环保型缓蚀剂的制备及其在金属防腐中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过大量的实验,研究了天然环保型缓蚀剂植酸(肌醇六磷酸酯)的提取工艺。结果发现,植酸提取的最佳酸浓度为:盐酸0.06mol/L、硫酸0.03 mol/L。植酸的最佳萃取时间为2小时;在无机酸类萃取剂中添加了乙醇或丙酮,可大大提高植酸酸式盐的一次萃取率和原料利用率;提取实验中氨水、离子交换树脂可以减少植酸中的杂质,提高产品的纯度。用稳态极化曲线、交流阻抗、塔菲曲线及开路电位等电化学方法和SEM分别考察了分别考察了植酸和改性钠盐两性咪唑啉(B)在模拟海水(3.5%NaCl溶液)中对A3钢的缓蚀作用和在模拟混凝土孔隙液中对16号建筑用钢筋的缓蚀性能,得出以下结论:植酸能有效减缓A3钢和钢筋的腐蚀,是一种优良的阳极型缓蚀剂。临界氯离子浓度与混凝土模拟孔隙液中的pH值存在着半对数线性关系。改性咪唑啉(B)对海水循环冷却水系统中A3钢具有良好的缓蚀性能,是一种阳极型缓蚀剂。在pH值为9.5的碳化混凝土体系中,改性两性钠盐咪唑啉(B)具有良好的缓蚀性能,是一种阳极缓蚀剂;在pH值为10.5的碳化混凝土模拟孔隙液中不具备缓蚀作用。
This study inspected the abstraction way of corrosion inhibitor, Phytic acid, which benefits the environment around us, by a lot of experiment. The result shows that the best acid concentration of Phytic acid abstraction is that hydrochloric acid is 0.06 mol/L and sulpHuric acid is 0.03mol/L. The optimal extraction time of the Phytic acid is two hours. The addition of the absolute alcohol and acetone will remarkably improve the rate of the Phytic acid abstraction and also improve the availability of the material. The process of the Phytic acid abstraction used ammonia water and the ion exchange resin avoid the invasion of the foreign matter. As a result, the cost of the abstraction is decreased. The experiment also studied the inhibition effect of the Phytic acid and the imidazoline derivate (B) on A3 steel and the concrete steel of 16 in simulative sea water (3.5%NaCl solution) and simulative pore solution of the concrete by steady polarization curves, A.C impedance, Tafel curves and open potential. The result shows that the Phytic acid can remarkably inhibit the corrosion of the A3 steel and concrete steel and it is an anodic inhibitor. And the critical chloride iron concentration and the simulative pore solution of the concrete have an half logarithm linear relationship.The imidazoline derivate (B) has the eminent inhibition on the corrosion of the A3 steel in simulative sea water (3.5%NaCl solution) and it is a typical kind of anodic inhibitor. And B has the same inhibition in the simulative pore solution environment of carbon concrete which pH value is 9.5. It is an anodic inhibitor in this environment. But the B could not inhibit the corrosion of the concrete steel in the simulative pore solution environment of carbon concrete which pH value is 10.5.
引文
[1]杨绮琴,方北龙,童叶翔.应用电化学(第二版)[M].广州:中山大学出版社,2005
    [2]JOHNP.BROOMFIELD,Corrosion of Steel in Concrete—Understanding,Investigation and RePair,1997.
    [3]柳鑫华,梁英华,芮玉兰 海水循环冷却水系统钼酸盐及钨酸盐缓蚀剂的研究现状及展望[J].清洗世界 2006,22(1):20-24
    [4]杜敏,高荣杰,公萍等.海水介质中缓蚀剂研究的回顾和展望[J].材料保护,2002,35(3):7-10.
    [5]侯纯扬.海水冷却技术[J].海洋技术,2002,21(4):33-39.
    [6]陈皓文.海洋硫酸盐还原菌及其活动的经济重要性[J].黄渤海海洋,1998,16(4):64-74.
    [7]刘靖,侯宝利,郑家等.硫酸盐还原菌腐蚀研究进展[J].材料保护,2001,34(8):8-12.
    [8]陈六平.微生物腐蚀所导致的经济损失与对策[J].腐蚀与防护,1996,17(6):248-251.
    [9]鲍其鼐.氯离子与冷却水系统中不锈钢的腐蚀[J].工业水处理 2007,27(9):1-6.
    [10]李彦,杜荣归,邵敏华等.钢筋表面微区电位分布的测定[J].厦门大学学报(自然科学版),2004,43(1):138-140.
    [11]胡融刚,杜荣归,林昌健等.原位STM研究钢筋在模拟混凝土孔溶液中腐蚀和缓蚀动态行为[J].中国腐蚀与防护学报,2003,23(6):321-325.
    [12]胡融刚,黄若双,杜荣归等.氯离子侵蚀下钢筋在混凝土中腐蚀行为的EIS研究[J].物理化学学报,
    [13]Kumar V.Protection of steel reinforcement for concrete --A review [J].Corrosion Reviews,1988,16(4):317-358.
