究[J].煤炭工程,2007,11:72-74.
    [36]兰华菊,卢义玉,康勇,程君.极小转弯半径钻井在低渗透率煤层瓦斯抽放中的试验研究[J].河北工业大学学报,2007,36(6):28~31.
    [37]颜爱华,徐涛利.煤与瓦斯突出的物理模拟和数值模拟研究[J].中国安全科学学报,2008,18(9):37~42.
    [38]秦跃平,朱建芳,陈永权,谭昆.综放开采采空区瓦斯运移规律的模拟试验研究[J].煤炭科学技术,2003,11:13~16
    [39]蔡成功.煤与瓦斯突出三维模拟实验研究[J].煤炭学报,2004,29(1):66-69.
    [40]余楚新,鲜学福,谭学术.煤层瓦斯流动理论及渗流控制方程的研究[J].重庆大学学报,1989,12(5):1-10.
    [41]段三明,聂百胜.煤层瓦斯扩散—渗流规律的初步研究[J].太原理工大学学报,1998,29(4):413-421.
    [42]林海燕,袁修干,彭根明抽放钻孔瓦斯流动模型及解算软件设计[J].煤炭科学技术,1999,18(2):26-28.
    [43]王晓亮,郭勇义,吴世跃.煤层中瓦斯流动的计算机模拟[J].太原理工大学学报,2003,34(4):402-405
    [44]柏发松.煤层钻孔瓦斯流量的数值模拟[J].安徽理工大学学报,2004,24(2),9-12.
    [45]王路珍,杜春志,卜万奎,柳红燕.煤层钻孔孔壁瓦斯涌出的数值模拟[J].矿业安全与环保,2008,35(6):4-6.
    [46]郭培红,李海霞,朱建安.煤层钻孔瓦斯抽放数值模拟[J].辽宁工程技术大学学报,2009,28(增):260-262.
    [47]杨天鸿,陈仕阔,朱万成,刘洪磊,霍中刚,姜文忠.煤层瓦斯卸压抽放动态过程的气-固耦合模型研究[J].岩土力学,2010,31(7):2247-2252.
    [48]姜文忠,李野,梁冰.炮采煤层工作面瓦斯涌出规律的数值模拟研究[J].系统仿真学报2010,22 (6) ,1531-1534
    [49]刘增超.综放采空区风流场CFD数值模拟研究[D].西安,西安科技大学,2008.
    [50]杨天鸿,陈仕阔,朱万成,霍中刚,姜文忠.采空垮落区瓦斯非线性渗流-扩散模型及其求解[J].煤炭学报,2009,34(6):771-777.
    [51]梁运涛,张腾飞,王树刚,孙金鹏.采空区孔隙率非均质模型及其流场分布模拟[J].煤炭学报,2009,34(9).1203-1207.
    [52]程涛杨,胜强,徐全,吕文陵,何磊.采场瓦斯运移规律模拟及其治理措施分析[J].煤炭科学技术,2010,38(12):61-65.
    [53]高建良,王海生.采空区渗透率分布对流场的影响[J].中国安全科学学报,2010,20(3):81-85.
    [54]孙培德,鲜学福.煤层气越流的固气耦合理论及其应用[J].煤炭学报,1999,24(1):60-64.
    [55]孙培德,鲜学福.上保护层保护范围的固气耦合分析[J].煤,1999,8(1):36-39.
    [56]孙培德,万华根.煤层气越流固-气耦合模型及可视化模拟研究[J].岩石力学与工程学报2004,23(7):1179-1185.
    [57]胡国忠,王宏图,范晓刚,邻近层瓦斯越流规律及其卸压保护范围[J].煤炭学,2 010,35(10):1654-1659
    [58] Beyer HA.Design and performance of metrology cameras with 6 and 28 million pixel CCDsensors[A]. Proceedings of SPIE[C].The International Society for Optical Engineering,1999.194-198.
    [59] WJ.GaIe.Strata Control Dtillising Rock Reinforcement Techniques and Stress Control Methods in Australia Coal MinesMining Engineer,1991(1).
    [60] Tu min,Feng M M,Liu Z G.Dynamic Pricipal of Development of strata separation Fracture of the roof in the coal seam mining.2004,10.
    [61] Hopkins.The implications of joint deformation in analyzing the properties and behavior of fractured rock masses,underground excavation and faults.International Journal of Rock Mechanics and Mining Sciences,Vol 37 No.1 2 Jan Feb 2000.
    [62]于学馥,张玉卓,葛树高.采矿岩石力学新论[M].上海:知识出版社,1992.
    [63]华安增.煤层底板采动影响[J].煤炭学报,1983,(3):36-45.
    [64]李同林,殷绥域.弹塑性力学[M].武汉:中国地质大学出版社,2006.
    [65]袁志刚,王宏图,胡国忠,李晓红,范晓刚,洪松.急倾斜多煤层上保护层保护范围的数值模拟[J].煤炭学报,2009,34(5):594-598.
    [66] LOUIS C.Rock hydraulics[C]//Lmuller Ed Rock mechanics,1974:287–299.
    [67]赵阳升,胡耀青,贺军.三维应力与孔隙瓦斯压力作用下煤体有效应力与渗透性规律实验研究[C].山西:首届全国青年岩石力学学术研讨会论文集,1999.
    [68]李培超,孔祥言,卢德唐.饱和多孔介质流固耦合渗流的数学模型[J].水动力学研究与进展,2003,18(4):419-426.
    [69]王岩,王路军,齐建军,李志强.红菱煤矿开采保护层对岩体透气性的数值模拟[J].地球科学与环境学报,2008,30(2),161-171.
    [70]徐涛,杨天鸿,唐春安,唐世斌.含瓦斯煤岩破裂过程固气耦合数值模拟[J].东北大学学报,2005,26(3),293-296.
    [71]陈育民,徐顶平.FLAC/FLAC3D基础与工程实例[M].北京,中国水利水电出版社,2008.
    [72]彭文斌.FLAC3D实用教程[M].北京,机械工业出版社,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700