基于计算流体力学的虹吸式流道形状优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
虹吸现象是一种常见的非稳态流动现象,虹吸式流道因其具有只要抬高液面高度差就能获得动力源的优点,在工程中具有广泛的应用,因此研究虹吸式流道的形状优化设计方法具有重要意义。国际国内已经在虹吸式流道的应用方面做了较多的研究,但是,针对非稳态虹吸过程的相关理论研究还较少见;在流体机械的形状优化设计方面,非稳态流动现象的优化设计是个长期存在的难点,这方面的研究工作才刚刚起步。因此,本论文首先在研究非稳态虹吸相关理论的基础上,提出产生虹吸的基本条件,再通过建立计算流体力学(CFD)模型深入分析非稳态虹吸的流体流动特性和启动特性,探究基于逆向工程的流道几何形状获取方法,结合提出的虹吸性能评价指标对复杂虹吸式流道进行形状优化设计与实验验证研究,并对复杂虹吸式流道的神经网络优化方法展开了研究。本论文主要研究内容与成果如下:
     1.研究了适用的计算流体力学模型及产生虹吸的所需条件
     根据虹吸原理分析了传统研究方法的缺陷,明确了非稳态虹吸基本概念,并以此确定了适用的CFD模型;同时采用定常形式的伯努利方程对稳态流动假设条件下的虹吸作定性研究。结果表明,定常形式的伯努利方程只能用于虹吸式流道的定性分析,对非稳态虹吸作定量研究宜采用CFD方法;压强是产生虹吸的必要条件,流态为产生虹吸的激发条件,在一定压强作用下,虹吸式流道出水段出现封闭水柱或局部满管流的流态都可能激发虹吸的产生;虹吸过程可视为一种活塞效应的结果。这些结论可为后续的非稳态虹吸研究奠定基础。
     2.研究了非稳态虹吸的流体流动特性及启动过程
     建立几何模型和CFD模型用于研究非稳态虹吸的流体流动特性,并以工程上常用到的虹吸滤池中的虹吸式流道为例,研究其非稳态虹吸的启动过程。研究明确了非稳态虹吸的流态、速度场和压强特性,指出通过调节虹吸式流道出水管道的长度可有效控制非稳态虹吸过程的最大平均流速、最大平均负压,证实了虹吸启动的关键是应尽快促使虹吸式流道中形成封闭水柱,并促成活塞效应将气体排出流道,促使全局满管流动的形成。
     3.研究了复杂虹吸式流道的几何形状获取方法及形状特征
     以坐便器中的虹吸式流道为例,研究如何获取复杂虹吸式流道的几何形状。结果表明,可采用逆向工程、计算机辅助设计(CAD)技术为复杂虹吸式流道的仿真分析和优化设计提供精确的CAD模型。虹吸式流道主要形状特征分析结果表明,流道的直径、α角、β角、水封高度和收缩口曲线是复杂虹吸式流道形状优化设计的关键,且在设计虹吸式流道时应考虑保持流道曲率总体上的光滑过渡,以减小流动过程中的阻力。
     4.研究了基于计算流体力学的坐便器虹吸式流道形状优化设计方法
     建立CFD模型并用粒子图像测速(PIV)实验来验证,用该模型预测复杂虹吸流道内部速度场和压强的变化,并根据预测值与多个评价虹吸性能的指标来研究流道的收缩口截面、流道上升段仰角α和下降段长度L等对虹吸性能的影响,以优化设计流道的形状。结果表明,建立的CFD模型具有较高精度,能很好地模拟复杂虹吸式流道中的流场变化;虹吸式流道的收缩口截面、流道上升段仰角α和下降段长度L对虹吸性能具有重要影响,当采用光滑曲线设计及α为39°、L为227 mm时,虹吸性能最佳,可使坐便器实际用水量从6升降至5升,具有节水效果;并证实累积负压是非稳态虹吸研究中最佳的虹吸性能评价指标。
     5.研究了神经网络的坐便器虹吸式流道形状优化设计技术
     通过CFD模型计算得到神经网络建模样本,以几何变量为输入、累积负压为输出,建立非稳态虹吸的神经网络模型,并在网络结构优化的基础上,对比分析复杂虹吸式流道使用Levengerg-Marquardt(L-M)神经网络和贝叶斯神经网络建模的优缺点。结果表明,L-M神经网络对训练样本有很好的拟合能力,贝叶斯神经网络则具有更好的泛化能力;L-M神经网络的最佳模型结构为2-4-1,贝叶斯神经网络有效节点数为3.67967,通过贝叶斯神经网络进行仿真,确定了流道形状的最佳设计参数(弯道半径为80 mm、出水段直径为45 mm);并构建了基于CFD和神经网络的虹吸式流道形状优化设计平台框架,以期为虹吸式流道形状的快速优化设计提供方法参考。
     6.研究了虹吸式流道优化设计过程中的实验验证方法
     针对坐便器中复杂虹吸式流道的形状优化设计建立相应的实验验证方法,评价优化设计效果。即,采用PIV实验测量虹吸式流道内部实际流场,结果证实了所建CFD模型的准确性;利用相似理论研制了用于制备不同形状虹吸式流道的实验装置,可根据模型仿真计算寻得的较优流道形状参数制备出相应的虹吸式流道实物,验证设计出的不同形状流道的虹吸效果,这可为类似的不规则流道实验研究提供方法参考;根据现代设计方法及理论构建了配套模拟实验装置,无需采用费时费力的修改企业模具这一传统方法,可更简便地进行不同形状虹吸式流道的虹吸性能测试和坐便器节水性能测试;结合节水实验,证实了本文构建的虹吸式流道形状优化设计方法确能有效实现流道形状的优化、改进流道虹吸性能。
Siphon is a common flow phenomenon. Having the advantage of convenient acquisition method for power only by altitude difference, the siphon technology is widely used in engineering. It is very meaningful to study the shape optimization design methods of siphon channel. The current researches are mainly focused on the application of siphon without sufficient insight in the theory of unsteady siphon flow. In addition, the research about optimization design on unsteady flow has just started, which is difficult in shape optimization design. Considering the situation mentioned above, this dissertation makes the further studies on the basic theories, and the analysis of flow characteristic and siphon-generate in unsteady siphon based on computational fluid dynamics (CFD), and the method capturing the geometry of flow channel based on reverse engineering (RE), and the shape optimization design and experimental verification of complex siphon channel using performance indexes presented in this dissertation, and the optimization methods of complex siphon using Artificial Neural Network (ANN). The main contents and productions of this dissertation are as follows.