    [14]M.F.Montemor,M.P.Cunha.Corrosion behavior of rebar in fly ash mortar exposed to carbon dioxide and chlorides[J].Cement And Concrete Composites,2002,24(8):45-53
    [15]魏姗,杨峻熙,陶时新等.钢筋阻锈剂的阻锈机理,发展和应用[J].工业技术,2007,10(4):63-64
    [16]陈惠玲,李晓娟,魏雨.碳钢在含氯离子环境中腐蚀机理的研究[J].腐蚀与防护,2007,28(1):17-19
    [17]Mehta P K.Durability of concrete-fifty years of progress durability of concrete [R].SP2126:American Concrete Institute.Farmington Hills,Mich,1991.
    [18]Mehta P K,Burrows R W.Building durable structures in the 21st century[J]. Concrete International,2001:57-63
    [19]成立,邓春林,王新详,余其俊,黄绪泉,王小萍.钢筋锈蚀状况的分析研究.[J]铁道建筑,2007,5(1):100-102
    [20]易美英,方从启,杜笑男混凝土强度对混凝土中钢筋腐蚀的影响
    [21]John P Broomfield.Materials Performance,1992,31(9):28
    [22]包琦玮.北京地区混凝土桥梁耐久性问题研究[D].北京:北京工业大学,2003:63-64.
    [23]洪定海.混凝土中钢筋的腐蚀与保护[M].北京:中国铁道出版社,1998.
    [24]洪乃丰.防冰盐腐蚀与钢筋混凝土的耐久性[J].建筑技术,2000,31(2):102-104
    [25]Mussato B T,Gep raegsO K,Farnden G.Relative effects of sodium chloride and magnesium chloride on reinforced concrete state of the art[J].Maintenance and Management of Pavement and Structures,2004,(1866):59-66.
    [26]尚辉 赵睿敏 沿海地区混凝土结构的腐蚀及腐蚀防护
    [27]MorrisW,Vazquez V M.Corrosion of reinforced concrete exposed to marine environment[J].Corrosion Reviews,2002,20(6):469-508.
    [28]Glass G K,Buenfeld N R.The influence of chloride binding on the chloride induced corrosion risk in reinforced concrete[J].Corrosion Science,2000,42(2):329-344.
    [29]Hussain S E,A12GahtaniA S,Rasheeduzzafar.Chloride threshold for corrosion of reinforcement in concrete[J].ACIMaterials Journal,1996,94(6):534-538.
    [30]OSMAN BURKAN ISGOR,AdurabilityModel for Chloride and Carbonation Induced Steel Corrosion in Reinforced Concrete Members,[PHd].Ottawa,Canada,2001.
    [31]李伟华,裴长岭.混凝土中钢筋腐蚀与钢筋阻锈剂[J].材料开发与应用,2007,22(5):57-60.
    [32]ErvinPoulsen.Chloride profiles:Analysis and interpretation of observations[R].Denmark:AEC Laboratory.
    [33]洪乃丰.混凝土中氯盐与钢筋腐蚀的几个相关问题[J].工业建筑,2003,33(11):39-42.
    [34]ChatterjiS.On the applicability of Fick's second law to Chloride ion migrationthrough Portland cement concrete[J].Cement and Concrete Research,1995,25(2)299-303.
    [35]娜蕊,林德忠,高春萍.受氯离子侵蚀钢筋混凝土结构的耐久性检测诊断与防护措施[J].河北建筑工程学院学报,2007,33(2):1-4
    [36]Kumar V.Protection of steel reinforcement for concrete.A review [J].Corrosion Reviews,1988,16(4):317-358.
    [37]MorenoM,MorrisW,AlvarezM G,etal.Corrosion of reinforcing steel in simulated concrete pore solutions-Effect of carbonation and chloride content[J].Corrosion Science,2004,46(11):681-699.
    [38]MorrisW,Vazquez V M.Corrosion of reinforced concrete exposed to marine environment[J].Corrosion Reviews,2002,20(6):469-508.
    [39]Martin F J,Olek J.Experimental p rocedure for fundamental studies of reinforcing steel corrosion processes[J].Review of Scientific Instruments,2003,74(4):512-516.
    [40]GeromelM,Mazzarella O.Experimental and analytical assessment of the behavior of stainless steel reinforced concrete beams[J].Materials and Structures,2005,38(276):211-218.
    [41]Montes P,Bremner TW,Kondratova I.Eighteen-year performance of epoxy-coated rebar in a tunnel structure-subjected to a very aggressive chloride contaminated environment[J].Corrosion,2004,60(10):974-981.
    [42]中华人民共和国水利部.2000年中国水资源公报[R].2001.
    [43]杜敏,高荣杰,公萍.海水介质中缓蚀剂研究的回顾和展望[J].材料保护,2002,35(3):7-10.
    [44]Mor E D,Wrubl C.Zinc gluconate as an inhibitor of the corrosion of mild steel in sea water[J].Br Corros J,1976,11(4):199-203.
    [45]程明焱,吴伟明,杜海燕.氨基酸类绿色缓蚀剂研究进展[J].清洗世界2007,23(11):1-7
    [46]洪乃丰.氯盐腐蚀与钢筋阻锈剂[J].混凝土,2004(1):58-60.