     1. Study on the CFD model for siphon research and the conditions of siphon-generate.
     Based on the analysis of the limitation on traditional research methods of siphon, the concept of unsteady siphon was defined, which guiding the selection of CFD models. Furthermore, the qualitative analysis of siphon was performed using Bernoulli equation on the condition of steady hypothesis. Results show that the Bernoulli equation can but used to the qualitative analysis of siphon and the quantitative analysis on unsteady siphon should be carried out using CFD method. It is presented that in the four conditions of siphon-generate (gravitation, pressure, geometry parameter and flow regime), the pressure is the necessary condition. The results also show that the flow regime is the excitation condition generating siphon, which indicates that a closed water column or a local full pipe flow should impel siphon- generate. Finally, the piston effect in siphon was presented. The conclusions above lay a foundation on unsteady siphon research.
     2. Study on the characteristic of unsteady siphon and siphon-generate.
     The geometry model and CFD model were constructed to investigate the flow characteristic of unsteady siphon. As an example, the process of siphon-generate on filter which usually used in engineering was studied. The researches have confirmed the three characteristics (flow reime, velocity field, pressure field) of unsteady siphon and indicated that both the max average velocity and pressure drop in unsteady siphon could be effectively controlled by adjusting the length of outlet pipe. It is also confirmed that the closed water column formed in flow is the key of siphon-generate, which could induce piston effect and could impel a globe full pipe flow by pumping out air.
     3. Study on the method capturing the shape of complex siphon channel and the form feature.
     The method capturing the shape of complex siphon channel on water closet (WC) was studied. The results show that the reverse engineering (RE) and computer aided design (CAD) can be used to build accurate CAD model for simulation and optimization design. The form feature analysis indicated that the keys of shape optimization design of siphon are diameter of flow channel, angleαandβ, water seal and the contract region. The curvature of siphon channel should be design to be smoothing to reduce the resistance in flow.
     4. Study on optimization design methods of complex siphon based on CFD.
     The CFD model verified by Particle Image Velocimetry (PIV) experiments was constructed and applied to predict the velocity field and pressure field in siphon. The predicted value combined with several performance indexes was used to studied the effects of contractive section, elevation angle (α) and the length (L) in outlet on siphonage. The CFD model was proved to be accurate in simulating the flow field in complex siphon. It was found that the siphon could be obviously influenced by contractive section,αand L. The design with smooth shape andαof 39°and L of 227 mm have improved the efficiency of siphon, which reduced the water consumption of WC from 6.0 to 5.0 liter. Results also indicated that the pressure drop could be the best index to assess the unsteady siphon flow.
     5. Study on optimization design methods of complex siphon based on Artificial Neural Network.
     Using the samples from CFD, the Artificial Neural Network (ANN) models were constructed with inputs of geometry and output of cumulative pressure drop. Comparing Levengerg-Marquardt ANN (L-M ANN) and Bayesian ANN built after network structure optimization, it is found that the first one is good at fitting training samples and the last one has more capability on generalization performace. The best structure of L-M ANN is proved to be 2-4-1 and in Bayesian ANN the effective number of parameters is 3.67967. Based on the simulation of Bayesian ANN, the best bend radius R and diameter D in outlet were found to be respectively 80 mm and 45 mm. An optimal design framework based on CFD and ANN was constructed to provide reference to optimization design of complex siphon.
     6. Study on experimental system of optimization design of complex siphon.
     The experimental system used to verify optimization design was constructed in allusion to optimization design of complex siphon. The PIV technique was used to validate CFD model. An experimental set up which can produce most shape of siphon was developed based on the theory of similarity and used to examine the performance of different siphon channel, provding refference to the experiment researches on abnormity flow channel. Based on modern design methodes, an experimental set up of water closet was designed and proved to be convenient to siphon test and water saving test of WC, avoiding the time consuming and laboursome methods by modifing mould. The water-saving test proved that the optimization design method in this dissertation is effective to shape optimization design and improvging siphon.
引文
[1]尤明庆,陈小敏.实现虹吸过程的条件.焦作工学院学报(自然科学版), 2003, 22(6): 487-489
    [2]尹福才,赵希江,戴求时.虹吸式放水管的计算方法及在小型水库中的应用.黑龙江水专学报, 2004, 31(4): 64-66
    [3]王显焕.虹吸原理在引水发电系统中的应用研究.水电勘测设计, 1999, 3: 1-8
    [4] Peng Z W, Liu Z J, Huang D L. Water-saving study of urban domestic water based on the flow pipe optimization. The 2nd International Conference on Bioinformatics and Biomedical Engineering. Shanghai, 2008, 3331-3334
    [5] Anderson J D. Computational Fluid Dynamics: The Basics with Applications.北京:清华大学出版社, 2002, 1-32
    [6]罗德云,邱萌,李潞.虹吸原理在恶性胸腔积液穿刺技术中的应用.中国肺癌杂志, 2003, 6(2): 150-151
    [7]李百齐.虹吸式流道出水断流装置的流体力学相似分析.船舶力学, 2003, 7(5): 39-44
    [8]袁乃荣.虹吸现象的新解释.物理教学探讨. 2001, 155 (19): 5-6
    [9]陈革强,施俊跃,卢健国,等.水库虹吸式流道驼峰真空度机理分析与控制.水利技术监督, 2008, 4: 50-51, 73
    [10]董毅,汤正军,田明云.虹吸式轴流泵站抽真空起动探讨.水泵技术, 2000, 1: 25-33
    [11]陆伟刚,周秀彩,颜红勤.泵站虹吸流道中射流真空泵的应用研究.扬州大学学报(自然科学版), 2004, 7(1): 75-78
    [12]陈松山,严登丰,陆伟刚,等.低扬程泵装置起动虹吸驼峰压力分析.排灌机械, 2003, 21(4): 10-12
    [13]霍培良,景瑞祥.泵站自排气式虹吸装置新工艺.水电站设计, 2002, 18(1): 48-49
    [14]刘永淞,刘卫红.固定虹吸式滗水器的设计计算.化工给排水设计, 1997, 1: 28-30
    [15]贾立国. HXB虹吸式滗水器的设计及应用.黑龙江科技信息, 2004, 12: 245-245
    [16]刘长坤,吴启凤. A型虹吸式过滤器的设计计算.四川建筑科学研究, 2006,32(1): 161-163
    [17]许相希,田明林,武成智.虹吸触点式流量自记仪与模拟流量微机观测系统的研制.东北地震研究, 2003, 19(3): 58-61
    [18]林苗青,陈义旭.虹吸式雨量计常见的故障和检修方法.广东气象, 2003, 3: 37-38
    [19]朱丽花,陈斌刚,杨秋丽.虹吸负压在小儿头皮静脉穿刺中的应用.现代医药卫生, 2001, 17(9): 768-769
    [20]刘正良,李建明.虹吸离心机自动控制系统的现状及发展趋势.流体机械, 1999, 12: 28-31
    [21]储岳胜,袁东日.虹吸滤池改为气水反冲洗滤池的工程实践.中国给水排水, 2006, 22(20): 27-29
    [22]白丹,叶文宇,张建丰,等.虹吸式波涌管道灌溉技术的初步研究. 2006, 22(1): 179-181
    [23]蒋克彬.虹吸式脉冲布水器的设计与应用.中国给水排水, 2002, 18(9): 53-54
    [24]王争元,陈守庆,汤祚庆,等.水力电器自动虹吸排泥系统设计.中国给水排水, 2005, 21(1): 53-55
    [25]高敏,赵成军.卧式虹吸刮刀卸料离心机的虹吸原理.东北电力大学学报, 2006, 26(2): 36-37
    [26]王同言.一种粗管径虹吸式节水坐便器的研制.陶瓷, 2008, 3: 40-42
    [27] Brahim S B, Smith A E, Bidanda B. Relating product specifications and performance data with a neural network model for design improvement. Journal of Intelligent Manufacturing, 1993, 4(6): 367-374
    [28]汪冰.单支撑旋转虹吸器在纸机烘缸中的应用.中国造纸, 2003, 22(6): 38-40
    [29]易定秋,赵小林.浆粕烘干机烘缸虹吸式流道的改进.人造纤维, 2006, 36(5): 39-40
    [30]华建,单翔年.烘缸虹吸器的选型与应用.中华纸业, 2003, 24(11): 24-27
    [31]陈培.虹吸式间歇大喷淋装置在浸出油厂中的应用.中国油脂, 2000, 25(6): 227-228
    [32]项东方,朱先龙.单管同步双虹吸大喷淋装置.中国油脂, 1995, 20(5): 20-22
    [33]郝春元.虹吸式流道技术在煤气炉燃烧室中的应用.中氮肥, 1993, 1: 52-54
    [34]谢光春,梁运莲.水力自动强制虹吸器及强制虹吸投药方法研究.医疗卫生装备, 1997, 4: 7-9
    [35]吴庚友,徐金和.射流虹吸式灌装系统.机电工程, 1991, 2: 38-39
    [36] Wright G B, Arthur S, Swaffield J A. Numerical simulation of the dynamicoperation of multi-outlet siphonic roof drainage systems. Building and Environment, 2006, 41(9): 1279-1290
    [37] Arthur S, Swaffield J A. Siphonic roof drainage: the state of the art. Urban Water, 2001, 3(1): 43-52
    [38] Arthur S, Swaffield J A. Numerical modelling of the priming of a siphonic roof drainage system. Building Services Engineering Research and Technology, 1999, 20(2): 83-91
    [39] Wright G B, Swaffield J A, Arthur S. The performance characteristics of multi-outlet siphonic rainwater systems. Building Services Engineering Research and Technology, 2002, 23(3): 127-141
    [40]李彦军,颜红勤,葛强,等.泵站虹吸式出水流道优化设计.排灌机械, 2008, 26(4): 43-47
    [41]朱红耕.虹吸式出水流道内流数值计算与水力设计优化.山东理工大学学报(自然科学版), 2006, 20(1): 24-27
    [42]白玉川,张效先.山海关船厂15万吨级修船坞虹吸灌水水力模型试验研究.船舶力学, 2003, 7(4): 36-49
    [43]姜俊红,戴红霞.驼峰后带长直管虹吸式出水流道的水力特性试验研究. 2008, 8: 130-132
    [44]湖北省水利勘测设计院.大型电力排灌站.北京:水利电力出版社, 1984
    [45]陈松山,葛强,陆伟刚,等.带长出水管模型泵装置特性试验方法.扬州大学学报, 2003, 6(4): 78-82
    [46]江苏省江都水利工程管理处.江都排灌站(第2版).北京:水利电力出版社, l979
    [47]王福军.计算流体动力学分析.北京:清华大学出版社, 2000
    [48] Launder B E, Spalding D B. The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 1974, 3: 269-289
    [49] Schwarzkopf J D, Crowe C T, Riley J J. Direct numerical simulation of stationary particles in homogeneous turbulence decay: Application of the k–εmodel. International Journal of Multiphase Flow, 2009, 35(5): 411-416
    [50] Yakinthos K, Vlahostergios Z, Goulas A. Modeling the flow in a 90°rectangular duct using one Reynolds-stress and two eddy-viscosity models. International Journal of Heat and Fluid Flow, 2008, 29(1): 35-47
    [51] Chen W L, Lien F S, Leschziner M A. Non-linear eddy-viscosity modelling of transitional boundary layers pertinent to turbomachine aerodynamics. International Journal of Heat and Fluid Flow, 1998, 19(4): 297-306
    [52] Kuan B, Yang W, Schwarz M P. Dilute gas–solid two-phase flows in a curved 90°duct bend: CFD simulation with experimental validation. Chemical Engineering Science, 2007, 62(7): 2068-2088