    [47]洪乃丰.混凝土中钢筋腐蚀与阻锈剂[J].混凝土,2001(6):25-28.
    [48]李文戈.肌醇六磷酸酯的特性及其在金属防腐中的应用[J].现代化工2001,9(21):9-10
    [49]实用精细化学品手册编写组.实用精细化学品手册[M].北京:化学工业出版社,1996.1977-1978
    [50]安家驹主编.实用精细化工辞典[M].北京:中国轻工业出版社,2000.1021
    [51]赵地顺 刘会茹 徐智策 庞登甲 王春芳.植酸盐缓蚀剂及其机理研究[J].高等化学学报2005,2(2):334-336
    [52]张洪生.无毒植酸在金属防护中的应用[J].电镀与精饰,2000,22(1):1-4
    [53]Wang Lin,etal.The Inhibitive Effects of Phytic Acid and Ca,Mg and Na Salts of Phytic Acid on Copper Corrosion in Domestic Water[J].云南大学学报(自然科学版),1999,21(4):275-278
    [54]Notoyat.The Effect of Phytic Acid on the Anodic Dissolution of Copper and Copper Zinc Alloys[A].Bulletin of the Faculty of Engineering(No.137).JaP an:Hokkaido University,1987:31-33
    [55]ChamPagne E T.Effects of Ca(Ⅱ)Ions on Cu(Ⅱ)Ion-Phytic Acid In-teractions[J].Journal of Inorganic Biochemistry,1987,31:29-42
    [56]Hiroshi Y,Yuji O.Corrosion Inhibitor for Cooling Water of Heat Exchangers[P].JP,60-194088.1985-10-02
    [57]田野.[P].特公昭,56-16143.1981
    [58]雷学军,任凤莲等.植酸系列产品的研制及其应用[J].材料保护,1995,28(1):35-36
    [59]张天胜.缓蚀剂[M].北京:化学工业出版社,2001.
    [60]Sastri V S,Perumareddi J R.Selection of Corrosion inhibition for Use in the Sour media[J].Corrosion and Protection,1994,50(6):432
    [61]陈卓元,王凤平等.咪唑啉缓蚀剂缓蚀性能的研究[J].材料保护,1999,32(5):37-39
    [62]高文宇,陈新萍,鞠剑等.咪唑啉类缓蚀剂的研究现状及展望[J].科技进展,2006,8(8):12-15
    [63]陈立庄,高延敏.有机缓蚀剂对金属作用的机理[J].全面腐蚀控制,2003,32(4):15-18
    [64]Sastri V S,Perumareddi J R.[J].Corrosion,1990,10(4):383-390.
    [65]辜敏,李强,鲜晓红,卿胜兰PEG-Cl作用下的铜电结晶过程研究[J].化学学报
    [66]查全性 著 电极过程动力学导论[M].北京:科学出版社,2002:226
    [67]高颍,邬冰主编.电化学基础[M].北京:化学工业出版社,2004.53-54
    [68]袁俊杰,臧剑士.植酸的制备与性质[J].中国食品添加剂,1999,1(1):34-37.
    [69]张保玲,王建生.米糠、麦麸中菲汀含量的测定[J].山西化工,1999,19(2):47-48
    [70]刘秀晨 安成强 主编 金属腐蚀学[M].北京:国防工业出版社,2002
    [71]A.Y.El-Etre,Inhibition of acid corrosion of carbon steel using aqueous extract of olive leaves,[J]Journal of Colloid and Interface Science 314(2007)578-583
    [72]安家驹主编.实用精细化工辞典[M].北京:中国轻工业出版社,2000.1021
    [73]张洪生.无毒植酸在金属防护中的应用[J].电镀与精饰,2000,22(1):1-4
    [74]许金林 傅慧英三氯化铁法滴定植酸[J].化学世界1993,10:494-497
    [75]张卫民,胡吉明.硅烷膜的阴极电化学辅助沉积及其防护性能,[J]金属学报2006.3(42)295-298
    [76]Hausmann D A.Steel corrosion in concrete:how does it occur[J].Materials Protection,1967,6(11):19-23.
    [77]Hausmann D A.A p robabilitymodel of steel corrosion in concrete[J].Materials Performance.1998,37(10):64-68.
    [78]Pillai R G,Trejo D.Surface condition effects on critical chloride threshold of steel reinforcement[J].ACI Materials Journal,2005,102(2):103-109.
    [79]Thangavel K.The threshold limit for chloride corrosion of reinforced concrete [J].Corrosion Reviews,2004,22(1):55-70.
    [80]L i L,SaguesA A.Chloride corrosion threshold of reinforcing steel in alkaline solutions 2 Effect of specimen size[J].Corrosion,2004,60(2):195-202.
    [81]Alonso C,CastelloteM,Andrade C.Chloride threshold dependence of p itting potential of reinforcements[J].Electrochimical Acta,2004,7(21):469-481.
    [82]杜荣归,刘玉,林昌健.氯离子对钢筋腐蚀机理的影响及其研究进展[J].材料保护,2006,39(6):45-50

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700