    [53]丁珏,翁培奋. 90°弯管内流动的理论模型及流动特性的数值研究. 2004, 21(3): 314-329
    [54] Kyung M K, Yun Y K, Dong H L, et al. Influence of duct aspect ratio on heat/mass transfer in coolant passages with rotation. International Journal of Heat and Fluid Flow, 2007, 28: 357-373
    [55] Lin C X, Ebadian M A. A numerical study of developing slurry flow in the entrance region of a horizontal pipe. Computers & Fluids, 2008, 37(8): 965-974
    [56] Farhi C. A numerical study for effectiveness of a wake equalizing duct. Ocean Engineering, 2007, 1-8
    [57] Raisee M, Hejazi S H. Application of linear and non-linear low-Re k–εmodels in two-dimensional predictions of convective heat transfer in passages with sudden contractions. International Journal of Heat and Fluid Flow, 2007, 28(3): 429-440
    [58] Koronaki E D, Liakos H H, Founti M A, et al. Numerical study of turbulent diesel flow in a pipe with sudden expansion. Applied Mathematical Modelling, 2001, 25(4): 319-333
    [59]杲东彦,陆广林.基于RNG模型的虹吸式出水流道三维紊流数值模拟.南京工程学院学报(自然科学版), 2008, 6(2): 22-25
    [60]刘小龙,施卫东,潘中永.泵站出水流道三维不可压湍流流场数值模拟.中国农村水利水电, 2003, 6: 25-27
    [61]陆林广,刘丽君.泵站出水流道基本流态分析.水利学报, 2003, 3: 69-76
    [62]成立,刘超,周济人,等.基于RNG湍流模型的双向泵站出水流道流动计算.水科学进展, 2004, 15(1): l09-112
    [63] Wilcox D C. Turbulence modeling for CFD. New York: DCW Industries, 2000, 83-91
    [64]傅德薰,马延文.计算流体力学.北京:高等教育出版社, 2002, 127-137
    [65] Anderson D A, Tennehil J C, Pletcher R H. Computational Fluid Mechanics and Heat Transfer, New York: Hemisphere Publishing Corporation , 1984
    [66]王福军.计算流体动力学分析.北京:清华大学出版社. 2006, 83-91
    [67]李万平.计算流体力学.武汉:华中理工大学, 2004, 127-137
    [68] Jang D S, Jetly R, Acharya S. Comparison of the PISO, SIMPLER, andSIMPLEC algorithms for the treatment of the pressure-velocity coupling in Steady flow problems.Numerical Heat Transfer, 1986, 10(3): 209-228
    [69]朱红耕,袁寿其,进口流场对虹吸式出水流道的性能影响.农业机械学报, 2006, 37(10): 193-196
    [70]石惠娴.循环流化床流动特性PIV测试和数值模拟: [浙江大学博士学位论文].杭州:浙江大学能源清洁利用国家重点实验室, 2003, 11-12
    [71] Dudder T D, Meynart R, Simpldns P C. Full-field laser metrology for fluid velocity measurement, Opticsand Lasers in Engineering, 1988, 9: 163-199
    [72] Adrian R J. Particle-imaging techniques for experimental fluid mechanics. Annual Review of Fluid Mechanics, 1991, 23: 261-304
    [73]康琦,申功炘.全场测速技术进展.力学进展, 1997, 31(11): 46-50
    [74]代钦,赵莉莉.近自由表面翼型尾流速度场的PIV测量及POD分析.水动力学研究与进展: A辑, 2008, 23(2): 196-203
    [75] Zhang X, Zerihan J. Off-surface aerodynamic measurements of a wing in ground efect.Journal of Aircraft, 2003, 40(4): 716-725
    [76]刘宝杰,王光华.翼型近尾迹流动的PIV研究——动力学机制.航空动力学报, 1999, 14(2): 125-130
    [77]王光华,刘宝杰.翼型近尾迹流动的PIV研究——运动学特性.航空动力学报, 1999, 14(2): 119-124
    [78]张东东,许宏庆,何枫.气固两相射流瞬时速度场和浓度场的PIV研究.清华大学学报(自然科学版), 2003, 43(11): 1491-1494
    [79]姚朝晖,侯修洲,郝鹏飞.超声速冲击射流的PIV实验研究.实验流体力学, 2007, 21(4): 32-35
    [80] Miyazald K, Chen G, Yamamoto F, et al. PIV measurement of particle motion in spiral gas-solid two-phase flow. Experimental Thermal and Fluid Science, 1999, 19(2): 194-203
    [81] Tsuji Y. Numerical simulation of gas-solid two-phase flow in a vertical pipe. Gas-Solid Flows ASME, 1991, 121(2): 123-128
    [82]阮晓东,赵文峰.水平渐扩管后气固两相流流动特性的试验研究.热力发电, 2006, 35(9): 15-17,32
    [83]历玉英,刘扬,陈建业,等.应用PIV技术测量幂律流体在环空管道内的流场.大庆石油学院学报, 2006, 30(5): 42-45
    [84] Jakobsen M L, Easson W J, Greated C A, et al. Particle image velocimetry: simultaneous two phase flow measurements. Meas. Sci. Technol., 1996, 7: 1270-1280
    [85] Song Q, Luo R, Yang X Y. Phase distributions for upward laminar dilute bubbly flows with non-uniform bubble sizes in a vertical pipe. International Journal of Multiphase Flow, 2001, 27: 379 -390
    [86] Chen R C, Fan L S. Particle image velocimetry for characterizing the flow structure in three-dimensional gas-liquid-solid fluidized beds. Chemical engineering science. 1992, 47(13-14): 3615-3622
    [87] Grunefeld G, Finke H. Probing the velocity fields of gas and liquid phase simultaneously in a two-phase flow. Experiments in Fluids, 2000, 29 (11) : 322 -330
    [88] Kadambi J R, MartinW T. Particle size using Particle Image Velocimetry for two-phase flow. Powder Technology, 1998, 100: 251-259
    [89] Vallée C, H?hne T, Horst M, et al. Prasser Experimental investigation and CFD simulation of horizontal stratified two-phase flow phenomena. Nuclear Engineering and Design, 2008, 238(3): 637-646
    [90] Hu H. Sensitivity Derivative Versions of The FIOMGEM CFD Code via Automatic Differentiation. AIAA-97-1851, 1997
    [91] Joaquim R R A M, Sturdza P, Juan J A. The Connection between the Complex-Step Derivative Approximation and Algorithmic Diferentiation. AIAA-2001-0921, 2001
    [92] Joaquim R R A M, Ilan M K, Juan J A. An Automated Method for Sensitivity Analysis Using Complex Variables. AIAA-2000-0689, 2000
    [93] Anderson W K, Newman J C, David L, et al. Sensitivity Analysis for the Navier-Stokes Equations on Unstructured Meshes Using Complex Variables. AIAA-99-3294, 1999
    [94] Li K, Su J, Gao L M. Optimal shape design for blade’s surface of an impeller via the Navier–Stokes equations. Communications in Numerical Methods in Engineering, 2005, 22(6): 657-676
    [95] Jameson A. Aerodynamic design via control theory. Journal of Scientific Computing, 1988, 3(3): 233-260
    [96] Antony J, Juan J A. Aerodynamic Shape Optimization Techniques Based On Control Theory. AIAA-1998-2538, 1998
    [97] Elliott J, Peraire J. Aerodynamic Design Using Unstructured Mesh. AI AA-1996-1941, 1996
    [98] Sangho K, Kaveh H, Kasidit L, et al. Enhancement of adjoint design methods via optimization of adjoint parameters. AIAA-2005-0448, 2005
    [99] Carpentieri G, Koren B, van Tooren M L L. Adjoint-Based Aerodynamic Shape Optimization on Unstructured Meshes. Journal of Computational Physics archive. 2007, 224(1): 267-287
    [100]杨旭东,乔志德,朱兵.气动/几何约束条件下翼型优化设计的最优控制理论方法.计算物理, 2006, 23(1): 66-72
    [101]杨旭东,乔志德.基于共轭方程法的跨音速机翼气动力优化设计.航空学报, 2003, 24(1): 1-5
    [102]熊俊涛,乔志德,杨旭东,等.基于黏性伴随方法的跨声速机翼气动优化设计.航空学报, 2007, 28(2): 281-285,308
    [103] Siva K N. The Discrete Adjoint Approach to Aerodynamic Shape Optimization: [dissertation]. Stanford University: Department of Aeronautics and Astronautics, 2003. 63-196
    [104] Michael B G, Niles A. An introduction to the adjoint approach to design. Flow, Turbulence and Combustion, 2000, 65(3-4): 393-415
    [105]朱传军,张超勇,管在林.一种求解Job--shop调度问题的遗传局部搜索算法.中国机械工程, 2008, 19(14): 1707-1711
    [106] Balas E, Vazacopoulos A. Guided Local Search with Shifting Bottleneck for Job Shop Scheduling.Management Science, 1998, 44(2): 262-275
    [107] Li Y, Udpa L, Udpa S S. Three-dimensional defeet reconstruction from eddy-current NDE signals using a genetic local search algorithm.IEEE Transactions on Magnetics, 2004, 40(2): 410-417
    [108]熊俊涛,乔志德,韩忠华.响应面方法在跨声速翼型气动优化设计中的应用研究.西北工业大学学报, 2006, 24(2): 232-236.
    [109]杨华,姚卫星.基于径向基函数的机翼二维气动代理模型设计.计算力学学报, 2008, 25(6): 797-802
    [110]王小妮.基于代理模型的结构外形优化.飞机设计, 2008, 28(3): 13-15
    [111] Fazil O S. Shape optimization of 2D structures using simulated annealing. Computer methods in applied mechanics and engineering, 2007, 196(35-36): 3279-3299
    [112]张瑞,吴澄.求解Job-Shop问题的一种免疫模拟退火算法.中国机械工程, 2008, 19(23): 2824-2829
    [113]丁胜祥,董增川,王德智,等.基于Pareto强度进化算法的供水库群多目标优化调度.水科学进展, 2008, 19(5): 679-684
    [114]马光文,王黎.遗传算法在水电站优化调度中的应用.水科学进展, 1997, 8(3): 275-280
    [115]陈南祥,李跃鹏,徐晨光.基于多目标遗传算法的水资源优化配置.水利学报, 2006, 37(3): 308-313
    [116] Jin R, Chen W, Simpson T W. Comparative studies of metamodeling techniques under multiple modeling criteria. Journal of Structural and Multidisciplinary Optimization, 2001, 23(1): 1-13
    [117] Simpson T W, Peplinski J, Koch P N, et al. Metamodels for computer-based engineering design: survey and recommendations. Engineering with Computers, 2001, 17(2): 129-150
    [118] Simpson T W, Booker A J, Ghosh D, et al. Approximation methods in muhidisciplinary analysis and optimization: a panel discussion. Structural and Multidisciplinary Optimization, 2004, 27(5): 302-313
    [119] Box G E P, Hunter W G, Hunter J S, et al. Statistics for Experimenters. New York: John Wiley & Sons, 1978
    [120] Hardy R L. Multi-quadratic equations of topography and other irregular surfaces. Journal of Geophysical Research, 1971, 76(8): 1905-1915
    [121] Sacks J, Welch W J, Mitchell T J, et al. Design and analysis of computer experiments, Statistical Science, 1989, 4 (4): 409-435
    [122] Kim H M, Kim K Y. Design optimization of rib-roughened channel to enhance turbulent heat transfer. International Journal of Heat and Mass Transfer, 2004, 47(23): 5159-5168
    [123] Park K, Moon S. Optimal design of heat exchangers using the progressive quadratic response surface model. International Journal of Heat and Mass Transfer. 2005, 48(11): 2126-2139
    [124] Park K, Oh P K, Lim H J. The application of the CFD and Kriging method to an optimization of heat sink. International Journal of Heat and Mass Transfer, 2006, 49(19-20): 3439-3447
    [125] Ryu J S, Kim M S, Cha K J, et al. Kriging interpolation method in geostatistics and DACE model, KSME International Journal, 2002, 16 (5): 619-632
    [126]穆雪峰,姚卫星,余雄庆,等.多学科设计优化中常用代理模型的研究.计算力学学报. 2005, 22(5): 609-612
    [127]周开利,康耀红.神经网络模型及其MATLAB仿真程序设计.北京:清华大学出版社: 2005, 2-21
    [128] Hebb D O. The organization of behavior: a neuropsychological theory. New York: John Wiley and Sons, Inc. 1949
    [129] Minsky M, Papert S. Perceptrons. Cambridge: M.I.T. Press, 1969
    [130] Philip D W. Neural Computing: Theory and Practice. New York: Van Nostrand Reinhold, 1989
    [131] Hopfield J J. Neural networks and physical systems with emergent collective computational abilities. The Proceedings of the National Academy of Sciences. USA 1982, 79 : 2445-2558
    [132] Hopfield J J. Neuorns with graded response have colective computational properties like those of two state neurons. Ibid, 1984, 81: 3088-3092
    [133] Kohonen T. Self-organized formation of topologically correct feature maps. Biological Cybernetics, 1982, 43(1): 59-69
    [134] Ackley D H, Hinton G, Sejnowski T. A learning algorithm for Boltzmann machines. Cognitive Science, 1985, 9(1): 147-169
    [135] Hilbert J K. Deterministic learning rules for boltzmann machines. Neural Networks, 1995, 8(4): 537-548
    [136] Rumelhart D E, Mcclelland J L. Parallel distributed processing: explorations in the microstructure of cognition. Cambridge: MIT Press/Bradford, 1986, 1: 318-362
    [137] Widrow B. Neural networks application in industry, business and science. Communication of the ACM, 1994, 37(3): 93-105
    [138] Rumelhart D, Hinton G, Williams R. Learning representations by back-propagating errors. Nature, 1986, 323: 533–536
    [139]阎平凡,张长水.人工神经网络与模拟进化计算.北京:清华大学出版社. 2006, 1-30
    [140]廖晓峰,李传东.神经网络研究的发展趋势.国际学术动态, 2006, 5: 43-44
    [141]聂书彬,关醒凡,刘厚林.利用人工神经网络预测离心泵性能的探索.水泵技术, 2002, 5:16-19
    [142]刘光临,蒋劲,符向前. BP神经网络法预测水泵全性能曲线的研究.武汉水利电力大学学报, 2000, 33(2):37-39
    [143]姚一富,江亲瑜,何荣国.基于BP神经网络的离心泵的性能预测.机械设计与制造. 2008, 10: 73-74
    [144]刘厚林,王勇,谈明高.基于神经网络的离心泵汽蚀性能预测.排灌机械, 2008, 26(2): 15-18
    [145]刘超,白玲.基于径向基函数神经网络拟合水泵特性曲线.机械设计, 2008, 25(6): 14-16
    [146] Hikmet E, Mustafa I, Abdulkadir S. Performance prediction of a ground-coupled heat pump system using artificial neural networks.International Journal of Heat and Mass Transfer, 2008, 35(4):1940-1948
    [147] G?lcüM. Artificial neural network based modeling of performance characteristics of deep well pumps with splitter blade. Energy Conversion and Management, 2006, 47(7-8): 3333-3343
    [148] Sudhakar T V V, Balaji C, Venkateshan S P, et al. Optimal configuration of discrete heat sources in a vertical duct under conjugate mixed convection using artificial neural networks. International Journal of Thermal Sciences, 2009, 48(5): 881-890
    [149] Asok S P. Neural network and CFD-based optimisation of square cavity and curved cavity static labyrinth seals. Tribology International, 2007, 40(7): 1204-1216
    [150] Shang Z. Application of artificial intelligence CFD based on neural network in vapor–water two-phase flow. Engineering Applications of Artificial Intelligence, 2005, 18(6): 663-671
    [151] Jahangir M, Jagath J K. Application of artificial neural network and genetic algorithm in flow and transport simulations. Advances in Water Resources, 1998, 22 (2): 145-158
    [152] Shyam S S. A neural network approach for non-iterative calculation of heat transfer coefficient in fluid-particle systems. Chemical Engineering and Processing, 2001, 40(4): 363-369
    [153] Bening R M, Becker T M, Delgado A. Initial studies of predicting flow fields with an ANN hybrid. Advances in Engineering Software, 2001, 32(12): 895-901
    [154] Masini R, Padovani E, Ricotti M E, Zio E. Dynamic simulation of a steam generator by neural networks. Nuclear Engineering and Design, 1999, 187(2): 197-213
    [155] Walid H S, Shyam SS. An artificial neural network for noniterative calculation of the friction factor in pipeline flow. Computers and Electronics in Agriculture, 1998, 21(3): 219–228
    [156] Pierret S, Van den Braembussche R A. Turbomachinery blading design using Navier-Stokes solver and artificial neural network. ASME Journal of Turbomachinery, 1999, 121(4): 326–332
    [157] Ferlauto M, Marsilio R. A viscous inverse method for aerodynamic design. Computers & Fluids, 2006, 35(3): 304-325
    [158] Lighthill J M. A new method of two-dimensional aerodynamic design.Aeronautical Research Council Reports and Memorandan, 1945: 2122.
    [159] Staniz J D. Design of two-dimensional channels with prescribed velocity distributions along the channel walls. NACA Report, 1953: 1153
    [160] Iollo A, Ferlauto M, Zannetti L. An aerodynamic optimization method based on the inverse problem adjoint equations. Journal of Computational Physics, 2001, 173(1): 87-115
    [161] Volpe G. Inverse airfoil design: a classical approach updated for transonic applications. Applied Computational Aerodynamics, 1990, 125: 191-220
    [162] Patrick S M, Atassi H M, Blake W K. Inverse problems in aerodynamics and aeroacoustics. Active Control Vib Noise, ASME, 1994: 309-319
    [163] Jo?o E B. Computational method for the design of ducts. Computers & Fluids, 2007, 36(2): 480-483
    [164] Kamoun B, Afungchui D, Abid M. The inverse design of the wind turbine blade sections by the singularities method. Renewable Energy, 2006, 31(13): 2091-2107
    [165] Rollet-Miet P, Laurence D, Ferziger J. LES and RANS of turbulent flow in tube bundles. International Journal of Heat and Fluid Flow, 1999, 20(3): 241-254
    [166] Du Y Q, Qian R Z, Peng S W. Coherent structure in flow over a slitted bluff body. Communications in Nonlinear Science and Numerical Simulation, 2006, 11(3): 391-412
    [167] Chowa W K, Li J. Numerical simulations on thermal plumes with k–εtypes of turbulence models. Building and Environment, 2007, 42(8): 2819-2828
    [168] Rohdin P, Moshfegh B. Numerical predictions of indoor climate in large industrial premises: a comparison between different k–εmodels supported by field measurements. Building and Environment, 2007, 42(11): 3872-3882
    [169] Harlow F H, Welch J F. Numerical calculations of time-dependent viscous incompressible flow of fluid with free surface. Phys Fluids, 1965, 8: 2182-2189
    [170]忻孝康,刘儒勋,蒋伯诚.计算流体力学.长沙:国防科学技术大学出版社, 1989
    [171] Evans M E, Harlow F H. Los Alamos Report -2139, 1957
    [172] Gentry R A, Martin R E, Daly B J. An Eulerian differencing method for unsteady compressible flow problems. J Comput Phys, 1966, 8: 55-76
    [173]刘儒勋,王志峰.数值模拟方法和运动界面追踪.合肥:中国科学技术大学出版社, 2001, 189-221
    [174] Hirt C W, Nichols B D. Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries. J. Comput. Phys., 1981, 39(1): 201-225
    [175]冯丽华.明渠弯道三维水流数值模拟研究: [扬州大学硕士毕业论文].扬州:扬州大学水利科学与工程学院, 2007, 30-32
    [176]陈建忠,封建湖,史忠科,等.求解双曲型守恒律的半离散中心差分格式.应用力学学报. 2005, 22(4): 536-540
    [177]张小峰,张艳霞,谢作涛.一阶迎风差分格式求解非线性对流扩散方程的精度.武汉大学学报:工学版, 2003, 36(5): 1-4,8
    [178]刘百仓,黄社华,马军,等.二阶迎风有限体积法方腔流数值模拟.应用基础与工程科学学报, 2006, 14(4): 557-565
    [179]汪银乐,刘浩.高精度混合型格式的构造及数值模拟.南京航空航天大学学报, 2006, 38(4): 423-426
    [180]高秋新,周连第.用三维不定常RANS方程求解船尾绕流.水动力学研究与进展: A辑, 1994, 4: 487-497
    [181]陈庆光,钱宝光. QUICK和乘方格式在顶盖驱动方腔流动数值计算中的比较.山东科技大学学报:自然科学版, 2002, 21(1): 8-11
    [182]尚庆,张健,周力行. QUICK格式在湍流旋流流动数值模拟中的应用.计算物理, 2004, 21(4): 283-289
    [183] Leonard B P. A stable and accurate convective modelling procedure based on quadratic upstream interpolation.Computer Methods in Apphed Mechanics and Engineering, 1979, 19: 59-98
    [184]鹿院卫,何安定.延迟修正QUICK格式及其在弹状流中的应用.西安交通大学学报, 2000, 34(5): 37-41
    [185]陶文铨.数值传热学(第二版).西安:西安交通大学出版社, 2001
    [186]徐彬士,李同德.虹吸滤池.北京:中国建筑工业出版社, 1985
    [187]李国栋,李建中,许文海,等.大型倒虹吸管冲水过程的数学模型与计算.武汉大学学报(工学版), 2004, 40(2): 12-16
    [188]朱红耕.非设计工况下虹吸式出水流道内流场数值分析.水力发电学报, 2006, 25(6): 140-144
    [189]叶伊兵,李贵宝.第六讲:与居民生活密切相关的节水产品标准.中国标准化, 2008, 6: 31-32
    [190]范群芳,董增川,杜芙蓉.水利学报(增刊), 2007, 10: 465-469
    [191]吴普特,冯浩,牛文全,等.中国用水结构发展态势与节水对策分析.农业工程学报, 2003, 19(1): 1-6
    [192]李名尧. CAD/CAM.北京:机械工业出版社, 2004
    [193] Wong L T, Muia K W. Modeling water consumption and flow rates for flushing water systems in high-rise residential buildings in Hong Kong. Building and Environment, 2007, 42(5): 2024-2034
    [194] Friedler E, Butler D, Brown D M. Domestic WC usage patterns. Building and Environment, 1996, 31(4): 385-392
    [195] Cheng C L, Hong Y T. Evaluating water utilization in primary schools. Building and Environment, 2004, 39(8): 837–845
    [196] Cummings S J, Wright G B, Bonollo E. Australian water closet developments and their role in sustainable sanitation. Building Services Engineering Research and Technology, 2001, 22(1): 47-55
    [197]全国建筑卫生陶瓷标准化技术委员会.建筑卫生陶瓷标准化助推“节水革命”.世界信息标准, 2006, 9: 112-113
    [198] Otterpohl R, Grottker M, Lange J. Sustainable water and waste management in urban areas. Water Science and Technology, 1997, 35(9): 121-133
    [199]杨行俊,郑君里.人工神经网络.北京:高等教育出版社, 1992
    [200] Gusz A. Neural network architecture for control. IEEE Control Systems Magazine, 1989, 8(2): 22-25
    [201]邓志东,孙增圻.利用线性再励的自适应变步长快速BP算法.模式识别与人工智能, 1993, 6(4): 319-323
    [202]杨大力,刘泽民.多层前向神经网络中BP算法的误调分析及改进的算法.电子学报, 1995, 23(1): 117-120
    [203]王科俊,金鸿章,战兴群.不同s型函数对BP算法影响的理论及实验研究.自动化理论、技术与应用—中国自动化学会第十届青年学术年会论文集.西安:西北工业大学出版社, 1994, 299-303
    [204]王科俊.神经网络建模、预报与控制.哈尔滨:哈尔滨工程大学出版社, 1996, 37-86
    [205] P1aut D C, Nowlan S J, Hinton G E. Experiments on learning by back-Propagation. Tech Rep CMO-CS-86-126, 1986
    [206] Sietsma J, Dow R J F. Neural network pruning-why and low. In Proc. IEEE Int. conf. Neural Networks, 1988, 1: 325-333
    [207]陆金挂.多层神经网络四算法的研究.计算机工程, 1994, 20(1): 17-19
    [208]唐万梅. BP神经网络网络结构优化问题的研究.系统工程理论与实践, 2005, 10: 95-100
    [209]王波雷,马孝义,郝晶晶.基于L-M优化算法的喷头射程神经网络预测模型.农业机械学报, 2008, 39(5): 36-40
    [210]袁玲.交通噪声预测的神经网络模型.长安大学学报:自然科学版. 2003, 23(2): 84-87
    [211]茆诗松.贝叶斯统计.北京:中国统计出版社, 1999
    [212] Foresee F D, Hagan M T. Gauss-newton approximation to bayesian regularization. Proceeding of the 1997 Intenrational Joint Conference on Neural Networks. Houston, 1997, 1930-1935
    [213] MacKay D J C. A practical bayesian framework for backprop networks. Neural Computation, 1992, 4 (3): 448-472
    [214] Burden F R, Winkler D A. A quantitative structure-activity relationships model for the acute toxicity of substituted benzenes to tetrahymena pyriformis using bayesian-regularized neural networks. Chem Res Toxicol, 2000, 13(6): 436-440
    [215] Lampinen J, Vehtari A. Bayesian approach for neural networks–review and case studies. Neural Networks, 2001, 14: 257-274
    [216]孙伟,曾光明,魏万之,黄国和.氯代芳香族化合物结构-电化学还原电位定量关系的贝叶斯规整化BP神经网络模型.环境科学, 2005, (2): 17-22
    [217] Conrad L E, Craig A S. Bayesian methods for regional-scale eutrophication models. Water Research, 2004, 38: 2764-2774
    [218] Borsuk M E, Stow C A, Reckhow K H. A Bayesian network of eutrophication models for synthesis, prediction, and uncertainty analysis. Ecological Modelling, 2004, 173: 219-239
    [219]罗玮,周孝德,程文,等. PIV应用于气液两相流的研究现状.传感器与微系统, 2006, 25(2): 1-3,6
    [220] Adrian R J. Particle-imaging techniques for experimental fluid mechanics. Annual Reviews of Fluid Mechanics, 1991, 23: 261-30
    [221] Kadambi J R, Martin W T, Amirthaganesh S, et al. Particle sizing using particle imaging velocimetry for two-phase flows. Powder Technology, 1998, 100(2-3): 251-259
    [222] Chen R C. Particle image velocimetry for characterizing the flow structure in three-dimension gas-liquid-solid fluidized beds. Chemical Engineering Science, 1992, 47: 3615-3622
    [223] Chen R C, Reese J. Flow structure in three-dimensional bubble column and three-phase Fluidized beds. A.I.Ch.E.Journal, 1994, 40: 1093-1104
    [224]王灿星,山西富士夫.二维PIV图像处理算法.水动力学研究与进展: A辑,2001, 16(4): 339-404
    [225]葛毅.虹吸管道内流场的数值模拟和试验研究: [湖南大学硕士毕业论文].长沙:湖南大学机械与汽车工程学院. 2007, 40-47
    [226]崔广心.相似理论与模型试验.徐州:中国矿业大学出版社, 1990, 5-25
    [227]易军.歼击机发动机设计载荷剖面的相似转换法.航空动力学报, 1998, 13(3): 333-335
    [228]孙文策.工程流体力学.大连:大连理工大学出版社, 1995, 141-142
    [229]王静波.管道当量直径的计算.辽宁石油化工大学学报, 2005, 25(3): 69-70
    [230]赵振国,石金玲,陈仙松.冷却塔中雨区的水滴当量直径.水动力学研究与进展A辑, 1992, 7(1): 79-84
    [231]胡云.基于量纲分析的建模研究.大学物理, 2006, 25(12): 18-22
    [232]胡云.量纲分析应用性研究.大连民族学院学报, 2006, 8(5): 70-74
    [233]沈东,王难贵.相似准则在设计原、模型射流泵中的应用, 1996, (4): 14-17
    [234]徐全智,杨晋浩.数学建模.北京:高等教育出版社, 2003
    [235]徐正凡.水力学上册.北京:高等教育出版社, 1986
    [236]张维刚.现代设计方法(英文版).北京:机械工业出版社, 2005
    [237]李国忠.现代设计.武汉:中国地质大学出版社, 2006, 33-36

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700